Orthogonality in C^* -algebras

Anil Kumar Karn

National Institute of Science Education and Research Bhubaneswar

Orthogonality in C^* -algebras – 1

Definition. Let *A* be a C^* -algebra. We shall say that $a, b \in A$ are algebraically orthogonal, if

 $ab = 0 = ba = a^*b = ab^*.$

Definition. Let *A* be a C^* -algebra. We shall say that $a, b \in A$ are algebraically orthogonal, if

$$ab = 0 = ba = a^*b = ab^*.$$

In particular, when a and b are self-adjoint, they are algebraically orthogonal if and only if ab = 0.

Definition. Let *A* be a C^* -algebra. We shall say that $a, b \in A$ are algebraically orthogonal, if

 $ab = 0 = ba = a^*b = ab^*.$

In particular, when a and b are self-adjoint, they are algebraically orthogonal if and only if ab = 0.

Presence of algebraic orthogonality in C^* **-algebras.**

Definition. Let *A* be a C^* -algebra. We shall say that $a, b \in A$ are algebraically orthogonal, if

$$ab = 0 = ba = a^*b = ab^*.$$

In particular, when a and b are self-adjoint, they are algebraically orthogonal if and only if ab = 0.

Presence of algebraic orthogonality in C^* -algebras. Let A be a C^* -algebra. Then for each $a \in A_{sa}$, there exists a unique pair $a^+, a^- \in A^+$ such that

$$\bullet \quad a = a^+ - a^-$$

$$\bullet \quad a^+a^- = 0$$

•
$$||a|| = \max\{||a^+||, ||a^-||\}.$$

Let us define $|a| = a^+ + a^-$ for each $a \in A_{sa}$.

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| \pm a \in A^+;$$

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| \pm a \in A^+;$$

•
$$|ka| = |k||a|$$
; and

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| \pm a \in A^+;$$

•
$$|ka| = |k||a|$$
; and

$$\bullet \quad |||a||| = ||a||$$

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| \pm a \in A^+;$$

•
$$|ka| = |k||a|$$
; and

•
$$|||a||| = ||a||$$

for all $a \in A_{sa}$ and $k \in \mathbb{R}$.

Let us define $|a| = a^+ + a^-$ for each $a \in A_{sa}$. Then we get a mapping $|\cdot| : A_{sa} \to A^+$ such that

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| \pm a \in A^+;$$

•
$$|ka| = |k||a|$$
; and

•
$$|||a||| = ||a||$$

for all $a \in A_{sa}$ and $k \in \mathbb{R}$.

Theorem. Let *A* be a C^* -algebra. If *A* is commutative, then the following condition holds:

(T) $|a+b| \leq |a|+|b|$ for all $a, b \in A_{sa}$.

Let us define $|a| = a^+ + a^-$ for each $a \in A_{sa}$. Then we get a mapping $|\cdot| : A_{sa} \to A^+$ such that

•
$$|a| = a$$
 if $a \in A^+$;

•
$$|a| \pm a \in A^+;$$

•
$$|ka| = |k||a|$$
; and

•
$$|||a||| = ||a||$$

for all $a \in A_{sa}$ and $k \in \mathbb{R}$

Theorem. Let *A* be a C^* -algebra. If *A* is commutative, then the following condition holds:

(T) $|a+b| \leq |a|+|b|$ for all $a, b \in A_{sa}$.

Conversely, if (T) holds, then A_{sa} is isometrically order isomorphic to the self-adjoint part of a commutative C^* -algebra.

Proof. Assume that $|a + b| \leq |a| + |b|$ for all $a, b \in A_{sa}$.

Proof. Assume that $|a + b| \le |a| + |b|$ for all $a, b \in A_{sa}$. Let $x, y \in A_{sa}$ and put

$$x * y = \frac{1}{2}(x + y + |x - y|).$$

Proof. Assume that $|a + b| \le |a| + |b|$ for all $a, b \in A_{sa}$. Let $x, y \in A_{sa}$ and put

$$x * y = \frac{1}{2}(x + y + |x - y|).$$

Then $x * y \ge x$ and $x * y \ge y$.

Proof. Assume that $|a + b| \le |a| + |b|$ for all $a, b \in A_{sa}$. Let $x, y \in A_{sa}$ and put

$$x * y = \frac{1}{2}(x + y + |x - y|).$$

Then $x * y \ge x$ and $x * y \ge y$. Next, let $z \in A_{sa}$ such that $x \le z$ and $y \le z$. Then

Proof. Assume that $|a + b| \le |a| + |b|$ for all $a, b \in A_{sa}$. Let $x, y \in A_{sa}$ and put

$$x * y = \frac{1}{2}(x + y + |x - y|).$$

Then $x * y \ge x$ and $x * y \ge y$. Next, let $z \in A_{sa}$ such that $x \le z$ and $y \le z$. Then

$$2(z - x * y) = 2z - x - y - |x - y|$$

= $(z - x) + (z - y) - |(z - x) - (z - y)|$
 $\ge (z - x) + (z - y) - |z - x| - |z - y| = 0.$

Thus $x * y = x \lor y$.

