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Definition. Let A be a C∗-algebra. We shall say that a, b ∈ A

are algebraically orthogonal, if

ab = 0 = ba = a∗b = ab∗.

In particular, when a and b are self-adjoint, they are

algebraically orthogonal if and only if ab = 0.

Presence of algebraic orthogonality in C∗-algebras.

Let A be a C∗-algebra. Then for each a ∈ Asa, there exists a

unique pair a+, a− ∈ A+ such that

● a = a+ − a−

● a+a− = 0
● ‖a‖ = max{‖a+‖, ‖a−‖}.
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Let us define |a| = a+ + a− for each a ∈ Asa.

Then we get a mapping | · | : Asa → A+ such that

● |a| = a if a ∈ A+;

● |a| ± a ∈ A+;

● |ka| = |k||a|; and

● ‖|a|‖ = ‖a‖
for all a ∈ Asa and k ∈ R.

Theorem. Let A be a C∗-algebra. If A is commutative, then

the following condition holds:

(T) |a+ b| ≤ |a|+ |b| for all a, b ∈ Asa.

Conversely, if (T) holds, then Asa is isometrically order

isomorphic to the self-adjoint part of a commutative

C∗-algebra.
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Proof. Assume that |a+ b| ≤ |a|+ |b| for all a, b ∈ Asa.

Let x, y ∈ Asa and put

x ∗ y =
1

2
(x+ y + |x− y|).

Then x ∗ y ≥ x and x ∗ y ≥ y.

Next, let z ∈ Asa such that x ≤ z and y ≤ z. Then

2(z − x ∗ y) = 2z − x− y − |x− y|

= (z − x) + (z − y)− |(z − x)− (z − y)|

≥ (z − x) + (z − y)− |z − x| − |z − y| = 0.

Thus x ∗ y = x ∨ y.

Now, by Kakutani’s representation theorem for AM-spaces,

Asa is order isomorphic to CR(K) for some compact and

Hausdorff space K.
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that V + is proper and generating and let ‖ ‖ be a norm on V

such that V + is ‖ ‖-closed. For a fixed real number p,

1 ≤ p < ∞, consider the following conditions on V :

● (O.p.1) For u, v, w ∈ V with u ≤ v ≤ w, we have

‖v‖ ≤ (‖u‖p + ‖w‖p)1/p.
● (O.p.2) For v ∈ V and ǫ > 0, there are u1, u2 ∈ V + such

that v = u1 − u2 and (‖u1‖
p + ‖u2‖

p)1/p ≤ ‖v‖+ ǫ.

● (OS.p.2) For v ∈ V , there are u1, u2 ∈ V + such that

v = u1 − u2 and (‖u1‖
p + ‖u2‖

p)1/p = ‖v‖.
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Theorem. Let (V, V +) be a real ordered vector space such

that V + is proper and generating and let ‖ · ‖ be a norm on V

such that V + is ‖ · ‖-closed. For a fixed p, 1 ≤ p ≤ ∞, we have

● ‖ · ‖ satisfies the condition (O.p.1) on V if and only if ‖ · ‖′

satisfies the condition (OS.p′.2) on V ′.

● ‖ · ‖ satisfies the condition (O.p.2) on V if and only if ‖ · ‖′

satisfies the condition (O.p′.1) on V ′.

Definition (Order smooth p-normed space).

Let (V, V +) be a real ordered vector space such that V + is

proper and generating and let ‖‖ be a norm on V such that

V + is ‖‖-closed. For a fixed p, 1 ≤ p ≤ ∞, we say that V is an

order smooth p-normed space, if ‖‖ satisfies conditions O.p.1
and O.p.2 on V .
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Definition. Let 1 ≤ p ≤ ∞ and let V be an order smooth

p-normed space. For u, v ∈ V we say that u is p-orthogonal to

v, ( u ⊥p v ), if

‖u+ kv‖p = ‖u‖p + ‖kv‖p, 1 ≤ p < ∞

and

‖u+ kv‖ = max{‖u‖, ‖kv‖}, p = ∞

for all k ∈ R.
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implies u ⊥p (v + w). Note that in this case

u⊥p = {v ∈ V : u ⊥p v} is a subspace of V .
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Further, we say that ⊥p is additive in V , if u ⊥p v and u ⊥p w

implies u ⊥p (v + w). Note that in this case

u⊥p = {v ∈ V : u ⊥p v} is a subspace of V .

