The Cauchy dual subnormality problem

Zenon Jabłoński

Instytut Matematyki Uniwersytet Jagielloński joint work with A. Anand, S. Chavan and J. Stochel A solution to the Cauchy dual subnormality problem for 2-isometries preprint **2017**

OTOA 15.12.2018 - Bangalore

(4回) (日) (日)

• Let \mathcal{H} be a Hilbert space. The *Cauchy dual operator* T' of a left-invertible operator $T \in \boldsymbol{B}(\mathcal{H})$ is given by

$$T' := T(T^*T)^{-1}.$$

- 2 The operator T' is again left-invertible and has the property that (T')' = T.
- The notion of the Cauchy dual operator has been introduced by S. Shimorin in the context of the wandering subspace problem for Bergman-type operators.

ヘロト ヘアト ヘビト ヘビト

• Let \mathcal{H} be a Hilbert space. The *Cauchy dual operator* T' of a left-invertible operator $T \in \boldsymbol{B}(\mathcal{H})$ is given by

$$T' := T(T^*T)^{-1}.$$

- 2 The operator T' is again left-invertible and has the property that (T')' = T.
- The notion of the Cauchy dual operator has been introduced by S. Shimorin in the context of the wandering subspace problem for Bergman-type operators.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Let *H* be a Hilbert space. The *Cauchy dual operator T'* of a left-invertible operator *T* ∈ *B*(*H*) is given by

$$T' := T(T^*T)^{-1}.$$

- 2 The operator T' is again left-invertible and has the property that (T')' = T.
- The notion of the Cauchy dual operator has been introduced by S. Shimorin in the context of the wandering subspace problem for Bergman-type operators.

(本間) (本語) (本語) (二語)

$$\mathcal{S}^n(T)f := \sum_{0 \leq p \leq n} (-1)^p \binom{n}{p} ||T^p f||^2, \quad f \in \mathcal{H}.$$

• An operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be a *n-isometry* if

 $S^n(T)f = 0$ for $f \in \mathcal{H}$,

• k-hyperexpansive if

 $\mathcal{S}^n(T) f \leq 0$ for $n = 1, \ldots, k$ and $f \in \mathcal{H}$,

• completely hyperexpansive if

 $S^n(T)f \leq 0$ for $n \geq 1$ and $f \in \mathcal{H}$.

イロト 不得 とくほ とくほ とう

$$\mathcal{S}^n(T)f := \sum_{0 \le p \le n} (-1)^p \binom{n}{p} ||T^p f||^2, \quad f \in \mathcal{H}.$$

• An operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be a *n-isometry* if $\mathcal{S}^n(T)f = 0$ for $f \in \mathcal{H}$,

k-hyperexpansive if

$$\mathcal{S}^n(T) f \leq 0$$
 for $n = 1, \ldots, k$ and $f \in \mathcal{H}$,

• completely hyperexpansive if

 $S^n(T)f \leq 0$ for $n \geq 1$ and $f \in \mathcal{H}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$\mathcal{S}^n(T)f := \sum_{0 \le p \le n} (-1)^p \binom{n}{p} ||T^p f||^2, \quad f \in \mathcal{H}.$$

• An operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be a *n*-isometry if

 $S^n(T)f = 0$ for $f \in \mathcal{H}$,

k-hyperexpansive if

$$\mathcal{S}^n(T)f \leq 0$$
 for $n = 1, \ldots, k$ and $f \in \mathcal{H}$,

completely hyperexpansive if

 $S^n(T)f \leq 0$ for $n \geq 1$ and $f \in \mathcal{H}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$$\mathcal{S}^n(T)f := \sum_{0 \le p \le n} (-1)^p \binom{n}{p} ||T^p f||^2, \quad f \in \mathcal{H}.$$

• An operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be a *n*-isometry if

 $S^n(T)f = 0$ for $f \in \mathcal{H}$,

k-hyperexpansive if

$$\mathcal{S}^n(T) f \leq 0$$
 for $n = 1, \ldots, k$ and $f \in \mathcal{H}$,

completely hyperexpansive if

 $S^n(T)f \leq 0$ for $n \geq 1$ and $f \in \mathcal{H}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Set $\triangle_T = T^*T - I$ for $T \in \boldsymbol{B}(\mathcal{H})$.