Proof. Assume that $|a + b| \le |a| + |b|$ for all $a, b \in A_{sa}$. Let $x, y \in A_{sa}$ and put

$$x * y = \frac{1}{2}(x + y + |x - y|).$$

Then $x * y \ge x$ and $x * y \ge y$. Next, let $z \in A_{sa}$ such that $x \le z$ and $y \le z$. Then

$$2(z - x * y) = 2z - x - y - |x - y|$$

= $(z - x) + (z - y) - |(z - x) - (z - y)|$
 $\ge (z - x) + (z - y) - |z - x| - |z - y| = 0.$

Thus $x * y = x \lor y$.

Now, by Kakutani's representation theorem for AM-spaces, A_{sa} is order isomorphic to $C_{\mathbb{R}}(K)$ for some compact and Hausdorff space K.

Is a similar model for a general (non-commutative) C^* -algebra possible?

Is a similar model for a general (non-commutative) C^* -algebra possible?

Definition. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let || || be a norm on V such that V^+ is || ||-closed. For a fixed real number p, $1 \le p < \infty$, consider the following conditions on V:

Is a similar model for a general (non-commutative) C^* -algebra possible?

Definition. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let || || be a norm on V such that V^+ is || ||-closed. For a fixed real number p, $1 \le p < \infty$, consider the following conditions on V:

• (O.p.1) For $u, v, w \in V$ with $u \le v \le w$, we have $\|v\| \le (\|u\|^p + \|w\|^p)^{1/p}$.

Is a similar model for a general (non-commutative) C^* -algebra possible?

Definition. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let || || be a norm on V such that V^+ is || ||-closed. For a fixed real number p, $1 \le p < \infty$, consider the following conditions on V:

- (O.p.1) For $u, v, w \in V$ with $u \le v \le w$, we have $\|v\| \le (\|u\|^p + \|w\|^p)^{1/p}$.
- (O.p.2) For $v \in V$ and $\epsilon > 0$, there are $u_1, u_2 \in V^+$ such that $v = u_1 u_2$ and $(||u_1||^p + ||u_2||^p)^{1/p} \le ||v|| + \epsilon$.

Is a similar model for a general (non-commutative) C^* -algebra possible?

Definition. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let || || be a norm on V such that V^+ is || ||-closed. For a fixed real number p, $1 \le p < \infty$, consider the following conditions on V:

- (O.p.1) For $u, v, w \in V$ with $u \le v \le w$, we have $\|v\| \le (\|u\|^p + \|w\|^p)^{1/p}$.
- (O.p.2) For $v \in V$ and $\epsilon > 0$, there are $u_1, u_2 \in V^+$ such that $v = u_1 u_2$ and $(||u_1||^p + ||u_2||^p)^{1/p} \le ||v|| + \epsilon$.
- (OS.p.2) For $v \in V$, there are $u_1, u_2 \in V^+$ such that $v = u_1 u_2$ and $(||u_1||^p + ||u_2||^p)^{1/p} = ||v||$.

For $p = \infty$, consider the following similar conditions on V:

For $p = \infty$, consider the following similar conditions on V:

• (0. ∞ .1) For $u, v, w \in V$ with $u \le v \le w$, we have $||v|| \le \max\{||u||, ||w||\}.$

For $p = \infty$, consider the following similar conditions on V:

- (0. ∞ .1) For $u, v, w \in V$ with $u \le v \le w$, we have $||v|| \le \max\{||u||, ||w||\}.$
- (0. ∞ .2) For $v \in V$ and $\epsilon > 0$, there are $u_1, u_2 \in V^+$ such that $v = u_1 u_2$ and $\max\{||u_1||, ||u_2||\} \le ||v|| + \epsilon$.

For $p = \infty$, consider the following similar conditions on V:

- (0. ∞ .1) For $u, v, w \in V$ with $u \le v \le w$, we have $||v|| \le \max\{||u||, ||w||\}.$
- (0. ∞ .2) For $v \in V$ and $\epsilon > 0$, there are $u_1, u_2 \in V^+$ such that $v = u_1 u_2$ and $\max\{||u_1||, ||u_2||\} \le ||v|| + \epsilon$.
- (OS. ∞ .2) For $v \in V$, there exist $u_1, u_2 \in V^+$ such that $v = u_1 u_2$ and $\max\{\|u_1\|, \|u_2\|\} = \|v\|$.

Theorem. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let $\|\cdot\|$ be a norm on V such that V^+ is $\|\cdot\|$ -closed. For a fixed $p, 1 \le p \le \infty$, we have

Theorem. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let $\|\cdot\|$ be a norm on V such that V^+ is $\|\cdot\|$ -closed. For a fixed $p, 1 \le p \le \infty$, we have

• $\|\cdot\|$ satisfies the condition (O.p.1) on V if and only if $\|\cdot\|'$ satisfies the condition (OS.p'.2) on V'.

