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Toeplitz operators on H2

The product of two Toeplitz operators is not necessarily a Toeplitz
operator.

Theorem (Brown–Halmos)
TFAE:

1 TψTφ = Tψφ.
2 TψTφ is a Toeplitz operator.
3 φ or ψ are analytic.

Consequence: The collection of Toeplitz operators contains two
maximal algebras: analytic and coanalytic.
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Toeplitz matrices
φ(z) =

∑∞
−∞ anz

n. In the standard basis:

Tφ =


a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1 a0
. . .

... . . . . . . . . .


The two algebras: upper triangular and lower triangular Toeplitz
matrices.

Finite matrices
The product of two Toeplitz matrices is not necessarily a Toeplitz
matrix.
What are the maximal algebras of Toeplitz matrices?

Again the collections of upper triangular and of lower triangular
Toeplitz matrices are maximal algebras. There are others!
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Algebras of scalar Toeplitz matrices

Circulants

Algebras of Toeplitz matrices (Shalom, 1987)

All maximal algebras of Toeplitz matrices are Aα, α ∈ C ∪ {∞}

Aα =

{


a0 a1 a2 . . . an

α

an a0 a1
. . . ...

α

an−1

α

an a0
. . . ...

... . . . . . . . . . ...

α

a1 . . . . . .

α

an a0


, ai ∈ C

}

Particular cases:
1 for α = 0, A0 consists of the upper triangular Toeplitz

matrices (α =∞: lower triangular Toeplitz matrices);
2 for |α| = 1, Aα is the commutant of a unitary operator of

multiplicity 1.
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Block Toeplitz matrices

Problem (posed in Shalom, 1987)
What are the maximal subalgebras of block Toeplitz matrices?

Seems too hard in this generality. . .

Given a maximal commutative subalgebra A ofMd , denote by
Tn,d(A) the block Toeplitz matrices of dimension n whose entries
are in A.

Problem’
What are the maximal subalgebras of Tn,d(A)?
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Intermezzo

Examples of maximal commutative algebras of matrices

1 If we fix a basis in Cd , then the algebra of diagonal matrices
D is maximal commutative.

2 The generalized circulant algebras Aα are maximal
commutative subalgebras.

3 Fix σ + τ = d , |σ − τ | 6 1.

Oσ,τ =

{(
λIσ X
0 λIτ

) ∣∣∣λ ∈ C,X ∈Mσ×τ (C)

}
is a maximal commutative algebra (Schur algebra).

4 Suppose that M is a nonderogatory matrix; that is, its
minimal polynomial is equal to its characteristic polynomial.
Then the algebra P(M) generated by M is maximal
commutative.
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General facts

Lemma

Suppose A and B are block Toeplitz matrices, and the entries of
A commute with the entries of B . Then the following are
equivalent:
(i) AB is a block Toeplitz matrix.
(ii) AB = BA.

Corollary
S is a set of commuting block Toeplitz matrices, whose entries all
commute. Then all elements in the algebra generated by S are
commuting block Toeplitz matrices.
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General facts

Building blocks
Cyclic diagonal (of order k): T = (Ti−j), Ti−j 6= 0 only for
i − j = k mod n.
A cyclic diagonal is characterized by two matrices Ak and Ak−n.

Theorem
1 A maximal subalgebra of Tn,d [A] is generated as a linear

subspace by the cyclic diagonals it contains.
2 The space of all pairs (Ak ,Ak−n) is the same for different

values of k .
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Classes of algebras

We want concrete descriptions of maximal algebras in Tn,d [A]

Fix A,B ∈ A ⊂Md , with kerA ∩ kerB = {0}.

Definition

FAA,B =
{

(Tp−q)n−1
p,q=0 : Tj ∈ A,ATj = BTj−n, j = 1, 2, · · · n − 1

}
.

Theorem
FAA,B is a maximal subalgebra of Tn,d(A).
FAA,B = FAA′,B′ if and only if AB ′ = A′B .

