▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Matricial Families and Weighted Shifts

Paul Muhly and Baruch Solel

OTOA Bangalore December 2014

Introduction

We studied tensor operator algebras associated with correspondences E (over a C^* - or W^* -algebra M) (to be defined shortly) and their ultraweak closures: the **Hardy algebras**. A useful property of these algebras is that one knows their representation theory. We showed that the representations can be parameterized by a **matricial family of sets** (TBDS) and the elements of the algebra (viewed as functions on the space of all representations) can be described by **matricial families of operator valued functions** (TBDS).

In fact, the matricial family of sets (parameterizing the representations) is $\{\overline{D}_{\sigma}\}_{\sigma \in Rep(M)}$ where \overline{D}_{σ} is the **unit ball** of a certain space (TBDS) associated with σ .

Thus, these algebras can be studied as **algebras of matricial families of functions** defined on a family of unit balls.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, these algebras can be studied as algebras of matricial families of functions defined on a family of **unit balls**.

The motivation for the current work: Replace "unit balls" by more general matricial families of sets.

Following works of Muller and of Popescu, we were led to replace the tensor algebra (which is generated by a family of shifts) with a "weighted tensor algebra" generated by a family of **weighted shifts**.

A In the following we assume that M is a W^* -algebra. But (almost) everything works for a C^* -algebra.

The unweighted case

I will first review the unweighted case.

We begin with the following setup:

- \diamond *M* a *W*^{*}-algebra.
- *E* a *W**-correspondence over *M*. This means that *E* is a bimodule over *M* which is endowed with an *M*-valued inner product (making it a right-Hilbert *C**-module that is self dual). The left action of *M* on *E* is given by a unital, normal, *-homomorphism φ of *M* into the (*W**-) algebra of all bounded adjointable operators *L*(*E*) on *E*.

Examples

- (Very basic Example) $M = \mathbb{C}$, $E = \mathbb{C}$.
- (Basic Example) $M = \mathbb{C}$, $E = \mathbb{C}^d$, d > 1.
- *M* arbitrary , $\alpha : M \to M$ a normal unital, endomorphism.
 - E = M with right action by multiplication, left action by
 - $\varphi = \alpha$ and inner product $\langle \xi, \eta \rangle := \xi^* \eta$. Denote it $_{\alpha}M$.

Note: If σ is a representation of M on H, $E \otimes_{\sigma} H$ is a Hilbert space with $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle_E) h_2 \rangle_H$.

Similarly, given two correspondences *E* and *F* over *M*, we can form the (internal) tensor product $E \otimes F$ by setting

$$\langle e_1 \otimes f_1, e_2 \otimes f_2 \rangle = \langle f_1, \varphi(\langle e_1, e_2 \rangle_E) f_2 \rangle_F$$

 $\varphi_{E \otimes F}(a)(e \otimes f)b = \varphi_E(a)e \otimes fb$

and applying an appropriate completion. In particular we get "tensor powers" $E^{\otimes k}$.

Also, given a sequence $\{E_k\}$ of correspondences over M, the direct sum $E_1 \oplus E_2 \oplus E_3 \oplus \cdots$ is also a correspondence (after an appropriate completion).

For a correspondence E over M we define the Fock correspondence

$$\mathcal{F}(E) := M \oplus E \oplus E^{\otimes 2} \oplus E^{\otimes 3} \oplus \cdots$$

For every $a \in M$ define the operator $\varphi_{\infty}(a)$ on $\mathcal{F}(E)$ by

$$\varphi_{\infty}(\mathbf{a})(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = (\varphi(\mathbf{a})\xi_1) \otimes \xi_2 \otimes \cdots \otimes \xi_n$$

and $\varphi_{\infty}(a)b = ab$. For $\xi \in E$, define the "unweighted shift" (or "creation") operator T_{ξ} by

$$T_{\xi}(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n.$$

and $T_{\xi}b = \xi b$. So that T_{ξ} maps $E^{\otimes k}$ into $E^{\otimes (k+1)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

- (1) The norm-closed algebra generated by $\varphi_{\infty}(M)$ and $\{T_{\xi} : \xi \in E\}$ will be called the **tensor algebra** of *E* and denoted $\mathcal{T}_{+}(E)$.
- (2) The ultra-weak closure of $\mathcal{T}_+(E)$ will be called the **Hardy** algebra of *E* and denoted $H^{\infty}(E)$.