A subset S of V is called p-orthogonal if 0 6∈ S and u ⊥p v for

every pair u, v ∈ S with u 6= v. If, in addition, ‖v‖ = 1 for all

v ∈ S, we say that S is a p-orthonormal set in V . We say that

S is total if the linear span of S is dense in V .

Theorem. Let 1 ≤ p ≤ ∞ and let V be a (norm) complete

order smooth p-normed space. If ⊥p is additive in V + and U

is a total p-orthonormal set in V +, then V is isometrically

order isomorphic to ℓp(U). For p = ∞, we replace ℓp(U) by

c0(U).
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denoted by Supp(v). For u ∈ V + \ {0}, we write, Supp+(u) for

Supp(u) ∩ V ′+.
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Definition. Let V be an order smooth p-normed space,

1 ≤ p ≤ ∞. For v ∈ V \ {0} we say that f ∈ V ′ supports v if

‖f‖ = 1 and ‖v‖ = f(v). The set of all supports of v will be

denoted by Supp(v). For u ∈ V + \ {0}, we write, Supp+(u) for

Supp(u) ∩ V ′+.

By Hahn-Banach theorem, Supp(v) 6= ∅, if v ∈ V \ {0}.

Moreover, it is weak*-compact and convex too.

Proposition. Let V be an order smooth p-normed space,

1 ≤ p ≤ ∞. For u ∈ V + \ {0}, Supp+(u) 6= ∅.

The extreme points in Supp+(v) will be denoted by Peak+(v).
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Theorem. Let V be an order smooth ∞-normed space.

Suppose that u1, u2 ∈ V + \ {0} and let W be the linear span

of u1, u2. Then the following statements are equivalent:

1.
∥

∥‖u1‖
−1u1 + ‖u2‖

−1u2
∥

∥ = 1;

2. u1 ⊥∞ u2;

3. For fi ∈ Supp+(ui), i = 1, 2, we have g1 ⊥1 g2 with

gi(uj) = 0 if i 6= j, where gi = fi|W , i = 1, 2.

Proof. Without any loss of generality, we may assume that

‖ui‖ = 1, i = 1, 2. First, let ‖u1 + u2‖ = 1. Let λ > 0.

Case.1: λ ≤ 1.

In this case,

‖u1 + λu2‖ = ‖λ(u1 + u2) + (1− λ)u1‖

≤ λ‖u1 + u2‖+ (1− λ)‖u1‖ = 1.
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Case.2: λ > 1.

In this case,

‖u1 + λu2‖ = ‖(u1 + u2) + (λ− 1)u2‖

≤ ‖u1 + u2‖+ (λ− 1)‖u2‖ = λ.

Thus, in either case, ‖u1 + λu2‖ ≤ max(1, λ). Further, as

λ > 0 we also have

max(1, λ) = max(‖u1‖, ‖λu2‖) ≤ ‖u1 + λu2‖.
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Case.2: λ > 1.

In this case,

‖u1 + λu2‖ = ‖(u1 + u2) + (λ− 1)u2‖

≤ ‖u1 + u2‖+ (λ− 1)‖u2‖ = λ.

Thus, in either case, ‖u1 + λu2‖ ≤ max(1, λ). Further, as

λ > 0 we also have

max(1, λ) = max(‖u1‖, ‖λu2‖) ≤ ‖u1 + λu2‖.

Thus for λ ≥ 0, we get ‖u1 + λu2‖ = max(‖u1‖, ‖λu2‖).
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Again, for λ > 0, −λu2 ≤ u1 − λu2 ≤ u1 so that

‖u1 − λu2‖ ≤ max(‖u1‖, ‖λu2‖).
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i = 1, 2. As ‖u1 + u2‖ = 1 we get
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Again, for λ > 0, −λu2 ≤ u1 − λu2 ≤ u1 so that

‖u1 − λu2‖ ≤ max(‖u1‖, ‖λu2‖).