Theorem. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let $\|\cdot\|$ be a norm on V such that V^+ is $\|\cdot\|$ -closed. For a fixed $p, 1 \le p \le \infty$, we have

- $\|\cdot\|$ satisfies the condition (O.p.1) on V if and only if $\|\cdot\|'$ satisfies the condition (OS.p'.2) on V'.
- $\|\cdot\|$ satisfies the condition (O.p.2) on V if and only if $\|\cdot\|'$ satisfies the condition (O.p'.1) on V'.

Theorem. Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let $\|\cdot\|$ be a norm on V such that V^+ is $\|\cdot\|$ -closed. For a fixed $p, 1 \le p \le \infty$, we have

- $\|\cdot\|$ satisfies the condition (O.p.1) on V if and only if $\|\cdot\|'$ satisfies the condition (OS.p'.2) on V'.
- $\|\cdot\|$ satisfies the condition (O.p.2) on V if and only if $\|\cdot\|'$ satisfies the condition (O.p'.1) on V'.

Definition (Order smooth *p***-normed space).**

Let (V, V^+) be a real ordered vector space such that V^+ is proper and generating and let |||| be a norm on V such that V^+ is ||||-closed. For a fixed $p, 1 \le p \le \infty$, we say that V is an order smooth p-normed space, if |||| satisfies conditions O.p.1and O.p.2 on V.

Geometric orthogonality

Definition. Let $1 \le p \le \infty$ and let V be an order smooth p-normed space. For $u, v \in V$ we say that u is p-orthogonal to v, ($u \perp_p v$), if

Geometric orthogonality

Definition. Let $1 \le p \le \infty$ and let V be an order smooth p-normed space. For $u, v \in V$ we say that u is p-orthogonal to v, ($u \perp_p v$), if

$$||u + kv||^p = ||u||^p + ||kv||^p, \quad 1 \le p < \infty$$

and

Geometric orthogonality

Definition. Let $1 \le p \le \infty$ and let *V* be an order smooth *p*-normed space. For $u, v \in V$ we say that *u* is *p*-orthogonal to *v*, ($u \perp_p v$), if

$$||u + kv||^p = ||u||^p + ||kv||^p, \quad 1 \le p < \infty$$

and

$$||u + kv|| = \max\{||u||, ||kv||\}, \quad p = \infty$$

for all $k \in \mathbb{R}$.
Further, we say that \perp_p is additive in V, if $u \perp_p v$ and $u \perp_p w$ implies $u \perp_p (v + w)$. Note that in this case $u^{\perp_p} = \{v \in V : u \perp_p v\}$ is a subspace of V.

Further, we say that \perp_p is additive in V, if $u \perp_p v$ and $u \perp_p w$ implies $u \perp_p (v + w)$. Note that in this case $u^{\perp_p} = \{v \in V : u \perp_p v\}$ is a subspace of V.

A subset *S* of *V* is called *p*-orthogonal if $0 \notin S$ and $u \perp_p v$ for every pair $u, v \in S$ with $u \neq v$. If, in addition, ||v|| = 1 for all $v \in S$, we say that *S* is a *p*-orthonormal set in *V*. We say that *S* is total if the linear span of *S* is dense in *V*.

Further, we say that \perp_p is additive in V, if $u \perp_p v$ and $u \perp_p w$ implies $u \perp_p (v + w)$. Note that in this case $u^{\perp_p} = \{v \in V : u \perp_p v\}$ is a subspace of V.

A subset *S* of *V* is called *p*-orthogonal if $0 \notin S$ and $u \perp_p v$ for every pair $u, v \in S$ with $u \neq v$. If, in addition, ||v|| = 1 for all $v \in S$, we say that *S* is a *p*-orthonormal set in *V*. We say that *S* is total if the linear span of *S* is dense in *V*.

Theorem. Let $1 \le p \le \infty$ and let V be a (norm) complete order smooth p-normed space. If \perp_p is additive in V^+ and Uis a total p-orthonormal set in V^+ , then V is isometrically order isomorphic to $\ell_p(U)$. For $p = \infty$, we replace $\ell_p(U)$ by $c_0(U)$.

Definition. Let *V* be an order smooth *p*-normed space, $1 \le p \le \infty$. For $v \in V \setminus \{0\}$ we say that $f \in V'$ supports *v* if $\|f\| = 1$ and $\|v\| = f(v)$. The set of all supports of *v* will be denoted by Supp(v). For $u \in V^+ \setminus \{0\}$, we write, $Supp_+(u)$ for $Supp(u) \cap V'^+$.

Definition. Let *V* be an order smooth *p*-normed space, $1 \le p \le \infty$. For $v \in V \setminus \{0\}$ we say that $f \in V'$ supports *v* if ||f|| = 1 and ||v|| = f(v). The set of all supports of *v* will be denoted by Supp(v). For $u \in V^+ \setminus \{0\}$, we write, $Supp_+(u)$ for $Supp(u) \cap V'^+$. By Hahn-Banach theorem, $Supp(v) \ne \emptyset$, if $v \in V \setminus \{0\}$. Moreover, it is weak*-compact and convex too.