Examples

1. If
$$M = E = \mathbb{C}$$
, $\mathcal{F}(E) = \ell^2$, $\mathcal{T}_+(E) = A(\mathbb{D})$ and $H^{\infty}(E) = H^{\infty}(\mathbb{D})$.

2. If $M = \mathbb{C}$ and $E = \mathbb{C}^d$ then $\mathcal{F}(E) = \ell^2(\mathbb{F}_d^+)$, $\mathcal{T}_+(E)$ is Popescu's \mathcal{A}_d and $H^{\infty}(E)$ is F_d^{∞} (Popescu) or \mathcal{L}_d (Davidson-Pitts). These algebras are generated by d shifts.

Theorem

Every completely contractive representation of $T_+(E)$ on H is given by a pair (σ, \mathfrak{z}) where

- σ is a normal representation of M on $H = H_{\sigma}$. ($\sigma \in NRep(M)$)
- **2** $\mathfrak{z}: E \otimes_{\sigma} H \to H$ is a contraction that satisfies

$$\mathfrak{z}(\varphi(\cdot)\otimes I_{\mathcal{H}})=\sigma(\cdot)\mathfrak{z}.$$

We write $\sigma \times \mathfrak{z}$ for the representation and we have $(\sigma \times \mathfrak{z})(\varphi_{\infty}(a)) = \sigma(a)$ and $(\sigma \times \mathfrak{z})(T_{\xi})h = \mathfrak{z}(\xi \otimes h)$ for $a \in M$, $\xi \in E$ and $h \in H$.

Write $\mathcal{I}(\varphi \otimes I, \sigma)$ for the intertwining space and D_{σ} for the open unit ball there. Thus the c.c. representations of the tensor algebra are parameterized by the family $\{\overline{D_{\sigma}}\}_{\sigma \in NRep(M)}$.

Examples

(1) $M = E = \mathbb{C}$. So $\mathcal{T}_+(E) = A(\mathbb{D})$, σ is the trivial representation on H, $E \otimes H = H$ and D_{σ} is the (open) unit ball in $B(H_{\sigma})$. (2) $M = \mathbb{C}, E = \mathbb{C}^d$. $\mathcal{T}_+(E) = \mathcal{A}_d$ (Popescu's algebra) and D_σ is the (open) unit ball in $B(\mathbb{C}^d \otimes H, H)$. Thus the c.c. representations are parameterized by row contractions $(T_1, \ldots, T_d).$ (3) *M* general, $E =_{\alpha} M$ for an automorphism α . $\mathcal{T}_+(E)$ = the analytic crossed product. The intertwining space $\mathcal{I}(\varphi \otimes I, \sigma)$ can be identified with $\{\mathfrak{z} \in B(H) : \sigma(\alpha(T))\mathfrak{z} = \mathfrak{z}\sigma(T), T \in B(H)\}$ and the c.c. representations are $\sigma \times \mathfrak{z}$ where \mathfrak{z} is a contraction there.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Weighted Shifts and algebras

Definition

A weight sequence is a sequence $Z = \{Z_k\}$ such that

•
$$Z_k \in \mathcal{L}(E^{\otimes k}) \cap \varphi_k(M)' = \mathcal{A}_k.$$

•
$$Z_k$$
 is invertible for all $k \ge 1$.

•
$$\sup_k ||Z_k|| < \infty$$
.

Notation: We write

$$Z^{(m)} = Z_m(I_E \otimes Z_{m-1}) \cdots (I_{E^{\otimes (m-1)}} \otimes Z_1)$$

for "powers".

For $\xi \in E$, define the "Z-weighted shift" operator $W_{\xi} \in \mathcal{L}(\mathcal{F}(E))$ by

$$\mathcal{N}_{\xi}(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = Z_{n+1}(\xi \otimes \xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n).$$

and $W_{\xi}b = Z_1(\xi b)$.

Definition

 The norm-closed algebra generated by φ_∞(M) and {W_ξ : ξ ∈ E} will be called the Z-tensor algebra of E and denoted T₊(E, Z).

(2) The ultra-weak closure of $\mathcal{T}_+(E, Z)$ will be called the **Z-Hardy algebra** of *E* and denoted $H^{\infty}(E, Z)$.

Motivation for the definition of the domains

What are the c.c. representations of $T_+(E, Z)$?