Recall that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be

a Brownian isometry if T is a 2-isometry such that

 $\triangle_{T} \triangle_{T^*} \triangle_{T} = \mathbf{0},$

• a \triangle_T -regular operator if $\triangle_T \ge 0$ and

$$\triangle_T T = \triangle_T^{1/2} T \triangle_T^{1/2},$$

• a *quasi-Brownian isometry* if T is a \triangle_T -regular 2-isometry.

ヘロン 人間 とくほ とくほ とう

Set $\triangle_T = T^*T - I$ for $T \in \boldsymbol{B}(\mathcal{H})$.

Recall that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be

a Brownian isometry if T is a 2-isometry such that

 $\triangle_{T} \triangle_{T^*} \triangle_{T} = \mathbf{0},$

• a $riangle_T$ -regular operator if $riangle_T \ge 0$ and

$$\triangle_T T = \triangle_T^{1/2} T \triangle_T^{1/2},$$

• a *quasi-Brownian isometry* if T is a \triangle_T -regular 2-isometry.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Set $\triangle_T = T^*T - I$ for $T \in \boldsymbol{B}(\mathcal{H})$.

Recall that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be

a Brownian isometry if T is a 2-isometry such that

 $\triangle_{T} \triangle_{T^*} \triangle_{T} = \mathbf{0},$

• a $riangle_T$ -regular operator if $riangle_T \ge 0$ and

$$\triangle_T T = \triangle_T^{1/2} T \triangle_T^{1/2},$$

• a *quasi-Brownian isometry* if T is a \triangle_T -regular 2-isometry.

< 回 > < 回 > < 回 > … 回

Theorem (Agler-Stankus'95, Majdak-Mbekhta-Suciu '16, Anand-Chavan-J-Stochel)

If $T \in \boldsymbol{B}(\mathcal{H})$, then the following conditions are equivalent:

(i) T is a quasi-Brownian isometry (resp., Brownian isometry),

(ii) T has the block matrix form

$$T = \left[\begin{array}{cc} V & E \\ 0 & U \end{array} \right]$$

with respect to an orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ (one of the summands may be absent), where $V \in \boldsymbol{B}(\mathcal{H}_1)$, $E \in \boldsymbol{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $U \in \boldsymbol{B}(\mathcal{H}_2)$ are such that

 $V^*V = I, V^*E = 0, U^*U = I \text{ and } UE^*E = E^*EU$ (resp., $V^*V = I, V^*E = 0, U^*U = I = UU^*, UE^*E = E^*EU$)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Agler-Stankus'95, Majdak-Mbekhta-Suciu '16, Anand-Chavan-J-Stochel)

If $T \in \boldsymbol{B}(\mathcal{H})$, then the following conditions are equivalent:

(i) T is a quasi-Brownian isometry (resp., Brownian isometry),

(ii) T has the block matrix form

$$T = \left[\begin{array}{cc} V & E \\ 0 & U \end{array} \right]$$

with respect to an orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ (one of the summands may be absent), where $V \in \boldsymbol{B}(\mathcal{H}_1)$, $E \in \boldsymbol{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $U \in \boldsymbol{B}(\mathcal{H}_2)$ are such that

 $V^*V = I, V^*E = 0, U^*U = I \text{ and } UE^*E = E^*EU$ (resp., $V^*V = I, V^*E = 0, U^*U = I = UU^*, UE^*E = E^*EU$).

ヘロン 人間 とくほ とくほ とう

ъ

An operator $S \in \boldsymbol{B}(\mathcal{H})$ is

- subnormal if there is a Hilbert space K containing H and a normal operator N ∈ B(K) such that NH ⊆ H and S = N|H,
- hyponormal if $||S^*f|| \le ||Sf||$, $f \in \mathcal{H}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

An operator $S \in \boldsymbol{B}(\mathcal{H})$ is

- subnormal if there is a Hilbert space K containing H and a normal operator N ∈ B(K) such that NH ⊆ H and S = N|H,
- hyponormal if $\|S^*f\| \le \|Sf\|$, $f \in \mathcal{H}$.

