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@ Let H be a Hilbert space. The Cauchy dual operator T’ of
a left-invertible operator T € B(#) is given by

T .=T(T*T)"".
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© The operator T is again left-invertible and has the property
that (T') = T.

Zenon Jabtonski The Cauchy dual subnormality problem



@ Let H be a Hilbert space. The Cauchy dual operator T’ of
a left-invertible operator T € B(#) is given by

T .=T(T*T)"".

© The operator T is again left-invertible and has the property
that (T") =T.

© The notion of the Cauchy dual operator has been
introduced by S. Shimorin in the context of the wandering
subspace problem for Bergman-type operators.
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@ Given T € B(H), set

s(Mf= % (1)p(g>\|Tpr2, fen.

0<p<n
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@ Given T € B(H), set

s(Mf= % (1)p(n>\|T"fH2, fen.
0<p<n P

@ An operator T € B(H) is said to be a n-isometry if

S"(T)f =0forf e H,
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@ Given T € B(H), set

s(Mf= % (1)p(g>\|Tpr2, fen.

0<p<n

@ An operator T € B(H) is said to be a n-isometry if
S"(T)f =0forf e H,

@ k-hyperexpansive if

S"(Tf<0forn=1,...,kand f € H,
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@ Given T € B(H), set

s(Mf= % (1)p(g>\|Tpr2, fet

0<p<n
@ An operator T € B(H) is said to be a n-isometry if
S"(T)f =0forf e H,
@ k-hyperexpansive if
S"(T)f<O0forn=1,...,kand f e H,
@ completely hyperexpansive if

S"(T)f<0forn>1andfeH.
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Set Ar =T*T —Ifor T € B(H).

Recall that an operator T € B(H) is said to be
e a Brownian isometry if T is a 2-isometry such that
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Set Ar =T*T —Ifor T € B(H).

Recall that an operator T € B(H) is said to be
e a Brownian isometry if T is a 2-isometry such that

e a Ar-regular operator if At > 0 and

1/2 1/2
ArT = AVETALR
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Set Ar =T*T —Ifor T € B(H).

Recall that an operator T € B(H) is said to be
e a Brownian isometry if T is a 2-isometry such that
e a Ar-regular operator if At > 0 and
1/2 4 1/2
ArT = AYRTALZ

e a quasi-Brownian isometry if T is a Ar-regular 2-isometry.
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Theorem (Agler-Stankus’95, Majdak-Mbekhta-Suciu ’16,

Anand-Chavan-J-Stochel)
If T € B(H), then the following conditions are equivalent:
(i) T is a quasi-Brownian isometry (resp., Brownian isomelry),
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Theorem (Agler-Stankus’95, Majdak-Mbekhta-Suciu ’16,

Anand-Chavan-J-Stochel)

If T € B(H), then the following conditions are equivalent:
(i) T is a quasi-Brownian isometry (resp., Brownian isomelry),
(i) T has the block matrix form

7|0 o]

with respect to an orthogonal decomposition H = H1 @ Ho
(one of the summands may be absent), where V € B(H4),
E € B(Hp,H1) and U € B(H>) are such that

V*V=I|V'E=0,UU=1and UE*E = E*EU
(resp., V*V =1, V'E =0, U"U = | = UU*, UE*E = E*EU)\.
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An operator S € B(H) is

e subnormal if there is a Hilbert space K containing H and a
normal operator N € B(K) such that NH C ‘H and
S=NH,
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An operator S € B(H) is

e subnormal if there is a Hilbert space K containing H and a
normal operator N € B(K) such that NH C ‘H and
S=NH,

e hyponormal if || S*f|| < ||Sf||, feH.
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@ All positive integer powers of the Cauchy dual of a
2-hyperexpansive operator turn out to be hyponormal
(Chavan 2013).
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@ All positive integer powers of the Cauchy dual of a
2-hyperexpansive operator turn out to be hyponormal
(Chavan 2013).

e If T is a completely hyperexpansive weighted shift, then T’
is a subnormal contraction and the reverse implication is
not true (A. Athavale, 1996).
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@ All positive integer powers of the Cauchy dual of a
2-hyperexpansive operator turn out to be hyponormal
(Chavan 2013).

e If T is a completely hyperexpansive weighted shift, then T’
is a subnormal contraction and the reverse implication is
not true (A. Athavale, 1996).