Start with an easier question: Let $\mathcal{T}_{0+}(E, Z)$ be the **algebra** generated by $\varphi_{\infty}(M)$ and $\{W_{\xi} : \xi \in E\}$. What are its representations?

They are determined by the images of the generators and a simple calculation shows that each representation ρ (on H) is associated with a pair (σ, \mathfrak{z}) where σ is a representation of M (and we shall assume it is normal) and $\mathfrak{z} \in \mathcal{I}(\varphi \otimes I, \sigma)$ such that

•
$$ho(arphi_\infty({\sf a}))=\sigma({\sf a}),~{\sf a}\in M$$

•
$$\rho(W_{\xi})h = \mathfrak{z}(\xi \otimes h), \ \xi \in E, \ h \in H.$$

It will be convenient to write L_{ξ} for the operator $h \mapsto \xi \otimes h$ and then we have $\rho(W_{\xi}) = \mathfrak{z}L_{\xi}$. Which pairs extend to the norm closure?

Simple examples of c.c. representations

- Induced representations : Fix a normal representation π of M on K and write π^{F(E)} for the representation of T₊(E, Z) on F(E) ⊗_π K defined by π^{F(E)}(X) = X ⊗ I_K. This is, in fact, a representation of H[∞](E, Z) and, if π is faithful, it is completely isometric.
- (2) Compressions of induced representations: Let π, K be as in (1), H be a Hilbert space and V : H → F(E) ⊗_π K be an isometry whose final space is coinvariant under the induced representation. Then ρ(X) = V*(X ⊗ I_K)V is a c.c. representation of T₊(E, Z).

In the unweighted case, the representations arising as in (2) are "almost all" the c.c. representations of the tensor algebra . More precisely, they contain all the representations that are given by points in the **open** unit ball of $\mathcal{I}(\varphi \otimes I, \sigma)$. This raises the hope that, even in the weighted case, if we understand these representations, we will understand all the representations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What are the representations that are compressions of induced representations?

In the case $M = E = \mathbb{C}$, this was studied by V. Muller (88). In his context the question is: What operators are compressions of a weighted shift (to a coinvariant subspace)? or, equivalently, what operators are parts of a weighted shift (i.e. are the restriction of a weighted shift to an invariant subspace)?

So, fix ρ given by (σ, \mathfrak{z}) (i.e $\rho(\varphi_{\infty}(a)) = \sigma(a)$ and $\rho(W_{\xi}) = \mathfrak{z}L_{\xi})$ and an isometry $V : H \to \mathcal{F}(E) \otimes K$ such that

•
$$V^*(W_{\xi}\otimes I_K)V = \mathfrak{z}L_{\xi}$$

•
$$V^*(\varphi_{\infty}(a) \otimes I_K)V = \sigma(a).$$

We can write $Vh = (V_0h, V_1h, ...)$ where $V_mh \in E^{\otimes m} \otimes K$. Using this, the definition of W_{ξ} and the fact that the image of V is coinvariant, a simple computation shows that, for $m \ge 0$, $V_{m+1}^*(Z_{m+1} \otimes I_K) = \mathfrak{z}(I_K \otimes V_m^*)$. Hence

$$V_{m+1}^* = \mathfrak{z}(I_K \otimes V_m^*)(Z_{m+1}^{-1} \otimes I_K).$$

Applying this recursively we get

$$V_m^* = \mathfrak{z}^{(m)}((Z^{(m)})^{-1} \otimes V_0^*)$$

where

$$\mathfrak{z}^{(m)} = \mathfrak{z}(I_E \otimes \mathfrak{z}) \cdots (I_{E^{\otimes (m-1)}} \otimes \mathfrak{z}) : E^{\otimes m} \otimes H \to H.$$

Since V is an isometry, we have $I = \sum_{m=0}^{\infty} V_m^* V_m$. Thus, using $V_m^* = \mathfrak{z}^{(m)}((Z^{(m)})^{-1} \otimes V_0^*)$, we get

$$I = \sum_{m=0}^{\infty} \mathfrak{z}^{(m)} ((Z^{(m)*}Z^{(m)})^{-1} \otimes V_0^* V_0) \mathfrak{z}^{(m)*}.$$

Write $R_m^2 = (Z^{(m)*}Z^{(m)})^{-1}$ (with $R_0 = I$) and consider the CP map

$$\Theta^R_{\mathfrak{z}}(T) = \sum_{m=0}^{\infty} \mathfrak{z}^{(m)} (R_m^2 \otimes T) \mathfrak{z}^{(m)*}$$

for $T \in \sigma(M)'$. Then

$$\Theta^R_{\mathfrak{z}}(V_0^*V_0)=I.$$

One can now consider the set of all \mathfrak{z} such that this equation holds for some contraction V_0 . But it does not seem to be a tractable domain. So we now make further assumptions.