- All positive integer powers of the Cauchy dual of a 2-hyperexpansive operator turn out to be hyponormal (Chavan 2013).
- If *T* is a completely hyperexpansive weighted shift, then *T'* is a subnormal contraction and the reverse implication is not true (A. Athavale, 1996).
- **Cauchy dual subnormality problem**. Is the Cauchy dual of a 2-isometry (or more general, a completely hyperexpansive operator) a subnormal contraction?

ヘロト 人間 ト ヘヨト ヘヨト

- All positive integer powers of the Cauchy dual of a 2-hyperexpansive operator turn out to be hyponormal (Chavan 2013).
- If T is a completely hyperexpansive weighted shift, then T' is a subnormal contraction and the reverse implication is not true (A. Athavale, 1996).
- **Cauchy dual subnormality problem**. Is the Cauchy dual of a 2-isometry (or more general, a completely hyperexpansive operator) a subnormal contraction?

・ 同 ト ・ ヨ ト ・ ヨ ト

- All positive integer powers of the Cauchy dual of a 2-hyperexpansive operator turn out to be hyponormal (Chavan 2013).
- If T is a completely hyperexpansive weighted shift, then T' is a subnormal contraction and the reverse implication is not true (A. Athavale, 1996).
- **Cauchy dual subnormality problem**. Is the Cauchy dual of a 2-isometry (or more general, a completely hyperexpansive operator) a subnormal contraction?

・ 同 ト ・ ヨ ト ・ ヨ ト …

• We say that T satisfies the kernel condition, if

 $T^*T(\ker T^*) \subseteq \ker T^*.$

Zenon Jabłoński The Cauchy dual subnormality problem

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

E DQC

Recall that if \mathcal{M} is a nonzero Hilbert space and $\{W_n\}_{n=0}^{\infty} \subseteq B(\mathcal{M})$, then the operator $W \in B(\ell_{\mathcal{M}}^2)$ defined by

$$W(h_0, h_1, \ldots) = (0, W_0 h_0, W_1 h_1, \ldots), \quad (h_0, h_1, \ldots) \in \ell^2_{\mathcal{M}},$$

is said to be an *operator valued unilateral weighted shift* with weights $\{W_n\}_{n=0}^{\infty}$. Putting $\mathcal{M} = \mathbb{C}$, we arrive at the well-known notion of a unilateral weighted shift in ℓ^2 .

Theorem

If T is a 2-isometry in B(H), then the following are equivalent:

(i)
$$T^*T(\ker T^*) \subseteq \ker T^*$$
,

(ii)
$$T^*T(\ker T^*) = \ker T^*$$

(iii) $T(\ker T^*) \perp T^n(\ker T^*)$ for every integer $n \ge 2$,

- (iv) the spaces $\{T^n(\ker T^*)\}_{n=0}^{\infty}$ are mutually orthogonal,
- (v) T ≅ U ⊕ W, where U is a unitary operator and W is an operator valued unilateral weighted shift with invertible weights,

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem

If T is a 2-isometry in $B(\mathcal{H})$, then the following are equivalent:

(i)
$$T^*T(\ker T^*) \subseteq \ker T^*$$
,

(ii)
$$T^*T(\ker T^*) = \ker T^*$$

(iii) $T(\ker T^*) \perp T^n(\ker T^*)$ for every integer $n \ge 2$,

(iv) the spaces $\{T^n(\ker T^*)\}_{n=0}^{\infty}$ are mutually orthogonal,

 (v) T ≅ U ⊕ W, where U is a unitary operator and W is an operator valued unilateral weighted shift with invertible weights,

イロト イポト イヨト イヨト

Theorem

If T is a 2-isometry in $B(\mathcal{H})$, then the following are equivalent:

- (i) $T^*T(\ker T^*) \subseteq \ker T^*$,
- (ii) $T^*T(\ker T^*) = \ker T^*$,
- (iii) $T(\ker T^*) \perp T^n(\ker T^*)$ for every integer $n \ge 2$,