@ Cauchy dual subnormality problem. Is the Cauchy dual
of a 2-isometry (or more general, a completely
hyperexpansive operator) a subnormal contraction?
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The kernel condition

@ We say that T satisfies the kernel condition, if

T*T(ker T*) C ker T™.
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Operator valued unilateral weighted shifts

Recall that if M is a nonzero Hilbert space and
{Wp}o2, € B(M), then the operator W € B((3) defined by

W(ho, h1,...) = (0, Woho, Wihy,...), (ho, h1,...) € (3,

is said to be an operator valued unilateral weighted shift with
weights {Wp}0° . Putting M = C, we arrive at the well-known
notion of a unilateral weighted shift in /2.
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Characterization of 2-isometric operators satisfying

the kernel condition.

If T is a 2-isometry in B(1), then the following are equivalent:
(i) T*T(ker T*) C ker T*,
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Characterization of 2-isometric operators satisfying

the kernel condition.

If T is a 2-isometry in B(1), then the following are equivalent:
(i) T*T(ker T*) C ker T*,
(i) T*T(ker T*) = ker T*,
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Characterization of 2-isometric operators satisfying

the kernel condition.

If T is a 2-isometry in B(1), then the following are equivalent:
(i) T*T(ker T*) C ker T*,

(i) T*T(ker T*) = ker T*,

(i) T(ker T*) L T"(ker T*) for every integern > 2,
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Characterization of 2-isometric operators satisfying

the kernel condition.

If T is a 2-isometry in B(1), then the following are equivalent:
(i) T*T(ker T*) C ker T*,

(i) T*T(ker T*) = ker T*,

(i) T(ker T*) L T"(ker T*) for every integern > 2,

(iv) the spaces {T"(ker T*)}°° , are mutually orthogonal,
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Characterization of 2-isometric operators satisfying

the kernel condition.

If T is a 2-isometry in B(1), then the following are equivalent:
(i) T*T(ker T*) C ker T*,
(i) T*T(ker T*) = ker T*,
(i) T(ker T*) L T"(ker T*) for every integern > 2,
(iv) the spaces {T"(ker T*)}°° , are mutually orthogonal,
)

T = Ua® W, where U is a unitary operator and W is an

operator valued unilateral weighted shift with invertible
weights,

(v
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Characterization of 2-isometric operators satisfying

the kernel condition.

(viy T= U@ W, where U is a unitary operator and W is an
operator valued unilateral weighted shift in (3, with weights

[1,00)

where

,5,7(x):\/1 J:(Z:(l)z(izf)n, xe[l,00),n=0,1,...,

and E is a compactly supported B(M)-valued Borel
spectral measure on the interval [1, o).

Moreover, if T is as in (vi), then T is a 2-isometry in B(#) and

%
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Theorem (Lambert '76)

An operator S € B(H) is subnormal if and only if for every
f € 1, the sequence {|S"f||2}, is a Stielties moment
sequence, i.e., there exists a positive Borel measure s on
[0, c0) such that

Hs"fuzz/ dud(t), n=01,2,....

)
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Lemma

Leta,b € R be such that a+ bn # 0 for every n € 7, and let
Yab = 17ab(N)}7 be a sequence given by

Ya,b(N) neZy.

“a+obn

Then ~,,, is a Hamburger moment sequence if and only ifa > 0
and b > 0. If this is the case, then v, is a Hausdorff moment
sequence and its unique representing measure [, p IS given by

A e B([0,1]).

ll)fﬂ‘%*dt ifa>0andb >0,
Ha,b( ): 1 ,
161(4) ifa>0andb=0,
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Lemma

Let (X, A, 1) be a measure space and {yn}52, be a sequence
of A-measurable real valued functions on X. Assume that

{n(x)}neo is @ Hamburger moment sequence

(resp., Stielties, Hausdorff moment sequence) for p-almost
every x € X and [, |yn|du < oo foralln € Z,.. Then

o0
{ / Vnd,u} o is a Hamburger moment sequence
X n=

(resp., Stieltjes, Hausdorff moment sequence).
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Automatic subnormality

Let T be a 2-isometry in B(#) such that T* T (ker T*) C ker T*.
Then T' is a subnormal contraction such that

THNTN = (n(T*T = 1)+ )~ = (T*"T")~" for all integers n > 0.
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Suppose T € B(H) is a quasi-Brownian isometry. Then T' is a
subnormal contraction such that

T*T" = (14 T*T) (I +(T*T)'2"), nez,.