Proposition. Let *V* be an order smooth *p*-normed space, $1 \le p \le \infty$. For $u \in V^+ \setminus \{0\}$, $Supp_+(u) \ne \emptyset$.

Definition. Let *V* be an order smooth *p*-normed space, $1 \le p \le \infty$. For $v \in V \setminus \{0\}$ we say that $f \in V'$ supports *v* if ||f|| = 1 and ||v|| = f(v). The set of all supports of *v* will be denoted by Supp(v). For $u \in V^+ \setminus \{0\}$, we write, $Supp_+(u)$ for $Supp(u) \cap V'^+$. By Hahn-Banach theorem, $Supp(v) \ne \emptyset$, if $v \in V \setminus \{0\}$. Moreover, it is weak*-compact and convex too.

Proposition. Let *V* be an order smooth *p*-normed space, $1 \le p \le \infty$. For $u \in V^+ \setminus \{0\}$, $Supp_+(u) \ne \emptyset$. The extreme points in $Supp_+(v)$ will be denoted by $Peak_+(v)$.

Theorem. Let *V* be an order smooth ∞ -normed space. Suppose that $u_1, u_2 \in V^+ \setminus \{0\}$ and let *W* be the linear span of u_1, u_2 . Then the following statements are equivalent:

Theorem. Let *V* be an order smooth ∞ -normed space. Suppose that $u_1, u_2 \in V^+ \setminus \{0\}$ and let *W* be the linear span of u_1, u_2 . Then the following statements are equivalent:

1. $|||u_1||^{-1}u_1 + ||u_2||^{-1}u_2|| = 1;$

Theorem. Let *V* be an order smooth ∞ -normed space. Suppose that $u_1, u_2 \in V^+ \setminus \{0\}$ and let *W* be the linear span of u_1, u_2 . Then the following statements are equivalent:

1.
$$|||u_1||^{-1}u_1 + ||u_2||^{-1}u_2|| = 1;$$

2. $u_1 \perp_{\infty} u_2$;

Theorem. Let *V* be an order smooth ∞ -normed space. Suppose that $u_1, u_2 \in V^+ \setminus \{0\}$ and let *W* be the linear span of u_1, u_2 . Then the following statements are equivalent:

- 1. $|||u_1||^{-1}u_1 + ||u_2||^{-1}u_2|| = 1;$
- 2. $u_1 \perp_{\infty} u_2$;
- **3.** For $f_i \in Supp_+(u_i)$, i = 1, 2, we have $g_1 \perp_1 g_2$ with $g_i(u_j) = 0$ if $i \neq j$, where $g_i = f_i|_W$, i = 1, 2.

Theorem. Let *V* be an order smooth ∞ -normed space. Suppose that $u_1, u_2 \in V^+ \setminus \{0\}$ and let *W* be the linear span of u_1, u_2 . Then the following statements are equivalent:

- 1. $|||u_1||^{-1}u_1 + ||u_2||^{-1}u_2|| = 1;$
- 2. $u_1 \perp_{\infty} u_2$;
- **3.** For $f_i \in Supp_+(u_i)$, i = 1, 2, we have $g_1 \perp_1 g_2$ with $g_i(u_j) = 0$ if $i \neq j$, where $g_i = f_i|_W$, i = 1, 2.

Proof. Without any loss of generality, we may assume that $||u_i|| = 1$, i = 1, 2. First, let $||u_1 + u_2|| = 1$. Let $\lambda > 0$.

Theorem. Let *V* be an order smooth ∞ -normed space. Suppose that $u_1, u_2 \in V^+ \setminus \{0\}$ and let *W* be the linear span of u_1, u_2 . Then the following statements are equivalent:

- 1. $|||u_1||^{-1}u_1 + ||u_2||^{-1}u_2|| = 1;$
- 2. $u_1 \perp_{\infty} u_2$;
- 3. For $f_i \in Supp_+(u_i)$, i = 1, 2, we have $g_1 \perp_1 g_2$ with $g_i(u_j) = 0$ if $i \neq j$, where $g_i = f_i|_W$, i = 1, 2.

Proof. Without any loss of generality, we may assume that $||u_i|| = 1$, i = 1, 2. First, let $||u_1 + u_2|| = 1$. Let $\lambda > 0$. Case.1: $\lambda \le 1$. In this case,

$$||u_1 + \lambda u_2|| = ||\lambda(u_1 + u_2) + (1 - \lambda)u_1||$$

$$\leq \lambda ||u_1 + u_2|| + (1 - \lambda)||u_1|| = 1.$$

Case.2: $\lambda > 1$. In this case,

$$||u_1 + \lambda u_2|| = ||(u_1 + u_2) + (\lambda - 1)u_2||$$

$$\leq ||u_1 + u_2|| + (\lambda - 1)||u_2|| = \lambda.$$

Case.2: $\lambda > 1$. In this case,

$$||u_1 + \lambda u_2|| = ||(u_1 + u_2) + (\lambda - 1)u_2||$$

$$\leq ||u_1 + u_2|| + (\lambda - 1)||u_2|| = \lambda.$$

Thus, in either case, $||u_1 + \lambda u_2|| \le \max(1, \lambda)$. Further, as $\lambda > 0$ we also have