(iv) the spaces $\{T^n(\ker T^*)\}_{n=0}^{\infty}$ are mutually orthogonal,

(v) $T \cong U \oplus W$, where U is a unitary operator and W is an operator valued unilateral weighted shift with invertible weights,

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

If T is a 2-isometry in B(H), then the following are equivalent:

(i) $T^*T(\ker T^*) \subseteq \ker T^*$,

(ii)
$$T^*T(\ker T^*) = \ker T^*$$
,

- (iii) $T(\ker T^*) \perp T^n(\ker T^*)$ for every integer $n \ge 2$,
- (iv) the spaces $\{T^n(\ker T^*)\}_{n=0}^{\infty}$ are mutually orthogonal,
- (v) $T \cong U \oplus W$, where U is a unitary operator and W is an operator valued unilateral weighted shift with invertible weights,

ヘロン 人間 とくほ とくほ とう

Theorem

If T is a 2-isometry in $B(\mathcal{H})$, then the following are equivalent:

(i) $T^*T(\ker T^*) \subseteq \ker T^*$,

(ii)
$$T^*T(\ker T^*) = \ker T^*$$
,

- (iii) $T(\ker T^*) \perp T^n(\ker T^*)$ for every integer $n \ge 2$,
- (iv) the spaces $\{T^n(\ker T^*)\}_{n=0}^{\infty}$ are mutually orthogonal,
- (v) $T \cong U \oplus W$, where U is a unitary operator and W is an operator valued unilateral weighted shift with invertible weights,

ヘロト ヘアト ヘビト ヘビト

Theorem

(vi) $T \cong U \oplus W$, where U is a unitary operator and W is an operator valued unilateral weighted shift in $\ell^2_{\mathcal{M}}$ with weights

$$W_n = \int_{[1,\infty)} \xi_n(x) E(dx), \quad n \ge 0,$$

where

$$\xi_n(x) = \sqrt{\frac{1+(n+1)(x^2-1)}{1+n(x^2-1)}}, \quad x \in [1,\infty), \ n = 0, 1, \dots,$$

and *E* is a compactly supported $B(\mathcal{M})$ -valued Borel spectral measure on the interval $[1, \infty)$.

Moreover, if T is as in (vi), then T is a 2-isometry in $B(\mathcal{H})$ and dim ker $T^* = \dim M$

Theorem (Lambert '76)

An operator $S \in \boldsymbol{B}(\mathcal{H})$ is subnormal if and only if for every $f \in \mathcal{H}$, the sequence $\{\|S^n f\|^2\}_{n=0}^{\infty}$ is a Stieltjes moment sequence, i.e., there exists a positive Borel measure μ_f on $[0, \infty)$ such that

$$\|S^n f\|^2 = \int_{[0,\infty)} t^n d\mu_f(t), \quad n = 0, 1, 2, \dots$$

ヘロン 人間 とくほ とくほ とう

Lemma

Let $a, b \in \mathbb{R}$ be such that $a + bn \neq 0$ for every $n \in \mathbb{Z}_+$ and let $\gamma_{a,b} = \{\gamma_{a,b}(n)\}_{n=0}^{\infty}$ be a sequence given by

$$\gamma_{a,b}(n) = \frac{1}{a+bn}, \quad n \in \mathbb{Z}_+.$$

Then $\gamma_{a,b}$ is a Hamburger moment sequence if and only if a > 0and $b \ge 0$. If this is the case, then $\gamma_{a,b}$ is a Hausdorff moment sequence and its unique representing measure $\mu_{a,b}$ is given by

$$\mu_{a,b}(\Delta) = \begin{cases} \frac{1}{b} \int_{\Delta} t^{\frac{a}{b}-1} dt & \text{if } a > 0 \text{ and } b > 0, \\ \frac{1}{a} \delta_1(\Delta) & \text{if } a > 0 \text{ and } b = 0, \end{cases} \quad \Delta \in \mathfrak{B}([0,1]).$$