The proof is based on the formula
T*T'" = ry(T*T), neZ,.
where

14 x1720 1 X
= +
1+x 14+x  1+x

M [1,00) 2 x — (x~2)" € (0, 0).
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A weighted shifts on a directed trees

@ Let.7 = (V, E) be a directed tree.
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A weighted shifts on a directed trees

@ Let.7 = (V, E) be a directed tree.

@ Let /2(V) be the space of all square summable function on
V with a scalar products

=Y f(u)g(u), f,ge(V).

ueVv
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A weighted shifts on a directed trees

@ Let.7 = (V, E) be a directed tree.

@ Let /2(V) be the space of all square summable function on
V with a scalar products

=Y f(u)g(u), f,ge(V).

ueVv

@ For u e V, let us define e, € £2(V) by

eu(V) = 1 ifu=v,
S0 ifuv
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A weighted shifts on a directed trees

@ Let.7 = (V, E) be a directed tree.

@ Let /2(V) be the space of all square summable function on
V with a scalar products

=Y f(u)g(u), f,ge(V).

ueVv

@ For u e V, let us define e, € £2(V) by

eu(V) = 1 ifu=v,
S0 ifuv

@ {ey}ucv is an orthonormal basis in ¢2( V).
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A weighted shifts on a directed trees

@ For a family A = {\,},evo C C let us define an operator Sy
in 22(V) by

D(Sy) = {f € (2(V): Azf € B(V)},
SAf = A,yf, fe D(S)\),

where A5 is define on functions f: V — C by

Av - f(par(v)) ifve Ve,
0 if v =root.

(Azf)(v) = {
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A weighted shifts on a directed trees

@ For a family A = {\,},evo C C let us define an operator Sy
in 22(V) by

D(Sy) = {f € (2(V): Azf € B(V)},
SAf = A,yf, fe D(S)\),

where A5 is define on functions f: V — C by

Av - f(par(v)) ifve Ve,
0 if v =root.

(Azf)(v) = {

@ An operator S, is called a weighted shift on a directed tree
Z with weights {\, }ycvo.
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Let Sy be a weighted shift on 7 with weights XA = {\,}ycyo.
Then

(i) ey isinD(Sy) if and only if 3=, ccpiquy IAv[? < oo; if
ey € Z(Sx), then Sxey = -, ccniu) Avev and
HSAeUHZ = ZveChi(u) ’)\Vyz,
(ii) S € B(A(V)) ifand only if supyey 3 yeoniw MvI? < oc; if
this is the case, then
ISAlIZ = supuev ISxeull® = supuev >vechiu) IMvI*-
Moreover, if Sy € B((?(V)), then
(iii) Syeu = Aupar(u) if U € V° and S} e, = 0 otherwise,
(iv) |Sxleu = ||Sxreulleu forallu e V,
(V) Asy(eu) = (ISxeull* —1)ey foreveryu e V,
(Vi) A (6y) = {(ZVEChi(par(u)) AAuey) — ey ’:fU e Ve,
A —ey ifu=w.
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Left-invertible weighted shifts

Given a weighted shift Sy € B(£?(V)) with weights
A ={Av}veve, we set

X#£0}={ve V°: )\ £0} and Vi ={ueV:|Sres >0}

Proposition

Let Sy € B(¢?(V)) be a weighted shift on a directed tree 7 with
weights {\}ycveo. Assume that Sy, is left-invertible. Then
Vi = V and the Cauchy dual S} of Sy is a weighted shift on 7

with weights {\v | Sx€par(v)l| 2}, o -
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2-isometric weighted shifts

Lemma

A weighted shift Sy € B(¢?(V)) on 7 is a 2-isometry if and only
if either of the following two equivalent conditions holds:

1-2)SeulP+ Y [MPlISre|?=0, ueV,
veChi(u)

