On a presentation of the spin planar algebra

SRUTHYMURALI

IMSc, Chennai

December 17, 2018

Introduction to planar algebra

Definition (Shaded planar tangle)

A (shaded) planar tangle is the data of finitely many input disks, one output disk, non-intersecting strings giving an even number, say 2n intervals per disk and one \star -marked interval per disk. There is given a checkerboard shading of the regions (connected components of the complement of the curves) such that across any curve, the shading toggles. A disc with 2n marked points on its boundary is said to be an (n,+) disc or an (n,-) disc according as its \star -arc is adjacent to a white or a black region. The pair (n,ϵ) is called the colour of a disk. The colour of a tangle is the colour of its external disc. The tangles are defined upto isotopy of \mathbb{R}^2 .

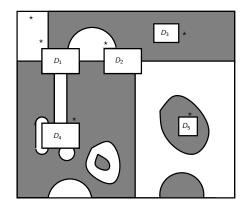


Figure 1: Example of a (4, +) tangle.

Two basic operations can be performed on tangles to produce new tangles from the old ones.

- Renumbering of the disks
- Substitution

Definition (Planar algebra)

A planar algebra is a family of vector spaces $P=(P_{(n,\pm)})_{n\in\mathbb{N}\cup\{0\}}$ called n-box spaces, on which the planar tangle acts as multilinear maps. That is if $T=T^{(k_0,\epsilon_0)}_{(k_1,\epsilon_1),(k_2,\epsilon_2),\dots,(k_b,\epsilon_b)}$ is a planar tangle with b input discs of colours $(k_1,\epsilon_1),(k_2,\epsilon_2),\dots,(k_b,\epsilon_b)$ and output disc of colour (k_0,ϵ_0) , then T gives a multilinear map Z_T from

 $P_{(k_1,\epsilon_1)} \times P_{(k_2,\epsilon_2)} \times \ldots \times P_{(k_b,\epsilon_b)} \to P_{(k_0,\epsilon_0)}$ satisfying some compatibility conditions under renumbering and substitution of tangles.

Proposition

Let P be a planar algebra. Then for every colour (k,\pm) , the vector space $P_{(k,\pm)}$ has the natural structure of an associative unital algebra with the multiplication specified by the (k,\pm) -multiplication tangle $M_{(k,\pm),(k,\pm)}^{(k,\pm)}$ and the unit given by $Z_{U_{(k,\pm)}^{(k,\pm)}}(1_{\mathbb C})$ where $U_{(k,\pm)}^{(k,\pm)}$ is the unit tangle. Furthermore, inclusion tangles induce homomorphisms of unital algebras.

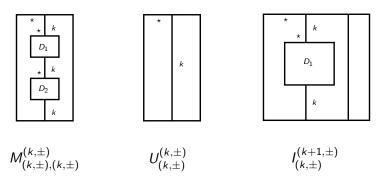


Figure 2: Multiplication, unit and inclusion tangles

A planar algebra $P = \{P_{(k,\epsilon)}\}$ is finite dimensional if each space $P_{(k,\epsilon)}$ is finite dimensional.

Definition (*- planar algebra)

A *- planar algebra is a planar algebra P with each $P_{(k,\epsilon)}$ equipped with an involution map * such that for any tangle T with b input discs with colours $(k_1, \epsilon_1), (k_2, \epsilon_2), \ldots (k_b, \epsilon_b)$ and output disc of colour $(k_0, \epsilon_0), (Z_T(x_1 \otimes \ldots \otimes x_n))^* = Z_{T^*}(x_1^* \otimes \ldots \otimes x_n^*)$

Definition (C^* - planar algebra)

A *-planar algebra P is said to be a C^* -planar algebra if there exist positive normalized traces $\tau_{\pm}:P_{(0,\pm)}\to\mathbb{C}$ such that all the traces $\tau_{\pm}\circ Z_{TR^{(0,\pm)}}$ defined on $P_{(k,\pm)}$ are faithful and positive.

Presentation of a planar algebra

We can have a presentation for a planar algebra just like we have presentations of a group. The approach is also similar to the free group construction by a label set L and a set of relations R.

Definition (Universal planar algebra on the label set L)

Let $L=\coprod_{(k,\epsilon)\in Col} L_{(k,\epsilon)}$ be a disjoint union of an arbitrary collection $L_{(k,\epsilon)}$ of 'label sets'- where some $L_{(k,\epsilon)}$ may be empty. Define a (k_0,ϵ_0) - tangle labeled by L to be a (k_0,ϵ_0) tangle T as above subject to one additional constraint- viz.,that T is allowed to have an internal disc of colour (m,ϵ) only if $L_{(m,\epsilon)} \neq \emptyset$ - and equipped with the extra structure of a label from $L_{(m,\epsilon)}$ associated to every internal disc of colour (m,ϵ) . Define $P_{(k,\epsilon)}(L)$ to be the vector space with basis given by the collection of ' (k,ϵ) - tangles labeled by L' and let $P(L) = \{P_{(k,\epsilon)}(L) : (k,\epsilon) \in Col\}$. Then P(L) is called the universal planar algebra defined on the label set L.