Lemma

Let (X, \mathcal{A}, μ) be a measure space and $\{\gamma_n\}_{n=0}^{\infty}$ be a sequence of \mathcal{A} -measurable real valued functions on X. Assume that

 $\{\gamma_n(x)\}_{n=0}^{\infty}$ is a Hamburger moment sequence

(resp., Stieltjes, Hausdorff moment sequence) for μ -almost every $x \in X$ and $\int_X |\gamma_n| d\mu < \infty$ for all $n \in \mathbb{Z}_+$. Then

$$\left\{\int_{X}\gamma_{n}d\mu\right\}_{n=0}^{\infty}$$
 is a Hamburger moment sequence

(resp., Stieltjes, Hausdorff moment sequence).

ヘロト 人間 ト ヘヨト ヘヨト

Let T be a 2-isometry in $B(\mathcal{H})$ such that $T^*T(\ker T^*) \subseteq \ker T^*$. Then T' is a subnormal contraction such that

 $T'^{*n}T'^{n} = (n(T^{*}T - I) + I)^{-1} = (T^{*n}T^{n})^{-1}$ for all integers $n \ge 0$.

(日本) (日本) (日本)

Suppose $T \in \boldsymbol{B}(\mathcal{H})$ is a quasi-Brownian isometry. Then T' is a subnormal contraction such that

$$T'^{*n}T'^n = (I + T^*T)^{-1}(I + (T^*T)^{1-2n}), \quad n \in \mathbb{Z}_+.$$

The proof is based on the formula

$$T'^{*n}T'^{n}=r_n(T^*T), \quad n\in\mathbb{Z}_+.$$

where

$$r_n: [1,\infty) \ni x \to \frac{1+x^{1-2n}}{1+x} = \frac{1}{1+x} + \frac{x}{1+x}(x^{-2})^n \in (0,\infty).$$

ヘロン 人間 とくほ とくほ とう

• Let $\mathscr{T} = (V, E)$ be a directed tree.

 Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

(日本) (日本) (日本) 日

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f, g \rangle = \sum_{u \in V} f(u) \overline{g(u)}, \quad f, g \in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

(雪) (ヨ) (ヨ)

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\mathcal{D}(S_{\lambda}) = \{ f \in \ell^{2}(V) \colon \Lambda_{\mathscr{T}} f \in \ell^{2}(V) \}, \\ S_{\lambda} f = \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(S_{\lambda}), \end{cases}$$

where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_{v} \cdot f(\operatorname{par}(v)) & \text{if } v \in V^{\circ}, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\mathcal{D}(S_{\lambda}) = \{ f \in \ell^{2}(V) \colon \Lambda_{\mathscr{T}} f \in \ell^{2}(V) \}, \\ S_{\lambda} f = \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(S_{\lambda}), \end{cases}$$

where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

$$(\Lambda_{\mathscr{T}}f)(\nu) = \begin{cases} \lambda_{\nu} \cdot f(\operatorname{par}(\nu)) & \text{if } \nu \in V^{\circ}, \\ 0 & \text{if } \nu = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Lemma

Let S_{λ} be a weighted shift on \mathscr{T} with weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$. Then

(i)
$$e_u$$
 is in $\mathcal{D}(S_{\lambda})$ if and only if $\sum_{v \in Chi(u)} |\lambda_v|^2 < \infty$; if $e_u \in \mathscr{D}(S_{\lambda})$, then $S_{\lambda}e_u = \sum_{v \in Chi(u)} \lambda_v e_v$ and $\|S_{\lambda}e_u\|^2 = \sum_{v \in Chi(u)} |\lambda_v|^2$,

(ii) $S_{\lambda} \in \boldsymbol{B}(\ell^2(V))$ if and only if $\sup_{u \in V} \sum_{v \in Chi(u)} |\lambda_v|^2 < \infty$; if this is the case, then $\|S_{\lambda}\|^2 = \sup_{u \in V} \|S_{\lambda}e_u\|^2 = \sup_{u \in V} \sum_{v \in Chi(u)} |\lambda_v|^2$.