T IMPE-(ISrev|?) =1, ueV.
veChi(u)

If Sy is a 2-isometry, then ||Sxey|| > 1 forallue V, Vi =V
and 7 is leafless.
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Weighted shifts - the kernel condition

Proposition

Let Sy € B(¢?(V)) be a weighted shift on a directed tree 7 with
weights X = {\,}ycve. If T is leafless and Sy has nonzero
weights, then the following conditions are equivalent:

(i) SiSa(ker S}) C ker S5,
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Weighted shifts - the kernel condition

Proposition

Let Sy € B(¢?(V)) be a weighted shift on a directed tree 7 with
weights X = {\,}ycve. If T is leafless and Sy has nonzero
weights, then the following conditions are equivalent:

(i) S3Sa(ker Sy) C ker S},

(i) there exists a family {ay}vev C Ry such that

[Sxeull = Qpar(u), UE ve. (1)
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The definition

For x € [1,00), we denote by Si,; the unilateral weighted shift in
2 with weights {£n(x)}52, where

2 _
g,,(x):\/1 Jq(ij;(l)z(f” D oy efoo)n=01,. ...
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If Sx € B(¢?(V)) is a weighted shift on a rooted directed tree
T, then the following conditions are equivalent.

(i) Sa is a 2-isometry satisfying the condition (1) for some
{aV}VEV C R+7
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If Sx € B(¢?(V)) is a weighted shift on a rooted directed tree
T, then the following conditions are equivalent.

(i) Sa is a2-isometry satisfying the condition (1) for some
{aV}VEV - R+,

(i) [Sxewll > 1 and |Sxeyl| = &n(||Sxewll) for all v € Chit™ (w)
andneZ,.
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2-isometric weighted shifts and the kernel condition

Theorem

Let Sy € B(¢?(V)) be a 2-isometric weighted shift on a rooted
directed tree 7 with weights X = {\, } cv- which satisfies the
condition (1) for some {ay}yev € R4. Then

~ T o
Sx = S @ €D (Spgecan)
k=1
where x = ||Sxe, || and
Jk = Z (degu—1), keN.
ueChitk=1 ()

Moreover, if the weights of Sy are nonzero, then ji < X for all
k € N.
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The perturbed kernel condition

Theorem

Let Sy € B(¢?(V)) be a 2-isometric weighted shift on a rooted
directed tree 7 = (V, E) with weights A = {\,} cv-. Assume
that there exist k € N and a family {«y} CRy

veDes(Chitk (w))
such that
ISxeull = apar(w),  u € Des(Chi** (wy)),

and \, # 0 for all v € | |, Chi"”(w). Then the following
conditions are equivalent.
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The perturbed kernel condition

(i) the Cauchy dual S, of Sy is subnormal,

Zenon Jabtonski The Cauchy dual subnormality problem



The perturbed kernel condition

R

(i) the Cauchy dual S, of Sy is subnormal,

(i) there exists a family {O‘V}veu,k:},‘ chith () R such that

k

ISxeull = apary, U € | | Chi¥(w),
i=1
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The perturbed kernel condition

R

(i) the Cauchy dual S, of Sy is subnormal,

(i) there exists a family {O‘V}veu,k:},‘ chith () R such that

k

ISxeull = apary, U € | | Chi¥(w),
i=1

(iii) S5 Sa(ker S3) C ker S5.
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An example

(1) Let y1,y» € Rbe such that 1 < y4, y» < V2 and y; # y».
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An example

(1) Let y1,y» € Rbe such that 1 < y4, y» < V2 and y; # y».
(2) Then there exist positive real numbers x; and x» such that

2

S xFR-yH)=1 (eg.x= _ 1 iz 1,2).
i=1 2(2-y?)
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An example

(3) Let Sy be the weighted shift on .7 o with weights
A ={Av}vevy, defined by

X; if j = 1
A,-,,-:{’ =g

§ioyi) ifj=2,
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An example

(3) Let Sy be the weighted shift on .7 o with weights
A ={Av}vevy, defined by

X; if j = 1
A,-,,-:{’ =g

§ioyi) ifj=2,

(4) The Cauchy dual S} of Sy is not subnormal.
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