 $\max(1,\lambda) = \max(\|u_1\|, \|\lambda u_2\|) \le \|u_1 + \lambda u_2\|.$

Case.2: $\lambda > 1$. In this case,

$$||u_1 + \lambda u_2|| = ||(u_1 + u_2) + (\lambda - 1)u_2||$$

$$\leq ||u_1 + u_2|| + (\lambda - 1)||u_2|| = \lambda.$$

Thus, in either case, $||u_1 + \lambda u_2|| \le \max(1, \lambda)$. Further, as $\lambda > 0$ we also have

 $\max(1,\lambda) = \max(\|u_1\|, \|\lambda u_2\|) \le \|u_1 + \lambda u_2\|.$

Thus for $\lambda \ge 0$, we get $||u_1 + \lambda u_2|| = \max(||u_1||, ||\lambda u_2||)$.

Again, for $\lambda > 0$, $-\lambda u_2 \le u_1 - \lambda u_2 \le u_1$ so that

 $||u_1 - \lambda u_2|| \le \max(||u_1||, ||\lambda u_2||).$

Again, for $\lambda > 0$, $-\lambda u_2 \le u_1 - \lambda u_2 \le u_1$ so that

 $||u_1 - \lambda u_2|| \le \max(||u_1||, ||\lambda u_2||).$

Next, let $f_i \in Supp_+(u_i)$, i = 1, 2. Then $f_i(u_i) = 1 = ||f_i||$, i = 1, 2. As $||u_1 + u_2|| = 1$ we get

Again, for $\lambda > 0$, $-\lambda u_2 \le u_1 - \lambda u_2 \le u_1$ so that

 $||u_1 - \lambda u_2|| \le \max(||u_1||, ||\lambda u_2||).$

Next, let $f_i \in Supp_+(u_i)$, i = 1, 2. Then $f_i(u_i) = 1 = ||f_i||$, i = 1, 2. As $||u_1 + u_2|| = 1$ we get

 $1 = ||u_1 + u_2|| \ge f_1(u_1 + u_2) = 1 + f_1(u_2) \ge 1.$

Again, for $\lambda > 0$, $-\lambda u_2 \le u_1 - \lambda u_2 \le u_1$ so that

 $||u_1 - \lambda u_2|| \le \max(||u_1||, ||\lambda u_2||).$

Next, let $f_i \in Supp_+(u_i)$, i = 1, 2. Then $f_i(u_i) = 1 = ||f_i||$, i = 1, 2. As $||u_1 + u_2|| = 1$ we get

 $1 = ||u_1 + u_2|| \ge f_1(u_1 + u_2) = 1 + f_1(u_2) \ge 1.$

Thus $f_1(u_2) = 0$. Dually, $f_2(u_1) = 0$.

Again, for $\lambda > 0$, $-\lambda u_2 \le u_1 - \lambda u_2 \le u_1$ so that

 $||u_1 - \lambda u_2|| \le \max(||u_1||, ||\lambda u_2||).$

Next, let $f_i \in Supp_+(u_i)$, i = 1, 2. Then $f_i(u_i) = 1 = ||f_i||$, i = 1, 2. As $||u_1 + u_2|| = 1$ we get

 $1 = ||u_1 + u_2|| \ge f_1(u_1 + u_2) = 1 + f_1(u_2) \ge 1.$

Thus $f_1(u_2) = 0$. Dually, $f_2(u_1) = 0$. Now it follows that

$$||u_1 - \lambda u_2|| \ge |f_1(u_1 - \lambda u_2)| = 1$$

and

$$||u_1 - \lambda u_2|| \ge |f_2(u_1 - \lambda u_2)| = \lambda$$

so that

 $||u_1 - \lambda u_2|| \ge \max(1, \lambda) = \max(||u_1||, ||\lambda u_2||).$

so that

```
||u_1 - \lambda u_2|| \ge \max(1, \lambda) = \max(||u_1||, ||\lambda u_2||).
```

Therefore, $u_1 \perp_{\infty} u_2$.

so that

$$||u_1 - \lambda u_2|| \ge \max(1, \lambda) = \max(||u_1||, ||\lambda u_2||).$$

Therefore, $u_1 \perp_{\infty} u_2$. Next, assume that $u_1 \perp_{\infty} u_2$. Let $f_i \in Supp_+(u_i)$, i = 1, 2 and put $g_i = f_i|_W$, i = 1, 2. Then as above, we have $g_i(u_j) = 0$ if $i \neq j$.