Moreover, if $S_{\lambda} \in \boldsymbol{B}(\ell^{2}(V))$, then (iii) $S_{\lambda}^{*}e_{u} = \bar{\lambda}_{u}e_{par(u)}$ if $u \in V^{\circ}$ and $S_{\lambda}^{*}e_{u} = 0$ otherwise, (iv) $|S_{\lambda}|e_{u} = ||S_{\lambda}e_{u}||e_{u}$ for all $u \in V$, (v) $\triangle_{S_{\lambda}}(e_{u}) = (||S_{\lambda}e_{u}||^{2} - 1)e_{u}$ for every $u \in V$, (vi) $\triangle_{S_{\lambda}^{*}}(e_{u}) = \begin{cases} (\sum_{v \in Chi(par(u))} \lambda_{v} \bar{\lambda}_{u}e_{v}) - e_{u} & \text{if } u \in V^{\circ}, \\ -e_{u} & \text{if } u = \omega. \end{cases}$ Given a weighted shift $S_{\lambda} \in B(\ell^2(V))$ with weights $\lambda = \{\lambda_{\nu}\}_{\nu \in V^\circ}$, we set

$$\{\lambda \neq 0\} = \{v \in V^{\circ} \colon \lambda_{v} \neq 0\}$$
 and $V_{\lambda}^{+} = \{u \in V \colon \|S_{\lambda}e_{u}\| > 0\}.$

Proposition

Let $S_{\lambda} \in \mathbf{B}(\ell^2(V))$ be a weighted shift on a directed tree \mathscr{T} with weights $\{\lambda_{\nu}\}_{\nu \in V^{\circ}}$. Assume that S_{λ} is left-invertible. Then $V_{\lambda}^+ = V$ and the Cauchy dual S'_{λ} of S_{λ} is a weighted shift on \mathscr{T} with weights $\{\lambda_{\nu} \| S_{\lambda} e_{par(\nu)} \|^{-2} \}_{\nu \in V^{\circ}}$.

< 回 > < 回 > < 回 > .

Lemma

A weighted shift $S_{\lambda} \in \boldsymbol{B}(\ell^2(V))$ on \mathcal{T} is a 2-isometry if and only if either of the following two equivalent conditions holds:

$$\begin{split} 1-2\|S_{\lambda}e_{u}\|^{2}+\sum_{v\in\mathsf{Chi}(u)}|\lambda_{v}|^{2}\|S_{\lambda}e_{v}\|^{2}&=0,\quad u\in V,\\ \sum_{v\in\mathsf{Chi}(u)}|\lambda_{v}|^{2}(2-\|S_{\lambda}e_{v}\|^{2})&=1,\quad u\in V. \end{split}$$

If S_{λ} is a 2-isometry, then $||S_{\lambda}e_u|| \ge 1$ for all $u \in V$, $V_{\lambda}^+ = V$ and \mathscr{T} is leafless.

・聞き ・ヨト ・ヨト

Proposition

Let $S_{\lambda} \in \mathbf{B}(\ell^2(V))$ be a weighted shift on a directed tree \mathscr{T} with weights $\lambda = {\lambda_v}_{v \in V^\circ}$. If \mathcal{T} is leafless and S_{λ} has nonzero weights, then the following conditions are equivalent:

(i)
$$S^*_{\lambda}S_{\lambda}(\ker S^*_{\lambda}) \subseteq \ker S^*_{\lambda}$$
,

(ii) there exists a family $\{\alpha_V\}_{V\in V}\subseteq \mathbb{R}_+$ such that

 $\|S_{\lambda}e_{u}\| = \alpha_{\operatorname{par}(u)}, \quad u \in V^{\circ}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition

Let $S_{\lambda} \in \mathbf{B}(\ell^2(V))$ be a weighted shift on a directed tree \mathscr{T} with weights $\lambda = {\lambda_V}_{V \in V^\circ}$. If \mathcal{T} is leafless and S_{λ} has nonzero weights, then the following conditions are equivalent:

(i)
$$S^*_{\lambda}S_{\lambda}(\ker S^*_{\lambda})\subseteq \ker S^*_{\lambda}$$
,