Are these all?
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A general result

Theorem
Suppose B is a maximal algebra of Tn,d [A] that contains at least
one element with at least one off-diagonal invertible entry.
Then B = FAA,B for some A and B .

Other maximal algebras: all nondiagonal terms noninvertible.
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Particular cases: various A

A = D
Any maximal algebra B of Tn,d with entries in D is equal to
FDA,B for some A and B .
After reshuffling, we have

B = Aα1 ⊕ · · · ⊕ Aαd
.
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A = A0

Not all maximal algebras are of this type!

Example
If A = A0 =upper triangular Toeplitz matrices of order d , then

either B = FAA,B for some A,B ∈ A0, kerA ∩ kerB = {0},
or

B = B0 := {T = (Tp−q) ∈ Tn,d [A0],

Ti noninvertible for all i 6= 0}.

B0 is not of type FAA,B .
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A classification

Suppose T is a nonderogatory matrix, and take A = P(T ).

One can obtain a complete classification of maximal subalgebras
of Tn,d(P(T )).

Suppose the minimal polynomial of T is pT (X ). Remember

q(T ) invertible⇔ (q, pT ) = 1.
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Particular case
Suppose n = 2, and T is nilpotent: Tm = 0, Tm−1 6= 0.

T2,d(P(T )) = {
(

A0 A1

A−1 A0

)
;Ai ∈ P(T )}.

Theorem
1 All maximal subalgebras of Tn,2(P(T )) are

B(r+, r−, ρ) = {A =

(
a0(T ) T r1a1(T )

T r−1a−1(T ) a0(T )

)
:

a+(X ) = ρ(x)a−(X ) mod Xm−r+−r−},

where r1, r−1 ∈ N, r1 + r−1 6 m, and ρ ∈ C[X ] is a
polynomial with nonzero constant term.

2 B(r+, r−, ρ) = B(r ′+, r
′
−, ρ

′)
⇔ r+ = r ′+, r− = r ′−, and ρ(X ) = ρ′(X ) mod Xm−r+−r− .
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General case

A similar characterization (more complicated) can be obtained for
any n and any nonderogatory T with minimal polynomial pT .

Definition
Suppose p+, p−, ρ ∈ C[X ] are three polynomials, such that p+p−
divides pT , while ρ and pT are relatively prime; denote
q = pT/p+p−. We define B(p+, p−, ρ) to be the set of matrices
A = (Ai−j)

n−1
i ,j=0, where:

(a) Ai ∈ P(M) for all i with −(n − 1) 6 i 6 n − 1;
(b) Ai = p+(M)ai (M), Ai−n = p−(M)ai−n(M) for i > 1, where

ai ∈ C[X ];
(c) ai = ρai−n mod q for all i > 1.

Theorem
These are all the maximal subalgebras of Tn,d(P(T )).
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Generalizations

u inner
Model space and operator: Ku = H2 	 uH2., Su = PKuS |Ku..
Truncated Toeplitz operators: Au

φ(f ) = PKu(φf ).

Theorem (Sedlock, 2011)
All maximal algebras of truncated Toeplitz operators are Bα for
α ∈ C ∪ {∞}, where

Bα = {Au
φ : φ = ψ + αSuCu(ψ) : ψ ∈ Ku}.

Particular cases:
1 for α = 0, B0 = {Su}′;
2 for |α| = 1, Aα is the commutant of a unitary operator of

multiplicity 1.
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Matrix valued case

Model spaces and operators
Θ : D→ L(Cd) is inner (isometric on T);
KΘ := H2(Cd)	ΘH2(Cd).
SΘ = PKΘ

Mz |KΘ.

Matrix valued TTOs:

AΘ
Φ(f ) = PKΘ

(Φf ), f ∈ KΘ ∩ H∞(Cd).

Theorem
1 {SΘ}′ = {AΘ

Φ : Φ ∈ H∞(Mn(Cd))}.
2 {SΘ}′ is a maximal algebra of matrix valued TTOs.

Question
What are other maximal algebras?
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Thank you!
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