so that

$$||u_1 - \lambda u_2|| \ge \max(1, \lambda) = \max(||u_1||, ||\lambda u_2||).$$

Therefore, $u_1 \perp_{\infty} u_2$. Next, assume that $u_1 \perp_{\infty} u_2$. Let $f_i \in Supp_+(u_i)$, i = 1, 2 and put $g_i = f_i|_W$, i = 1, 2. Then as above, we have $g_i(u_j) = 0$ if $i \neq j$. For $\alpha_1, \alpha_2 \in \mathbb{R}$, we have

$$\begin{aligned} \|\alpha_1 g_1 + \alpha_2 g_2\| &= \sup\{ |(\alpha_1 g_1 + \alpha_2 g_2)(\lambda_1 u_1 + \lambda_2 u_2)| : \\ \|\lambda_1 u_1 + \lambda_2 u_2\| \le 1 \} \\ &= \sup\{ |\alpha_1 \lambda_1 + \alpha_2 \lambda_2| : \max(|\lambda_1|, |\lambda_2|) \le 1 \} \\ &= |\alpha_1| + |\alpha_2|. \end{aligned}$$

In particular, $||g_i|| = 1$, i = 1, 2 so that $g_1 \perp_1 g_2$.

In particular, $||g_i|| = 1$, i = 1, 2 so that $g_1 \perp_1 g_2$. Finally assume that for $f_i \in Supp_+(u_i)$, i = 1, 2, we have $g_1 \perp_1 g_2$ with $g_i(u_j) = 0$ if $i \neq j$ where $g_i = f_i|_W$, i = 1, 2. It is easy to note that $||g_i|| = 1$, i = 1, 2. Thus

In particular, $||g_i|| = 1$, i = 1, 2 so that $g_1 \perp_1 g_2$. Finally assume that for $f_i \in Supp_+(u_i)$, i = 1, 2, we have $g_1 \perp_1 g_2$ with $g_i(u_j) = 0$ if $i \neq j$ where $g_i = f_i|_W$, i = 1, 2. It is easy to note that $||g_i|| = 1$, i = 1, 2. Thus

$$|u_1 + u_2|| = \sup\{|(\alpha_1 g_1 + \alpha_2 g_2)(u_1 + u_2)|:$$

$$||\alpha_1 g_1 + \alpha_2 g_2|| \le 1\}$$

$$= \sup\{|\alpha_1 + \alpha_2|: |\alpha_1| + |\alpha_2| \le 1\} = 1.$$

This completes the proof.

Remark. Let $u, v \in V^+ \setminus \{0\}$ such that $u \perp_{\infty} v$. Then for $f \in Supp_+(v), f(u) = 0$.

Remark. Let $u, v \in V^+ \setminus \{0\}$ such that $u \perp_{\infty} v$. Then for $f \in Supp_+(v), f(u) = 0$.

We say that $f \in V^+$ with ||f|| = 1 is a *crust* of *u* if f(u) = 0. The set of all crusts of *u* will be denoted by $Crust_+(u)$.

Remark. Let $u, v \in V^+ \setminus \{0\}$ such that $u \perp_{\infty} v$. Then for $f \in Supp_+(v), f(u) = 0$.

We say that $f \in V^+$ with ||f|| = 1 is a *crust* of *u* if f(u) = 0. The set of all crusts of *u* will be denoted by $Crust_+(u)$.

Note that in this case $Crust_+(u)$ is a non-empty, weak*-compact and convex. Its extreme points are denoted by $Sink_+(u)$.

Remark. Let $u, v \in V^+ \setminus \{0\}$ such that $u \perp_{\infty} v$. Then for $f \in Supp_+(v), f(u) = 0$.

We say that $f \in V^+$ with ||f|| = 1 is a *crust* of *u* if f(u) = 0. The set of all crusts of *u* will be denoted by $Crust_+(u)$.

Note that in this case $Crust_+(u)$ is a non-empty, weak*-compact and convex. Its extreme points are denoted by $Sink_+(u)$.

Further, $Support_+(u) \subset Crust_+(v)$ and consequently, $Peak_+(u) \subset Sink_+(v)$.

Theorem. Let *A* be a C^* -algebra and let $a, b \in A^+ \setminus \{0\}$. Let *B* be the C^* -subalgebra of *A* generated by *a* and *b*. Then ab = 0 if and only if $P(B) = Sink_+^B(a) \cup Sink_+^B(b)$. Here P(B) is the set of all pure states of *B*.

Theorem. Let *A* be a C^* -algebra and let $a, b \in A^+ \setminus \{0\}$. Let *B* be the C^* -subalgebra of *A* generated by *a* and *b*. Then ab = 0 if and only if $P(B) = Sink_+^B(a) \cup Sink_+^B(b)$. Here P(B) is the set of all pure states of *B*. **Proof.** Let ab = 0. Then P(B) is multiplicative on *B*. Thus

0 = f(ab) = f(a)f(b)

for all $f \in P(B)$. Now it follows that $P(B) = Sink_{+}^{B}(a) \cup Sink_{+}^{B}(b)$.