(ii) there exists a family $\{\alpha_{v}\}_{v \in V} \subseteq \mathbb{R}_{+}$ such that

$$\|S_{\lambda}e_{u}\| = \alpha_{\operatorname{par}(u)}, \quad u \in V^{\circ}.$$
 (1)

・聞き ・ヨト ・ヨト

For $x \in [1, \infty)$, we denote by $S_{[x]}$ the unilateral weighted shift in ℓ^2 with weights $\{\xi_n(x)\}_{n=0}^{\infty}$, where

$$\xi_n(x) = \sqrt{\frac{1+(n+1)(x^2-1)}{1+n(x^2-1)}}, \quad x \in [1,\infty), \ n = 0, 1, \dots$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition

If $S_{\lambda} \in \boldsymbol{B}(\ell^2(V))$ is a weighted shift on a rooted directed tree \mathcal{T} , then the following conditions are equivalent:

- (i) S_{λ} is a 2-isometry satisfying the condition (1) for some $\{\alpha_{\nu}\}_{\nu \in V} \subseteq \mathbb{R}_+,$
- (ii) $||S_{\lambda}e_{\omega}|| \ge 1$ and $||S_{\lambda}e_{v}|| = \xi_{n}(||S_{\lambda}e_{\omega}||)$ for all $v \in \operatorname{Chi}^{(n)}(\omega)$ and $n \in \mathbb{Z}_{+}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proposition

If $S_{\lambda} \in \boldsymbol{B}(\ell^2(V))$ is a weighted shift on a rooted directed tree \mathcal{T} , then the following conditions are equivalent:

- (i) S_{λ} is a 2-isometry satisfying the condition (1) for some $\{\alpha_{v}\}_{v \in V} \subseteq \mathbb{R}_{+},$
- (ii) $||S_{\lambda}e_{\omega}|| \ge 1$ and $||S_{\lambda}e_{\nu}|| = \xi_n(||S_{\lambda}e_{\omega}||)$ for all $\nu \in Chi^{\langle n \rangle}(\omega)$ and $n \in \mathbb{Z}_+$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $S_{\lambda} \in \mathbf{B}(\ell^2(V))$ be a 2-isometric weighted shift on a rooted directed tree \mathscr{T} with weights $\lambda = \{\lambda_V\}_{V \in V^{\circ}}$ which satisfies the condition (1) for some $\{\alpha_V\}_{V \in V} \subseteq \mathbb{R}_+$. Then

$$S_{oldsymbol{\lambda}}\cong S_{[x]}\oplus igoplus_{k=1}^{\infty}ig(S_{[\xi_k(x)]}ig)^{\oplus j_k},$$

where $x = \|S_{\lambda} e_{\omega}\|$ and

$$j_k = \sum_{u \in \operatorname{Chi}^{\langle k-1
angle}(\omega)} (\deg u - 1), \quad k \in \mathbb{N}.$$

Moreover, if the weights of S_{λ} are nonzero, then $j_k \leq \aleph_0$ for all $k \in \mathbb{N}$.

イロト イポト イヨト イヨト

Let $S_{\lambda} \in \mathbf{B}(\ell^2(V))$ be a 2-isometric weighted shift on a rooted directed tree $\mathscr{T} = (V, E)$ with weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$. Assume that there exist $k \in \mathbb{N}$ and a family $\{\alpha_v\}_{v \in \mathsf{Des}(\mathsf{Chi}^{\langle k \rangle}(\omega))} \subseteq \mathbb{R}_+$ such that

$$\|S_{\lambda}e_{u}\| = \alpha_{\mathsf{par}(u)}, \quad u \in \mathsf{Des}(\mathsf{Chi}^{\langle k+1 \rangle}(\omega)),$$

and $\lambda_v \neq 0$ for all $v \in \bigsqcup_{i=1}^k \operatorname{Chi}^{\langle i \rangle}(\omega)$. Then the following conditions are equivalent:

(i) the Cauchy dual S'_{λ} of S_{λ} is subnormal,

(ii) there exists a family $\{\alpha_v\}_{v \in \bigsqcup_{i=0}^{k-1} \operatorname{Chi}^{(i)}(\omega)} \subseteq \mathbb{R}_+$ such that

$$\|S_{\lambda}e_{u}\| = \alpha_{\operatorname{par}(u)}, \quad u \in \bigsqcup_{i=1}^{k} \operatorname{Chi}^{\langle i \rangle}(\omega),$$

(iii) $S^*_{\lambda}S_{\lambda}(\ker S^*_{\lambda}) \subseteq \ker S^*_{\lambda}$.

