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Introduction

We studied tensor operator algebras associated with
correspondences E (over a C ∗- or W ∗-algebra M ) (to be defined
shortly) and their ultraweak closures: the Hardy algebras.
A useful property of these algebras is that one knows their
representation theory. We showed that the representations can be
parameterized by a matricial family of sets (TBDS) and the
elements of the algebra (viewed as functions on the space of all
representations) can be described by matricial families of
operator valued functions (TBDS).
In fact, the matricial family of sets (parameterizing the
representations) is {Dσ}σ∈Rep(M) where Dσ is the unit ball of a
certain space (TBDS) associated with σ.
Thus, these algebras can be studied as algebras of matricial
families of functions defined on a family of unit balls.
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Thus, these algebras can be studied as algebras of matricial
families of functions defined on a family of unit balls.

The motivation for the current work: Replace ”unit balls” by more
general matricial families of sets.

Following works of Muller and of Popescu, we were led to replace
the tensor algebra (which is generated by a family of shifts) with a
”weighted tensor algebra” generated by a family of weighted
shifts.

♣ In the following we assume that M is a W ∗-algebra. But
(almost) everything works for a C ∗-algebra.
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The unweighted case

I will first review the unweighted case.

We begin with the following setup:

� M - a W ∗-algebra.

� E - a W ∗-correspondence over M. This means that E is a
bimodule over M which is endowed with an M-valued inner
product (making it a right-Hilbert C ∗-module that is self
dual). The left action of M on E is given by a unital, normal,
∗-homomorphism ϕ of M into the (W ∗-) algebra of all
bounded adjointable operators L(E ) on E .
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Examples

• (Very basic Example) M = C, E = C.

• (Basic Example) M = C, E = Cd , d > 1.

• M- arbitrary , α : M → M a normal unital, endomorphism.
E = M with right action by multiplication, left action by
ϕ = α and inner product 〈ξ, η〉 := ξ∗η. Denote it αM.

Note: If σ is a representation of M on H, E ⊗σ H is a Hilbert
space with 〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉E )h2〉H .
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Similarly, given two correspondences E and F over M, we can form
the (internal) tensor product E ⊗ F by setting

〈e1 ⊗ f1, e2 ⊗ f2〉 = 〈f1, ϕ(〈e1, e2〉E )f2〉F
ϕE⊗F (a)(e ⊗ f )b = ϕE (a)e ⊗ fb

and applying an appropriate completion.
In particular we get “tensor powers” E⊗k .

Also, given a sequence {Ek} of correspondences over M, the direct
sum E1 ⊕ E2 ⊕ E3 ⊕ · · · is also a correspondence (after an
appropriate completion).
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For a correspondence E over M we define the Fock correspondence

F(E ) := M ⊕ E ⊕ E⊗2 ⊕ E⊗3 ⊕ · · ·

For every a ∈ M define the operator ϕ∞(a) on F(E ) by

ϕ∞(a)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = (ϕ(a)ξ1)⊗ ξ2 ⊗ · · · ⊗ ξn

and ϕ∞(a)b = ab.
For ξ ∈ E , define the “unweighted shift” (or “creation”) operator
Tξ by

Tξ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn.

and Tξb = ξb. So that Tξ maps E⊗k into E⊗(k+1).
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Definition

(1) The norm-closed algebra generated by ϕ∞(M) and
{Tξ : ξ ∈ E} will be called the tensor algebra of E and
denoted T+(E ).

(2) The ultra-weak closure of T+(E ) will be called the Hardy
algebra of E and denoted H∞(E ).

Examples

1. If M = E = C, F(E ) = `2, T+(E ) = A(D) and
H∞(E ) = H∞(D).

2. If M = C and E = Cd then F(E ) = `2(F+
d ), T+(E ) is

Popescu’s Ad and H∞(E ) is F∞d (Popescu) or Ld

(Davidson-Pitts). These algebras are generated by d shifts.
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Theorem

Every completely contractive representation of T+(E ) on H is
given by a pair (σ, z) where

1 σ is a normal representation of M on H = Hσ.
(σ ∈ NRep(M))

2 z : E ⊗σ H → H is a contraction that satisfies

z(ϕ(·)⊗ IH) = σ(·)z.