Theorem. Let *A* be a C^* -algebra and let $a, b \in A^+ \setminus \{0\}$. Let *B* be the C^* -subalgebra of *A* generated by *a* and *b*. Then ab = 0 if and only if $P(B) = Sink_+^B(a) \cup Sink_+^B(b)$. Here P(B) is the set of all pure states of *B*. **Proof.** Let ab = 0. Then P(B) is multiplicative on *B*. Thus

0 = f(ab) = f(a)f(b)

for all $f \in P(B)$. Now it follows that $P(B) = Sink_{+}^{B}(a) \cup Sink_{+}^{B}(b)$. Conversely, assume that $P(B) = Sink_{+}^{B}(a) \cup Sink_{+}^{B}(b)$. If $f \in P(B)$, then by the Cauchy-Schwarz' inequality,

 $0 \le |f(ab)|^2 \le f(a^2)f(a^2) \le ||a|| ||b|| f(a)f(b).$

Thus by assumption, f(ab) = 0 for all $f \in P(B)$ so that ab = 0.

Definition. Let *A* be any *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. (For example, *M* is a *C*^{*}- subalgebra of *A*.) For $a, b \in M^+$, we say that *a* is orthogonal to *b* with respect to *M* ($a \perp^M b$) if $P(M) \subset Sink_+(a) \cup Sink_+(b)$.

Definition. Let *A* be any *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. (For example, *M* is a *C*^{*}- subalgebra of *A*.) For $a, b \in M^+$, we say that *a* is orthogonal to *b* with respect to *M* ($a \perp^M b$) if $P(M) \subset Sink_+(a) \cup Sink_+(b)$.

Remark.1. Let *A* be a *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. Assume that $a, b \in M^+ \setminus \{0\}$ with $a \perp^M b$. Then
Definition. Let *A* be any *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. (For example, *M* is a *C*^{*}- subalgebra of *A*.) For $a, b \in M^+$, we say that *a* is orthogonal to *b* with respect to *M* ($a \perp^M b$) if $P(M) \subset Sink_+(a) \cup Sink_+(b)$.

Remark.1. Let *A* be a *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. Assume that $a, b \in M^+ \setminus \{0\}$ with $a \perp^M b$. Then

- $a \perp_{\infty} b$; and
- $Peak_+^M(\|a\|^{-1}a + \|b\|^{-1}b) = Peak_+^M(a) \cup Peak_+^M(b).$

Definition. Let *A* be any *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. (For example, *M* is a *C*^{*}- subalgebra of *A*.) For $a, b \in M^+$, we say that *a* is orthogonal to *b* with respect to *M* ($a \perp^M b$) if $P(M) \subset Sink_+(a) \cup Sink_+(b)$.

Remark.1. Let *A* be a *C*^{*}-algebra and let *M* be any self-adjoint subspace of *A* such that M_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. Assume that $a, b \in M^+ \setminus \{0\}$ with $a \perp^M b$. Then

- $a \perp_{\infty} b$; and
- $Peak_+^M(\|a\|^{-1}a + \|b\|^{-1}b) = Peak_+^M(a) \cup Peak_+^M(b).$

Remark.2. If *M* is the C^* -subalgebra generated by *a* and *b*, then $a \perp^M b$ if and only if *a* is algebraically orthogonal to *b*.

Remark.2. If *M* is the C^* -subalgebra generated by *a* and *b*, then $a \perp^M b$ if and only if *a* is algebraically orthogonal to *b*.

Remark.3. Let $a \perp_{\infty} b$ and let *L* be the linear span of *a* and *b*. Then *L* be any self-adjoint subspace of *A* such that L_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. Further, $a \perp^{L} b$.

Remark.2. If *M* is the C^* -subalgebra generated by *a* and *b*, then $a \perp^M b$ if and only if *a* is algebraically orthogonal to *b*.

Remark.3. Let $a \perp_{\infty} b$ and let *L* be the linear span of *a* and *b*. Then *L* be any self-adjoint subspace of *A* such that L_{sa} is an order smooth ∞ -normed sub space of A_{sa} satifying $(OS.\infty.2)$. Further, $a \perp^{L} b$.

Question. Can we have a "space-free" geometric characterization of algebraic Orthogonality?

Theorem. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if ab = ba and the following property holds:

 $0 \le c \le a$ and $c \le b$ implies c = 0.

Theorem. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if ab = ba and the following property holds:

 $0 \le c \le a$ and $c \le b$ implies c = 0.

Proof. Let ab = 0. Then ab = ba.

Theorem. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if ab = ba and the following property holds:

 $0 \le c \le a$ and $c \le b$ implies c = 0.

Proof. Let ab = 0. Then ab = ba. Next, let $0 \le c \le a$ and $c \le b$ and assume that $c \ne 0$. Then

Theorem. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if ab = ba and the following property holds:

 $0 \le c \le a$ and $c \le b$ implies c = 0.

Proof. Let ab = 0. Then ab = ba. Next, let $0 \le c \le a$ and $c \le b$ and assume that $c \ne 0$. Then

 $0 \le bcb \le bab = 0$

so that bcb = 0. Consequently, cb = 0.

Theorem. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if ab = ba and the following property holds:

 $0 \le c \le a$ and $c \le b$ implies c = 0.