《曰》《御》《臣》《臣》 [臣]

- (i) the Cauchy dual S'_{λ} of S_{λ} is subnormal,
- (ii) there exists a family $\{\alpha_{v}\}_{v \in \bigsqcup_{i=0}^{k-1} Chi^{\langle i \rangle}(\omega)} \subseteq \mathbb{R}_{+}$ such that

$$\|S_{\lambda}e_{u}\| = \alpha_{\mathsf{par}(u)}, \quad u \in \bigsqcup_{i=1}^{k} \mathsf{Chi}^{\langle i \rangle}(\omega),$$

(iii) $S^*_{\lambda}S_{\lambda}(\ker S^*_{\lambda}) \subseteq \ker S^*_{\lambda}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- (i) the Cauchy dual S'_{λ} of S_{λ} is subnormal,
- (ii) there exists a family $\{\alpha_{v}\}_{v \in \bigsqcup_{i=0}^{k-1} Chi^{\langle i \rangle}(\omega)} \subseteq \mathbb{R}_{+}$ such that

$$\|S_{\lambda}e_{u}\| = \alpha_{\mathsf{par}(u)}, \quad u \in \bigsqcup_{i=1}^{k} \mathsf{Chi}^{\langle i \rangle}(\omega),$$

(iii) $S^*_{\lambda}S_{\lambda}(\ker S^*_{\lambda}) \subseteq \ker S^*_{\lambda}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

(1) Let $y_1, y_2 \in \mathbb{R}$ be such that $1 < y_1, y_2 < \sqrt{2}$ and $y_1 \neq y_2$. (2) Then there exist positive real numbers x_1 and x_2 such that

$$\sum_{i=1}^{2} x_i^2 (2 - y_i^2) = 1 \qquad (\text{e.g.}, x_i = \frac{1}{\sqrt{2(2 - y_i^2)}} \text{ for } i = 1, 2).$$

・ロト ・同ト ・ヨト ・ヨトー

- (1) Let $y_1, y_2 \in \mathbb{R}$ be such that $1 < y_1, y_2 < \sqrt{2}$ and $y_1 \neq y_2$.
- (2) Then there exist positive real numbers x_1 and x_2 such that

$$\sum_{i=1}^{2} x_i^2 (2 - y_i^2) = 1 \qquad (\text{e.g.}, x_i = \frac{1}{\sqrt{2(2 - y_i^2)}} \text{ for } i = 1, 2).$$

(日本) (日本) (日本)

(3) Let S_{λ} be the weighted shift on $\mathscr{T}_{2,0}$ with weights $\lambda = \{\lambda_{\nu}\}_{\nu \in V_{2,0}^{\circ}}$ defined by

$$\lambda_{i,j} = \begin{cases} x_i & \text{if } j = 1, \\ \xi_{j-2}(y_i) & \text{if } j \ge 2, \end{cases} \qquad i = 1, 2$$

(4) The Cauchy dual S'_{λ} of S_{λ} is not subnormal.

ヘロト ヘアト ヘビト ヘビト

ъ

(3) Let S_{λ} be the weighted shift on $\mathscr{T}_{2,0}$ with weights $\lambda = \{\lambda_{\nu}\}_{\nu \in V_{2,0}^{\circ}}$ defined by

$$\lambda_{i,j} = \begin{cases} x_i & \text{if } j = 1, \\ \xi_{j-2}(y_i) & \text{if } j \ge 2, \end{cases} \qquad i = 1, 2.$$

(4) The Cauchy dual S'_{λ} of S_{λ} is not subnormal.

ヘロト ヘアト ヘビト ヘビト

ъ