We write σ × z for the representation and we have
(σ × z)(ϕ∞(a)) = σ(a) and (σ × z)(Tξ)h = z(ξ ⊗ h) for a ∈ M,
ξ ∈ E and h ∈ H.

Write I(ϕ⊗ I , σ) for the intertwining space and Dσ for the open
unit ball there. Thus the c.c. representations of the tensor algebra
are parameterized by the family {Dσ}σ∈NRep(M).
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Examples

(1) M = E = C. So T+(E ) = A(D), σ is the trivial representation
on H, E ⊗ H = H and Dσ is the (open) unit ball in B(Hσ).

(2) M = C, E = Cd . T+(E ) = Ad (Popescu’s algebra) and Dσ is
the (open) unit ball in B(Cd ⊗ H,H). Thus the c.c.
representations are parameterized by row contractions
(T1, . . . ,Td).

(3) M general, E =α M for an automorphism α.
T+(E ) = the analytic crossed product.
The intertwining space I(ϕ⊗ I , σ) can be identified with
{z ∈ B(H) : σ(α(T ))z = zσ(T ),T ∈ B(H)} and the c.c.
representations are σ × z where z is a contraction there.
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Weighted Shifts and algebras

Definition

A weight sequence is a sequence Z = {Zk} such that

Zk ∈ L(E⊗k) ∩ ϕk(M)′ = Ak .

Zk is invertible for all k ≥ 1.

supk ||Zk || <∞.

Notation: We write

Z (m) = Zm(IE ⊗ Zm−1) · · · (IE⊗(m−1) ⊗ Z1)

for ”powers”.
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For ξ ∈ E , define the “Z-weighted shift” operator Wξ ∈ L(F(E ))
by

Wξ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = Zn+1(ξ ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn).

and Wξb = Z1(ξb).

Definition

(1) The norm-closed algebra generated by ϕ∞(M) and
{Wξ : ξ ∈ E} will be called the Z-tensor algebra of E and
denoted T+(E ,Z ).

(2) The ultra-weak closure of T+(E ,Z ) will be called the
Z-Hardy algebra of E and denoted H∞(E ,Z ).
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Motivation for the definition of the domains

What are the c.c. representations of T+(E ,Z )?

Start with an easier question: Let T0+(E ,Z ) be the algebra
generated by ϕ∞(M) and {Wξ : ξ ∈ E}. What are its
representations?
They are determined by the images of the generators and a simple
calculation shows that each representation ρ (on H) is associated
with a pair (σ, z) where σ is a representation of M (and we shall
assume it is normal) and z ∈ I(ϕ⊗ I , σ) such that

ρ(ϕ∞(a)) = σ(a), a ∈ M

ρ(Wξ)h = z(ξ ⊗ h), ξ ∈ E , h ∈ H.

It will be convenient to write Lξ for the operator h 7→ ξ ⊗ h and
then we have ρ(Wξ) = zLξ.
Which pairs extend to the norm closure?
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Simple examples of c.c. representations

(1) Induced representations : Fix a normal representation π of
M on K and write πF(E) for the representation of T+(E ,Z )
on F(E )⊗π K defined by πF(E)(X ) = X ⊗ IK . This is, in
fact, a representation of H∞(E ,Z ) and, if π is faithful, it is
completely isometric.

(2) Compressions of induced representations: Let π,K be as
in (1), H be a Hilbert space and V : H → F(E )⊗π K be an
isometry whose final space is coinvariant under the induced
representation. Then ρ(X ) = V ∗(X ⊗ IK )V is a c.c.
representation of T+(E ,Z ).