(日) (日) (日) (日) (日) (日) (日) (日)

Suppose that Θ_3^R has an inverse of a similar form, i.e

$$(\Theta^R_\mathfrak{z})^{-1}(T) = \Theta^Y_\mathfrak{z}(T) := \sum_{m=0}^\infty \mathfrak{z}^{(m)}(Y_m \otimes T)\mathfrak{z}^{(m)*}$$

for some $Y = \{Y_m\}$ with $Y_m \in \mathcal{A}_m$. Then \mathfrak{z} should satisfy

 $\Theta_{\mathfrak{z}}^{Y}(I) \geq 0.$

This suggests considering the domain

$$\{\mathfrak{z}:\sum_{m=0}^{\infty}\mathfrak{z}^{(m)}(Y_m\otimes I)\mathfrak{z}^{(m)*}\geq 0\}.$$

But: Can we find such Y? and Will this give us all the representations?

Composing the two maps $(\Theta_{\mathfrak{z}}^R \text{ and } \Theta_{\mathfrak{z}}^Y)$ and setting it equal to the identity suggest that $Y_0 = I$ and the equations

$$\sum_{k=0}^m Y_k \otimes R_{m-k}^2 = 0$$

hold for every m > 0.

These equations can be easily solved.

For m = 1: $R_1^2 + Y_1 = 0$. Thus $Y_1 = -R_1^2$. For m = 2: $R_2^2 + Y_1 \otimes R_1^2 + Y_2 = 0$. Thus $Y_2 = -R_2^2 + R_1^2 \otimes R_1^2$, etc.

But, is the map Θ_3^{γ} well defined?

We don't know the answer in general (even for the scalar case: $M = E = \mathbb{C}$). Even if one imposes conditions that will ensure convergence, it is not clear that this domain will describe **all** the representations of the algebra.

In the scalar case Muller studied two situations where positive results can be obtained. Subsequent research has been successful in the following cases:

(1) When
$$Y_m \le 0$$
 for $m > 0$.
We write $X_m = -Y_m \ge 0$ (and assume a convergence condition). The domain is then

$$\{\mathfrak{z}\in\mathcal{I}(\varphi\otimes I,\sigma):\quad\sum_{k=1}^{\infty}\mathfrak{z}^{(k)}(X_k\otimes I_{\mathcal{H}_\sigma})\mathfrak{z}^{(k)*}\leq 1\}.$$

See: V. Muller, G.Popescu (Memoir), P.Muhly-B.S., J.Good.
(2) When Y_m can be derived from Θ^Y = (id – Θ^X)^k (with X as in (1)): J. Agler, V. Muller, G. Popescu (JFA), I. Martziano.

From now on, I will discuss our work assuming (1).

Start with the domains

The domains

To define the domains, we consider now a sequence $X = \{X_k\}_{k=1}^{\infty}$ of operators satisfying

- $X_k \in \mathcal{L}(E^{\otimes k}) \cap \varphi_k(M)' = \mathcal{A}_k.$
- $X_k \ge 0$ for all $k \ge 1$ and X_1 is invertible.
- $\overline{\lim}||X_k||^{1/k} < \infty.$

Definition

A sequence $X = \{X_k\}_{k=1}^{\infty}$ satisfying (1)-(3) above is said to be admissible.

Associated to an admissible sequence X, we now set

$$\overline{D}_{X,\sigma} := \{\mathfrak{z} \in \mathcal{I}(\varphi \otimes I, \sigma) : \quad \sum_{k=1}^{\infty} \mathfrak{z}^{(k)}(X_k \otimes I_{H_{\sigma}})\mathfrak{z}^{(k)*} \leq 1\}$$

where $\mathfrak{z}^{(k)} = \mathfrak{z}(I_E \otimes \mathfrak{z}) \cdots (I_{E^{\otimes k}} \otimes \mathfrak{z}) : E^{\otimes k} \otimes H_{\Box \to \Box} H_{\Box, \Box \to \Box} = \mathbb{Z}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Examples

$$\overline{D}_{X,\sigma} = \{T = (T_1, \dots, T_d) : \sum_{\alpha,\beta} x_{\alpha,\beta} T_\alpha T_\beta^* \le I\}$$
(1)

where $T_{\alpha} = T_{\alpha_1} \cdots T_{\alpha_k}$.