Next, let fi ∈ Supp+(ui), i = 1, 2. Then fi(ui) = 1 = ‖fi‖,

i = 1, 2. As ‖u1 + u2‖ = 1 we get

1 = ‖u1 + u2‖ ≥ f1(u1 + u2) = 1 + f1(u2) ≥ 1.
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Again, for λ > 0, −λu2 ≤ u1 − λu2 ≤ u1 so that
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Next, let fi ∈ Supp+(ui), i = 1, 2. Then fi(ui) = 1 = ‖fi‖,

i = 1, 2. As ‖u1 + u2‖ = 1 we get

1 = ‖u1 + u2‖ ≥ f1(u1 + u2) = 1 + f1(u2) ≥ 1.

Thus f1(u2) = 0. Dually, f2(u1) = 0.

Now it follows that

‖u1 − λu2‖ ≥ |f1(u1 − λu2)| = 1

and

‖u1 − λu2‖ ≥ |f2(u1 − λu2)| = λ
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so that
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so that

‖u1 − λu2‖ ≥ max(1, λ) = max(‖u1‖, ‖λu2‖).

Therefore, u1 ⊥∞ u2.

Next, assume that u1 ⊥∞ u2. Let fi ∈ Supp+(ui), i = 1, 2 and

put gi = fi|W , i = 1, 2. Then as above, we have gi(uj) = 0 if

i 6= j.
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so that

‖u1 − λu2‖ ≥ max(1, λ) = max(‖u1‖, ‖λu2‖).

Therefore, u1 ⊥∞ u2.

Next, assume that u1 ⊥∞ u2. Let fi ∈ Supp+(ui), i = 1, 2 and

put gi = fi|W , i = 1, 2. Then as above, we have gi(uj) = 0 if

i 6= j.

For α1, α2 ∈ R, we have

‖α1g1 + α2g2‖ = sup{|(α1g1 + α2g2)(λ1u1 + λ2u2)| :

‖λ1u1 + λ2u2‖ ≤ 1}

= sup{|α1λ1 + α2λ2| : max(|λ1|, |λ2|) ≤ 1}

= |α1|+ |α2|.
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In particular, ‖gi‖ = 1, i = 1, 2 so that g1 ⊥1 g2.
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In particular, ‖gi‖ = 1, i = 1, 2 so that g1 ⊥1 g2.

Finally assume that for fi ∈ Supp+(ui), i = 1, 2, we have

g1 ⊥1 g2 with gi(uj) = 0 if i 6= j where gi = fi|W , i = 1, 2. It is

easy to note that ‖gi‖ = 1, i = 1, 2. Thus
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In particular, ‖gi‖ = 1, i = 1, 2 so that g1 ⊥1 g2.

Finally assume that for fi ∈ Supp+(ui), i = 1, 2, we have

g1 ⊥1 g2 with gi(uj) = 0 if i 6= j where gi = fi|W , i = 1, 2. It is

easy to note that ‖gi‖ = 1, i = 1, 2. Thus

‖u1 + u2‖ = sup{|(α1g1 + α2g2)(u1 + u2)| :

‖α1g1 + α2g2‖ ≤ 1}

= sup{|α1 + α2| : |α1|+ |α2| ≤ 1} = 1.

This completes the proof.
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Remark. Let u, v ∈ V + \ {0} such that u ⊥∞ v. Then for

f ∈ Supp+(v), f(u) = 0.
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Remark. Let u, v ∈ V + \ {0} such that u ⊥∞ v. Then for

f ∈ Supp+(v), f(u) = 0.

We say that f ∈ V + with ‖f‖ = 1 is a crust of u if f(u) = 0.

The set of all crusts of u will be denoted by Crust+(u).

Note that in this case Crust+(u) is a non-empty,

weak*-compact and convex. Its extreme points are denoted

by Sink+(u).

Further, Support+(u) ⊂ Crust+(v) and consequently,

Peak+(u) ⊂ Sink+(v).
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Theorem. Let A be a C∗-algebra and let a, b ∈ A+ \ {0}. Let

B be the C∗-subalgebra of A generated by a and b. Then

ab = 0 if and only if P (B) = SinkB+(a) ∪ SinkB+(b).
Here P (B) is the set of all pure states of B.
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B be the C∗-subalgebra of A generated by a and b. Then

ab = 0 if and only if P (B) = SinkB+(a) ∪ SinkB+(b).
Here P (B) is the set of all pure states of B.