In the unweighted case, the representations arising as in (2) are
”almost all” the c.c. representations of the tensor algebra . More
precisely, they contain all the representations that are given by
points in the open unit ball of I(ϕ⊗ I , σ). This raises the hope
that,even in the weighted case, if we understand these
representations, we will understand all the representations.
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What are the representations that are compressions of
induced representations?

In the case M = E = C, this was studied by V. Muller (88). In his
context the question is: What operators are compressions of a
weighted shift (to a coinvariant subspace)? or, equivalently, what
operators are parts of a weighted shift (i.e. are the restriction of a
weighted shift to an invariant subspace)?
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So, fix ρ given by (σ, z) (i.e ρ(ϕ∞(a)) = σ(a) and ρ(Wξ) = zLξ)
and an isometry V : H → F(E )⊗ K such that

V ∗(Wξ ⊗ IK )V = zLξ

V ∗(ϕ∞(a)⊗ IK )V = σ(a).

We can write Vh = (V0h,V1h, . . .) where Vmh ∈ E⊗m ⊗ K . Using
this, the definition of Wξ and the fact that the image of V is
coinvariant, a simple computation shows that, for m ≥ 0,
V ∗m+1(Zm+1 ⊗ IK ) = z(IK ⊗ V ∗m). Hence

V ∗m+1 = z(IK ⊗ V ∗m)(Z−1
m+1 ⊗ IK ).

Applying this recursively we get

V ∗m = z(m)((Z (m))−1 ⊗ V ∗0 )

where

z(m) = z(IE ⊗ z) · · · (IE⊗(m−1) ⊗ z) : E⊗m ⊗ H → H.
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Since V is an isometry, we have I =
∑∞

m=0 V ∗mVm. Thus, using
V ∗m = z(m)((Z (m))−1 ⊗ V ∗0 ), we get

I =
∞∑

m=0

z(m)((Z (m)∗Z (m))−1 ⊗ V ∗0 V0)z(m)∗.

Write R2
m = (Z (m)∗Z (m))−1 (with R0 = I ) and consider the CP

map

ΘR
z (T ) =

∞∑
m=0

z(m)(R2
m ⊗ T )z(m)∗

for T ∈ σ(M)′.
Then

ΘR
z (V ∗0 V0) = I .

One can now consider the set of all z such that this equation holds
for some contraction V0. But it does not seem to be a tractable
domain. So we now make further assumptions.
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Suppose that ΘR
z has an inverse of a similar form, i.e

(ΘR
z )−1(T ) = ΘY

z (T ) :=
∞∑

m=0

z(m)(Ym ⊗ T )z(m)∗

for some Y = {Ym} with Ym ∈ Am. Then z should satisfy

ΘY
z (I ) ≥ 0.

This suggests considering the domain

{z :
∞∑

m=0

z(m)(Ym ⊗ I )z(m)∗ ≥ 0}.

But: Can we find such Y ? and Will this give us all the
representations?



Introduction The unweighted case The weighted case Family of functions

Composing the two maps (ΘR
z and ΘY

z ) and setting it equal to the
identity suggest that Y0 = I and the equations

m∑
k=0

Yk ⊗ R2
m−k = 0

hold for every m > 0.
These equations can be easily solved.
For m = 1: R2

1 + Y1 = 0. Thus Y1 = −R2
1 .

For m = 2: R2
2 + Y1 ⊗ R2

1 + Y2 = 0. Thus Y2 = −R2
2 + R2

1 ⊗ R2
1 ,

etc.

But, is the map ΘY
z well defined?

We don’t know the answer in general (even for the scalar case:
M = E = C). Even if one imposes conditions that will ensure
convergence, it is not clear that this domain will describe all the
representations of the algebra.
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In the scalar case Muller studied two situations where positive
results can be obtained. Subsequent research has been successful
in the following cases:

(1) When Ym ≤ 0 for m > 0.
We write Xm = −Ym ≥ 0 (and assume a convergence
condition). The domain is then

{z ∈ I(ϕ⊗ I , σ) :
∞∑

k=1

z(k)(Xk ⊗ IHσ )z(k)∗ ≤ 1}.