Theorem

• Given an admissible sequence X, one can construct a weight sequence $Z = \{Z_k\}$ such that, writing $R_m^2 = (Z^{(m)*}Z^{(m)})^{-1}$ as above and setting $Y_0 = I$ and $Y_m = -X_m$ (for m > 0), we have that

$$\sum_{k=0}^m Y_k \otimes R_{m-k}^2 = 0$$

for every m > 0.

- A weight sequence Z associated to X is not unique but the algebras (tensor, Hardy) associated with two different weight sequences are unitarily equivalent.
- One can always choose Z (associated with a given admissible sequence X) such that either each Z_k is positive (for every k) or each Z^(k) is positive.

From now on we fix an admissible X and a weight sequence Z associated to it

Theorem

Every completely contractive representation ρ of $T_+(E, Z)$ on H is given by a pair (σ, \mathfrak{z}) where

•
$$\sigma$$
 is a normal representation of M on $H = H_{\sigma}$.
($\sigma \in NRep(M)$)

$$\mathfrak{z}\in\overline{D}_{X,\sigma}.$$

In fact,
$$\rho(\varphi_{\infty}(a)) = \sigma(a)$$
 and $\rho(W_{\xi})h = \mathfrak{z}(\xi \otimes h) = \mathfrak{z}L_{\xi}$.
Conversely, every such pair gives rise to a c.c. representation.

Thus the c.c. representations of the Z-tensor algebra are parameterized by the family $\{\overline{D}_{X,\sigma}\}_{\sigma \in NRep(M)}$.

We write $\sigma \times \mathfrak{z}$ for the representation ρ above.

Dilations

Lemma

Given $\mathfrak{z} \in \overline{D}_{X,\sigma}$, the map defined by

$$\Phi_{\mathfrak{z}}(T) = \sum_{k=1}^{\infty} \mathfrak{z}^{(k)}(X_k \otimes T) \mathfrak{z}^{(k)*}$$

(where the convergence is in ultraweak operator topology) is a completely positive map on $\sigma(M)'$ and the sequence $\{\Phi_{\mathfrak{z}}^m(I)\}$ is decreasing. (Write $Q_{\mathfrak{z}}$ for its limit)

Recall that, if π is a normal representation of M on K, then the associated induced representation is $X \in \mathcal{T}_+(E, Z) \mapsto X \otimes I_K \in B(\mathcal{F}(E) \otimes_{\pi} K)$.

Definition

An element $v \in \overline{D}_{X,\tau}$ (and the associated representation) is said to be coisometric if $\sum_{k=1}^{\infty} v^{(k)} (X_k \otimes l_{\mathcal{U}}) v^{(k)*} = l_{\mathcal{U}}$ (where τ is a normal representation of M on \mathcal{U}).

Theorem

Let σ be a normal representation of M on H and $\mathfrak{z} \in \overline{D}_{X,\sigma}$. Then the associated representation $\sigma \times \mathfrak{z}$ is a compression (in the sense defined above) of a representation that is the direct sum of an induced representation and a coisometric one. If $Q_{\mathfrak{z}} = 0$, it is a compression of an induced representation.

Theorem

Under the following additional conditions

(a)
$$\mathcal{L}(E^{\otimes m}) = \mathcal{K}(E^{\otimes m})$$
 for all $m \geq 1$.

(b) There is some $\epsilon > 0$ such that, for all $k \ge 1$, $Z_k \ge \epsilon I_{E^{\otimes k}}$ and (c) There is some a such that $(\overline{\lim} ||X_k||^{1/k})I_F < aI_F \le X_1$.

the representation $\sigma \times \mathfrak{z}$ is a compression (in the sense defined above) of a representation that is the direct sum of an induced representation and a coisometric one where the coisometric representation is a C^{*}-representation (i.e. it extends to a C^{*}-representation of the C^{*}-algebra $\mathcal{T}(E, Z)$ that is generated by $\mathcal{T}_+(E, Z)$).

Note: The "induced parts" in the two theorems are isomorphic (although the constructions are different). The "coisometric parts" we obtain in the two constructions may differ.