Definition (Planar ideal)

A family $J=\{J_{(k,\epsilon)}:(k,\epsilon)\in Col\}$ is said to be a *planar ideal* of a planar algebra $P=\{P_{(k,\epsilon):(k,\epsilon)\in Col}\}$ if

- **1** $J_{(k,\epsilon)}$ is a vector subspace of $P_{(k,\epsilon)}$ for each (k,ϵ) and
- ② if T is any (k_0, ϵ_0) tangle, with b internal discs D_i of colour (k_i, ϵ_i) for $1 \le i \le b$, then it is demanded that $Z_T(\otimes_{i=1}^b x_i) \in J_{(k_0, \epsilon_0)}$ whenever $x_i \in J_{(k_i, \epsilon_i)}$ for any one i.

If J is a planar ideal of a planar algebra P, then $P/J=\{P_{(k,\epsilon)}/J_{(k,\epsilon)}:k,\epsilon)\in Col\}$ is naturally a planar algebra and that the natural quotient maps define a 'morphism of planar algebras'.

Definition (Presentation of a planar algebra)

Given an arbitrary label set $L = \coprod_{(k,\epsilon) \in Col} L_{(k,\epsilon)}$, and an arbitrary subset $R = \{R_{(k,\epsilon)} : (k,\epsilon) \in Col\}$ of the universal planar algebra P(L) with generating set L let J(R) be the smallest ideal containing R, and define P(L;R) to be the quotient P(L)/J(R).

An arbitrary planar algebra Q will be said to be 'presented on the generating set L with the relations R if there exists an isomorphism $\Phi: P(L;R) \to Q$ of planar algebras; and we shall say that Q is 'presented by the map Φ .

Spin planar algebra

The spin planar algebra P is well known from the very first paper of Jones on planar algebra [Jns1999]. It can be identified with the planar algebra associated to a specific bipartite graph (see Example 4.2 of [Jns2000]) Γ given below.

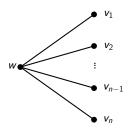


Figure 3: The bipartite graph Γ

The algebra structure of $P_{(k,\pm)}$ are as follows where the inclusion can be explicitly calculated (say for the parameter n=2):

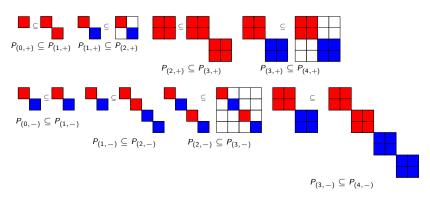


Figure 4: Inclusion of the spaces $P_{(k,\pm)} \subseteq P_{(k+1,\pm)}$, for k=0,1,2,3

Presentation of the spin planar algebra - construction

Let $S = \{s_1, s_2, \cdots, s_n\}$ be a finite set. We will define a certain abstract planar algebra over $\mathbb C$ associated to this set. Begin with the label set $L = L_{(0,-)} = S$ equipped with the identity involution *. Consider the quotient P = P(L, R) of the universal planar algebra P(L) by the set R of relations in Figures 5 and 6 (where δ_{ij} denotes the Kronecker delta).

$$=\sqrt{n}$$

$$\boxed{ s_i } = \frac{1}{\sqrt{n}}$$

Figure 5: The white and black modulus relations

Figure 6: The multiplication and the black channel relations

Main theorem

The below theorem establishes various structural properties of the abstract planar algebra P defined above.

Theorem

With the notations above, the planar algebra P is a finite dimensional C^* -planar algebra with modulus \sqrt{n} and such that $\dim(P_{(0,+)})=1$ and $\dim(P_{(0,-)})=n$. For k>0, $\dim(P_{(k,\pm)})=n^k$.

Isomorphism of P with $P(\Gamma)$

We know that for a connected bipartite graph Γ with vertex set $V=V_+ \coprod V_-$ and edge set E, the planar algebra $P(\Gamma)$ of the bipartite graph has vector spaces given by $P(\Gamma)_{(k,\pm)}$ being the vector space with basis all loops of lengt 2k in Γ based at a vertex in V_\pm . The details of the construction can be found in [Jns2000]. The proposition below identifies P with $P(\Gamma)$ for the bipartite graph Γ above(see figure 3).

Proposition

With $S = \{v_1, \dots, v_n\}$, the planar algebra P constructed in the main theorem is isomorphic to $P(\Gamma)$ by the map that takes $v_i \in P_{(0,-)}$ to the loop of length 0 based at v_i in $P(\Gamma)_{(0,-)}$.

- V. F. R. Jones, *Planar algebras*, To appear in New Zealand J. Math. arXiv:math/9909027.
- V. F. R. Jones, *The planar algebra of a bipartite graph*, Knots in Hellas '98 (Delphi), Ser. Knots Everything Vol. 24, 94–117, 2000.
- Vijay Kodiyalam, Sruthymurali, Sohan Lal Saini and V S Sunder, On a Presentation of the Spin planar algebra, accepted

Thank You!