See: V. Muller, G.Popescu (Memoir), P.Muhly-B.S., J.Good.

(2) When Ym can be derived from ΘY = (id −ΘX )k (with X as
in (1)): J. Agler, V. Muller, G. Popescu (JFA), I. Martziano.

From now on, I will discuss our work assuming (1).
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Start with the domains

The domains
To define the domains, we consider now a sequence X = {Xk}∞k=1

of operators satisfying

Xk ∈ L(E⊗k) ∩ ϕk(M)′ = Ak .

Xk ≥ 0 for all k ≥ 1 and X1 is invertible.

lim||Xk ||1/k <∞.

Definition

A sequence X = {Xk}∞k=1 satisfying (1)-(3) above is said to be
admissible.

Associated to an admissible sequence X , we now set

DX ,σ := {z ∈ I(ϕ⊗ I , σ) :
∞∑

k=1

z(k)(Xk ⊗ IHσ )z(k)∗ ≤ 1}

where z(k) = z(IE ⊗ z) · · · (IE⊗k ⊗ z) : E⊗k ⊗ H → H.
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Examples

(1) If X1 = IE and Xk = 0 for k > 1, DX ,σ = Dσ.

(2) If E = M = C, σ is on H and Xk = xk ∈ C,
DX ,σ = {T ∈ B(H) :

∑
k xkT kT ∗k ≤ I}.

(3) If M = C, E = Cd , σ is on H and Xk is the dk × dk matrix
(xα,β) (where α, β are words of length k in {1, . . . , d}),

DX ,σ = {T = (T1, . . . ,Td) :
∑
α,β

xα,βTαT ∗β ≤ I} (1)

where Tα = Tα1 · · ·Tαk
.
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Theorem

Given an admissible sequence X , one can construct a weight
sequence Z = {Zk} such that, writing R2

m = (Z (m)∗Z (m))−1

as above and setting Y0 = I and Ym = −Xm (for m > 0), we
have that

m∑
k=0

Yk ⊗ R2
m−k = 0

for every m > 0 .

A weight sequence Z associated to X is not unique but the
algebras (tensor, Hardy) associated with two different weight
sequences are unitarily equivalent.

One can always choose Z (associated with a given admissible
sequence X ) such that either each Zk is positive (for every k)
or each Z (k) is positive.

From now on we fix an admissible X and a weight sequence
Z associated to it
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Theorem

Every completely contractive representation ρ of T+(E ,Z ) on H is
given by a pair (σ, z) where

1 σ is a normal representation of M on H = Hσ.
(σ ∈ NRep(M))

2 z ∈ DX ,σ.

In fact, ρ(ϕ∞(a)) = σ(a) and ρ(Wξ)h = z(ξ ⊗ h) = zLξ.
Conversely, every such pair gives rise to a c.c. representation.

Thus the c.c. representations of the Z -tensor algebra are
parameterized by the family {DX ,σ}σ∈NRep(M).

We write σ × z for the representation ρ above.



Introduction The unweighted case The weighted case Family of functions

Dilations

Lemma

Given z ∈ DX ,σ, the map defined by

Φz(T ) =
∞∑

k=1

z(k)(Xk ⊗ T )z(k)∗

(where the convergence is in ultraweak operator topology) is a
completely positive map on σ(M)′ and the sequence {Φm

z (I )} is
decreasing. (Write Qz for its limit)

Recall that, if π is a normal representation of M on K , then the
associated induced representation is
X ∈ T+(E ,Z ) 7→ X ⊗ IK ∈ B(F(E )⊗π K ) .
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Definition

An element v ∈ DX ,τ (and the associated representation) is said to
be coisometric if

∑∞
k=1 v(k)(Xk ⊗ IU )v(k)∗ = IU ( where τ is a

normal representation of M on U).