Proof. Let ab = 0. Then P (B) is multiplicative on B. Thus

0 = f(ab) = f(a)f(b)

for all f ∈ P (B). Now it follows that

P (B) = SinkB+(a) ∪ SinkB+(b).
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Theorem. Let A be a C∗-algebra and let a, b ∈ A+ \ {0}. Let

B be the C∗-subalgebra of A generated by a and b. Then

ab = 0 if and only if P (B) = SinkB+(a) ∪ SinkB+(b).
Here P (B) is the set of all pure states of B.

Proof. Let ab = 0. Then P (B) is multiplicative on B. Thus

0 = f(ab) = f(a)f(b)

for all f ∈ P (B). Now it follows that

P (B) = SinkB+(a) ∪ SinkB+(b).
Conversely, assume that P (B) = SinkB+(a) ∪ SinkB+(b). If

f ∈ P (B), then by the Cauchy-Schwarz’ inequality,

0 ≤ |f(ab)|2 ≤ f(a2)f(a2) ≤ ‖a‖‖b‖f(a)f(b).

Thus by assumption, f(ab) = 0 for all f ∈ P (B) so that

ab = 0.
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Definition. Let A be any C∗-algebra and let M be any

self-adjoint subspace of A such that Msa is an order smooth

∞-normed sub space of Asa satifying (OS.∞.2). (For

example, M is a C∗- subalgebra of A.) For a, b ∈ M+, we say

that a is orthogonal to b with respect to M (a ⊥M b) if

P (M) ⊂ Sink+(a) ∪ Sink+(b).
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Remark.2. If M is the C∗-subalgebra generated by a and b,

then a ⊥M b if and only if a is algebraically orthogonal to b.
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Remark.2. If M is the C∗-subalgebra generated by a and b,

then a ⊥M b if and only if a is algebraically orthogonal to b.

Remark.3. Let a ⊥∞ b and let L be the linear span of a and b.

Then L be any self-adjoint subspace of A such that Lsa is an

order smooth ∞-normed sub space of Asa satifying

(OS.∞.2). Further, a ⊥L b.
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Remark.2. If M is the C∗-subalgebra generated by a and b,

then a ⊥M b if and only if a is algebraically orthogonal to b.

Remark.3. Let a ⊥∞ b and let L be the linear span of a and b.

Then L be any self-adjoint subspace of A such that Lsa is an

order smooth ∞-normed sub space of Asa satifying

(OS.∞.2). Further, a ⊥L b.

Question. Can we have a “space-free” geometric

characterization of algebraic Orthogonality?
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Theorem. Let a qnd b be any two positive elements of a

C∗-algebra A. Then ab = 0 if and only if ab = ba and the

following property holds:

0 ≤ c ≤ a and c ≤ b implies c = 0.
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so that bcb = 0. Consequently, cb = 0.



Orthogonality in C∗-algebras

Orthogonality in C∗-algebras – 20

Theorem. Let a qnd b be any two positive elements of a

C∗-algebra A. Then ab = 0 if and only if ab = ba and the

following property holds:

0 ≤ c ≤ a and c ≤ b implies c = 0.

Proof. Let ab = 0. Then ab = ba.

Next, let 0 ≤ c ≤ a and c ≤ b and assume that c 6= 0. Then

0 ≤ bcb ≤ bab = 0

so that bcb = 0. Consequently, cb = 0.

Thus c ⊥∞ b or equivalently,

∥

∥‖c‖−1c+ ‖b‖−1b
∥

∥ = 1.
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Since 0 ≤ c ≤ b we have

1 =
∥

∥‖c‖−1c+‖b‖−1b
∥

∥ ≥
∥

∥‖c‖−1c+‖b‖−1c
∥

∥ = 1+‖b‖−1‖c‖ > 1

which is meaningless. Thus c = 0.
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1 =
∥

∥‖c‖−1c+‖b‖−1b
∥

∥ ≥
∥

∥‖c‖−1c+‖b‖−1c
∥

∥ = 1+‖b‖−1‖c‖ > 1

which is meaningless. Thus c = 0.