The families of functions

Given $F \in \mathcal{T}_+(E, Z)$, we define a family $\{\widehat{F}_\sigma\}_{\sigma \in NRep(M)}$ of (operator valued) functions called the *Berezin transform of F*. Each function \widehat{F}_σ is defined on $\overline{D}_{X,\sigma}$ and takes values in $B(H_\sigma)$:

 $\widehat{F}_{\sigma}(\mathfrak{z}) = (\sigma \times \mathfrak{z})(F).$

Here NRep(M) is the set of all normal representations of M. Note that the family of domains is a matricial family in the following sense.

Definition

A family of sets $\{\mathcal{U}(\sigma)\}_{\sigma \in NRep(M)}$, with $\mathcal{U}(\sigma) \subseteq \mathcal{I}(\varphi \otimes I, \sigma)$, satisfying $\mathcal{U}(\sigma) \oplus \mathcal{U}(\tau) \subseteq \mathcal{U}(\sigma \oplus \tau)$ is called a *matricial family* of sets (or an nc set).

We shall be interested here mainly with the following matricial families.

Examples

- (1) For a given admissible sequence X, the families $\{D_{X,\sigma}\}_{\sigma \in NRep(M)}$ and $\{\overline{D_{X,\sigma}}\}_{\sigma \in NRep(M)}$ are matricial families.
- (2) For σ ∈ NRep(M), write AC(σ) for the set of all 3 ∈ D_{X,σ} such that the representation σ × 3 extends to an ultraweakly continuous representation of H[∞](E, Z). Then the family {AC(σ)}_{σ∈NRep(M)} is a matricial family.

Note: $D_{X,\sigma} \subseteq \mathcal{AC}(\sigma)$.

If
$$F \in H^{\infty}(E, Z)$$
, \widehat{F}_{σ} is defined on $\mathcal{AC}(\sigma)$ (or $D_{X,\sigma}$).

Definition

Suppose $\{\mathcal{U}(\sigma)\}_{\sigma \in NRep(M)}$ is a matricial family of sets and suppose that for each $\sigma \in NRep(M)$, $f_{\sigma} : \mathcal{U}(\sigma) \to B(H_{\sigma})$ is a function. We say that $f := \{f_{\sigma}\}_{\sigma \in NRep(M)}$ is a matricial family of functions (or an nc function) in case

$$Cf_{\sigma}(\mathfrak{z}) = f_{\tau}(\mathfrak{w})C$$
 (2)

for every $\mathfrak{z} \in \mathcal{U}(\sigma)$, every $\mathfrak{w} \in \mathcal{U}(\tau)$ and every $C \in \mathcal{I}(\sigma \times \mathfrak{z}, \tau \times \mathfrak{w})$ (equivalently, $C \in \mathcal{I}(\sigma, \tau)$ and $C\mathfrak{z} = \mathfrak{w}(I_E \otimes C)$).

Theorem

For every $F \in \mathcal{T}_+(E, Z)$, the family $\{\widehat{F}_\sigma\}$ is a matricial family of functions on $\{\overline{D}_{X,\sigma}\}_{\sigma}$. Similarly, For $F \in H^{\infty}(E, Z)$, we get a matricial family of functions on $\{D_{X,\sigma}\}$ and on $\{\mathcal{AC}(\sigma)\}$.

Does the converse hold?

In the unweighted case, for $H^{\infty}(E)$ and $\{\mathcal{AC}(\sigma)\}\)$, the converse holds. Here, we have the following.

Theorem

If $f = \{f_{\sigma}\}_{\sigma \in NRep(M)}$ is a matricial family of functions, with f_{σ} defined on $\mathcal{AC}(\sigma)$ and mapping to $B(H_{\sigma})$, then there is an $F \in H^{\infty}(E, Z)$ such that f and the Berezin transform of F agree on $D_{X,\sigma}$; i.e.,

$$f_{\sigma}(\mathfrak{z}) = \widehat{F}_{\sigma}(\mathfrak{z})$$

for every σ and every $\mathfrak{z} \in D_{X,\sigma}$.

Note: (1) We don't know if equality holds for every \mathfrak{z} in $\mathcal{AC}(\sigma)$. What is missing is a better understanding of the representations in $\mathcal{AC}(\sigma)$.

(2) The proof uses the identification of the commutant of $H^{\infty}(E, Z)$ (M-S) and the fact that this algebra has the double commutant property (G).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank You !