Theorem

Let σ be a normal representation of M on H and z ∈ DX ,σ. Then
the associated representation σ × z is a compression (in the sense
defined above) of a representation that is the direct sum of an
induced representation and a coisometric one.
If Qz = 0, it is a compression of an induced representation.
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Theorem

Under the following additional conditions

(a) L(E⊗m) = K(E⊗m) for all m ≥ 1.

(b) There is some ε > 0 such that, for all k ≥ 1, Zk ≥ εIE⊗k and

(c) There is some a such that (lim||Xk ||1/k)IE < aIE ≤ X1.

the representation σ × z is a compression (in the sense defined
above) of a representation that is the direct sum of an induced
representation and a coisometric one where the coisometric
representation is a C ∗-representation (i.e. it extends to a
C ∗-representation of the C ∗-algebra T (E ,Z ) that is generated by
T+(E ,Z )).

Note: The ”induced parts” in the two theorems are isomorphic
(although the constructions are different). The ”coisometric parts”
we obtain in the two constructions may differ.
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The families of functions

Given F ∈ T+(E ,Z ), we define a family {F̂σ}σ∈NRep(M) of
(operator valued) functions called the Berezin transform of F .
Each function F̂σ is defined on DX ,σ and takes values in B(Hσ) :

F̂σ(z) = (σ × z)(F ).

Here NRep(M) is the set of all normal representations of M.
Note that the family of domains is a matricial family in the
following sense.

Definition

A family of sets {U(σ)}σ∈NRep(M), with U(σ) ⊆ I(ϕ⊗ I , σ),
satisfying U(σ)⊕ U(τ) ⊆ U(σ ⊕ τ) is called a matricial family of
sets (or an nc set).
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We shall be interested here mainly with the following matricial
families.

Examples

(1) For a given admissible sequence X , the families
{DX ,σ}σ∈NRep(M) and {DX ,σ}σ∈NRep(M) are matricial families.

(2) For σ ∈ NRep(M), write AC(σ) for the set of all z ∈ DX ,σ

such that the representation σ × z extends to an ultraweakly
continuous representation of H∞(E ,Z ). Then the family
{AC(σ)}σ∈NRep(M) is a matricial family.

Note: DX ,σ ⊆ AC(σ).

If F ∈ H∞(E ,Z ), F̂σ is defined on AC(σ) (or DX ,σ).
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Definition

Suppose {U(σ)}σ∈NRep(M) is a matricial family of sets and suppose
that for each σ ∈ NRep(M), fσ : U(σ)→ B(Hσ) is a function. We
say that f := {fσ}σ∈NRep(M) is a matricial family of functions (or
an nc function) in case

Cfσ(z) = fτ (w)C (2)

for every z ∈ U(σ), every w ∈ U(τ) and every C ∈ I(σ × z, τ ×w)
(equivalently, C ∈ I(σ, τ) and C z = w(IE ⊗ C )).

Theorem

For every F ∈ T+(E ,Z ), the family {F̂σ} is a matricial family of
functions on {DX ,σ}σ. Similarly, For F ∈ H∞(E ,Z ), we get a
matricial family of functions on {DX ,σ} and on {AC(σ)}.

Does the converse hold?
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In the unweighted case, for H∞(E ) and {AC(σ)}, the converse
holds. Here, we have the following.

Theorem

If f = {fσ}σ∈NRep(M) is a matricial family of functions, with fσ
defined on AC(σ) and mapping to B(Hσ), then there is an
F ∈ H∞(E ,Z ) such that f and the Berezin transform of F agree
on DX ,σ ; i.e.,

fσ(z) = F̂σ(z)

for every σ and every z ∈ DX ,σ.

Note: (1) We don’t know if equality holds for every z in AC(σ).
What is missing is a better understanding of the representations in
AC(σ).
(2) The proof uses the identification of the commutant of
H∞(E ,Z ) (M-S) and the fact that this algebra has the double
commutant property (G).
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Thank You !
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