Conversely assume that ab = ba and that 0 ≤ c ≤ a and c ≤ b

implies c = 0.
Since a, b ∈ A+, we have ab ∈ A+. Also, then ab ≤ ‖a‖b and

ab ≤ ‖b‖a.
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Since 0 ≤ c ≤ b we have

1 =
∥

∥‖c‖−1c+‖b‖−1b
∥

∥ ≥
∥

∥‖c‖−1c+‖b‖−1c
∥

∥ = 1+‖b‖−1‖c‖ > 1

which is meaningless. Thus c = 0.

Conversely assume that ab = ba and that 0 ≤ c ≤ a and c ≤ b

implies c = 0.
Since a, b ∈ A+, we have ab ∈ A+. Also, then ab ≤ ‖a‖b and

ab ≤ ‖b‖a.

Thus 0 ≤ k−1ab ≤ a and k−1ab ≤ b where k = max{‖a‖, ‖b‖}.

Now, by assumption, ab = 0.
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Conjecture. Let a qnd b be any two positive elements of a

C∗-algebra A. Then ab = 0 if and only if 0 ≤ c ≤ a and

0 ≤ d ≤ b implies c ⊥∞ d.
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Conjecture. Let a qnd b be any two positive elements of a

C∗-algebra A. Then ab = 0 if and only if 0 ≤ c ≤ a and

0 ≤ d ≤ b implies c ⊥∞ d.

Result. Let a qnd b be any two positive elements of a

C∗-algebra A such that ab = 0. Then 0 ≤ c ≤ a and 0 ≤ d ≤ b

implies cd = 0.
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Conjecture. Let a qnd b be any two positive elements of a

C∗-algebra A. Then ab = 0 if and only if 0 ≤ c ≤ a and

0 ≤ d ≤ b implies c ⊥∞ d.

Result. Let a qnd b be any two positive elements of a

C∗-algebra A such that ab = 0. Then 0 ≤ c ≤ a and 0 ≤ d ≤ b

implies cd = 0.

Proof. Let 0 ≤ c ≤ a and 0 ≤ d ≤ b. Then 0 ≤ bcb ≤ bab = 0
so that cb = 0. Thus 0 ≤ cdc ≤ cbc = 0 so that cd = 0.



Orthogonality in C∗-algebras

Orthogonality in C∗-algebras – 23

Theorem. Let a qnd b be any two positive elements in M+
n .

Then ab = 0 if and only if 0 ≤ c ≤ a and 0 ≤ d ≤ b implies
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Proof. Assume that 0 ≤ c ≤ a and 0 ≤ d ≤ b implies c ⊥∞ d.
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Theorem. Let a qnd b be any two positive elements in M+
n .

Then ab = 0 if and only if 0 ≤ c ≤ a and 0 ≤ d ≤ b implies

c ⊥∞ d.

Proof. Assume that 0 ≤ c ≤ a and 0 ≤ d ≤ b implies c ⊥∞ d.

Consider the spectral decompositions a =
∑k

i=1
λipi and

b =
∑l

j=1
µjqj where λi 6= 0 and µj 6= 0 for 1 ≤ i ≤ k and

1 ≤ j ≤ l.
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b =
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Then λipi ≤ a and µjqj ≤ b. Thus by assumption, pi ⊥∞ qj .
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Theorem. Let a qnd b be any two positive elements in M+
n .

Then ab = 0 if and only if 0 ≤ c ≤ a and 0 ≤ d ≤ b implies

c ⊥∞ d.

Proof. Assume that 0 ≤ c ≤ a and 0 ≤ d ≤ b implies c ⊥∞ d.

Consider the spectral decompositions a =
∑k

i=1
λipi and

b =
∑l

j=1
µjqj where λi 6= 0 and µj 6= 0 for 1 ≤ i ≤ k and

1 ≤ j ≤ l.

Then λipi ≤ a and µjqj ≤ b. Thus by assumption, pi ⊥∞ qj .

It follows that ‖pi + qj‖ = 1 so that pi + qj ≤ 1. Since pi and qj
are projections, we get that piqj = 0. Hence ab = 0.
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Thank you!