Proof. Let ab = 0. Then ab = ba. Next, let $0 \le c \le a$ and $c \le b$ and assume that $c \ne 0$. Then

 $0 \le bcb \le bab = 0$

so that bcb = 0. Consequently, cb = 0. Thus $c \perp_{\infty} b$ or equivalently,

$$\left\| \|c\|^{-1}c + \|b\|^{-1}b \right\| = 1.$$

Since $0 \le c \le b$ we have

 $1 = \left\| \|c\|^{-1}c + \|b\|^{-1}b\| \ge \left\| \|c\|^{-1}c + \|b\|^{-1}c\| = 1 + \|b\|^{-1}\|c\| > 1$

which is meaningless. Thus c = 0.

Since $0 \le c \le b$ we have

 $1 = \left\| \|c\|^{-1}c + \|b\|^{-1}b\| \ge \left\| \|c\|^{-1}c + \|b\|^{-1}c\| = 1 + \|b\|^{-1}\|c\| > 1$

which is meaningless. Thus c = 0. Conversely assume that ab = ba and that $0 \le c \le a$ and $c \le b$ implies c = 0.

Since $0 \le c \le b$ we have

 $1 = \left\| \|c\|^{-1}c + \|b\|^{-1}b \right\| \ge \left\| \|c\|^{-1}c + \|b\|^{-1}c \right\| = 1 + \|b\|^{-1}\|c\| > 1$

which is meaningless. Thus c = 0. Conversely assume that ab = ba and that $0 \le c \le a$ and $c \le b$ implies c = 0. Since $a, b \in A^+$, we have $ab \in A^+$. Also, then $ab \le ||a||b$ and $ab \le ||b||a$.

Since $0 \le c \le b$ we have

 $1 = \left\| \|c\|^{-1}c + \|b\|^{-1}b \right\| \ge \left\| \|c\|^{-1}c + \|b\|^{-1}c \right\| = 1 + \|b\|^{-1}\|c\| > 1$

which is meaningless. Thus c = 0. Conversely assume that ab = ba and that $0 \le c \le a$ and $c \le b$ implies c = 0. Since $a, b \in A^+$, we have $ab \in A^+$. Also, then $ab \le ||a||b$ and $ab \le ||b||a$. Thus $0 \le k^{-1}ab \le a$ and $k^{-1}ab \le b$ where $k = \max\{||a||, ||b||\}$. Now, by assumption, ab = 0.

Conjecture. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Conjecture. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Result. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A* such that ab = 0. Then $0 \le c \le a$ and $0 \le d \le b$ implies cd = 0.

Conjecture. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A*. Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Result. Let *a* qnd *b* be any two positive elements of a C^* -algebra *A* such that ab = 0. Then $0 \le c \le a$ and $0 \le d \le b$ implies cd = 0. **Proof.** Let $0 \le c \le a$ and $0 \le d \le b$. Then $0 \le bcb \le bab = 0$ so that cb = 0. Thus $0 \le cdc \le cbc = 0$ so that cd = 0.

Theorem. Let *a* qnd *b* be any two positive elements in M_n^+ . Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Theorem. Let *a* qnd *b* be any two positive elements in M_n^+ . Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$. **Proof.** Assume that $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Theorem. Let *a* qnd *b* be any two positive elements in M_n^+ . Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$. **Proof.** Assume that $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Consider the spectral decompositions $a = \sum_{i=1}^{k} \lambda_i p_i$ and $b = \sum_{j=1}^{l} \mu_j q_j$ where $\lambda_i \neq 0$ and $\mu_j \neq 0$ for $1 \le i \le k$ and $1 \le j \le l$.

Theorem. Let *a* qnd *b* be any two positive elements in M_n^+ . Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Proof. Assume that $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$. Consider the spectral decompositions $a = \sum_{i=1}^{k} \lambda_i p_i$ and $b = \sum_{j=1}^{l} \mu_j q_j$ where $\lambda_i \ne 0$ and $\mu_j \ne 0$ for $1 \le i \le k$ and $1 \le j \le l$.

Then $\lambda_i p_i \leq a$ and $\mu_j q_j \leq b$. Thus by assumption, $p_i \perp_{\infty} q_j$.

Theorem. Let *a* qnd *b* be any two positive elements in M_n^+ . Then ab = 0 if and only if $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$.

Proof. Assume that $0 \le c \le a$ and $0 \le d \le b$ implies $c \perp_{\infty} d$. Consider the spectral decompositions $a = \sum_{i=1}^{k} \lambda_i p_i$ and $b = \sum_{j=1}^{l} \mu_j q_j$ where $\lambda_i \ne 0$ and $\mu_j \ne 0$ for $1 \le i \le k$ and $1 \le j \le l$.

Then $\lambda_i p_i \leq a$ and $\mu_j q_j \leq b$. Thus by assumption, $p_i \perp_{\infty} q_j$. It follows that $||p_i + q_j|| = 1$ so that $p_i + q_j \leq 1$. Since p_i and q_j are projections, we get that $p_i q_j = 0$. Hence ab = 0. Thank you!