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Rank and Wandering subspaces.

Let T:=(Ty,..., Ty) be an n-tuple of commuting bounded linear

operators on a Hilbert space #, and let E be a non-empty subset of .
The T-generating hull of E is defined by

[Elr = \/ T(E).
keNn
Then the rank of T is the unique number

rank(T) = min{#E : [E]r = H,E C H}.
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Let T:=(Ty,..., Ty) be an n-tuple of commuting bounded linear
operators on a Hilbert space #, and let E be a non-empty subset of H.
The T-generating hull of E is defined by

[Elr =\ TH(E).

keNn
Then the rank of T is the unique number

rank(T) = min{#E : [E]r = H,E C H}.
Let S be a closed T-invariant subspace of H, then
rank (S) := rank(T|s).

A closed T-invariant subspace S C H is said to have the wandering
subspace property with respect to T|s if

S = \/ TK(Wr(S)); wr(S ZT/\S

keNn
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Rank in Hilbert Spaces.

e (Beurling ’48): Let S be a M,-invariant subspace of H?(DD) then
rank (Mz|s) = 1.
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e (Beurling ’48): Let S be a M,-invariant subspace of H?(DD) then
rank (Mz|s) = 1.

e (Aleman, Richter, Sundberg '96): Let S be a M,-invariant
subspace of L2(ID), then rank (M,|s) = dim (S © zS).

e (Rudin '69) There exists a submodule of H?(D?) such that
rank (Mz|s) = oc.

e (Mandrekar ‘88, Sarkar, Wick and Sasane '2013): Let S be a
doubly commuting submodule of H?(D"), then rank (Mg|s) = 1.

Fact: Let S be a T-invariant subspace of a Hilbert space H then
rank (T|s) > dim (Wr(S)).

If rank (T|s) < oo then rank (T|s) = dim (Wr(S)) if and only S has the
wandering subspace property with respect to T|s.
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Reproducing kernel Hilbert spaces and modules

e Let £ be a Hilbert space, Abeasetand K: A x A — B(€) be a
function. Let Hx be a Hilbert space of £-valued functions on A.
Then H is said to be a reproducing kernel Hilbert space if

<f7 K/\77>HK = <f()\)7n>57 A€ A777 ef.
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Reproducing kernel Hilbert spaces and modules

e Let £ be a Hilbert space, Abeasetand K: A x A — B(€) be a
function. Let Hx be a Hilbert space of £-valued functions on A.
Then H is said to be a reproducing kernel Hilbert space if

<f7 K/\77>HK = <f()\)7n>57 A€ A777 ef.

e Let Q be a bounded domain in C" and let K be a B(£)-valued
kernel on Q. Let K(z, w) be holomorphicin {z,...,z,}. Then

Hx =span{K(-,w)n:weQnel} COE).
We say that Hg is a reproducing kernel Hilbert module if
ZHk € Hk (G=1,...,n).
(Mg f)(w) = w;f(w) (weQ, feHg),
induces a C[z]-module action on H as follows:
p-h=pM,...,M;)h (peClzy,...,2zn], h € Hg).
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Let {#x }} be a collection of reproducing kernel Hiloert modules over
D corresponding to the positive definite kernel functions
Ki:DxD—C,i=1,...,n Thus

n
Kz, w)=]]Kiz,w), (z,weD"
i=1
defines a positive definite kernel on D".
Hk = Hk, @ - @ Hkg,

is a reproducing kernel Hilbert module over C|Zz].
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Analytic RKHM

‘Hy is said to be an analytic reproducing kernel Hilbert module over
C[z] if it satisfies the following conditions (fori=1,...,n):
e 1€ HK,:
e K~ is a polynomial in z and w ,
e There does not exist two non-zero quotient modules of H g, which
are orthogonal to each other.
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Analytic RKHM

‘Hy is said to be an analytic reproducing kernel Hilbert module over
C[z] if it satisfies the following conditions (fori=1,...,n):

e 1€ HK,:
e K~ is a polynomial in z and w ,

e There does not exist two non-zero quotient modules of H g, which
are orthogonal to each other.

Examples:
(i) H3D"),
(i) L5.(D").
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A closed subspace S of H is said to be a submodule if S is
M -invariant for i =1,...,n.
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A closed subspace S of H is said to be a submodule if S is

M -invariant for i =1,...,n.

A closed subspace Q is said to be a quotient module of Hy if H/Q is a
submodule of Hg.

For a quotient module Q of H let,

Cz = PaTzlo,

fori=1,...,n.
A quotient module Q of H is doubly commuting if for 1 <i < j <n,

CC;, = C;Cs,

A submodule S of Hk is co-doubly commuting if the quotient module
Hk /S is doubly commuting.
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Characterization

Theorem (Chattopadhyay, Das and Sarkar '2015)

LetHk = Hk, ® ... ® Hg, be an analytic Hilbert module over C[z] and
S be a submodule of Hy. Then S is co-doubly commuting if and only if

n
S=(21®...0 Q) = Hi, ®... Hy_, ® QF ®Hi,, ®...® Hy,,

i=1

for some quotient modules Q; of Hy, fori=1,...,n.
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Rank in Hardy space over polydisc

Question (Douglas, Yang '2000)

Let S be a rank one co-doubly commuting submodule of H?(D?), then

S = OH?(D?) for some inner function © depending on a single
variable?
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Rank in Hardy space over polydisc

Question (Douglas, Yang 2000)

Let S be a rank one co-doubly commuting submodule of H?(D?), then

S = OH?(D?) for some inner function © depending on a single
variable?

Answer (Chattopadhyay, Das and Sarkar ’18)

True !

Let S be a co-doubly commuting submodule of H?(D?), then

S = (Q¢ ® Qw)L7

for some inner functions ¢, ¢ € H>*(D).
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Idea of the proof

Lemma

LetT =(Ty,...,T,) be a n-tuple of commuting operators on Hilbert

space H. Let S1,S» be two joint T -invariant subspaces of H and
S CS1. IfS =81 685 then,

rank (PsT|s) < rank (T|s,).

Srijan Sarkar (ISI Bangalore)

15th December, 2018. 10/18



Idea of the proof

Lemma

LetT =(Ty,...,T,) be a n-tuple of commuting operators on Hilbert
space H. Let S1,S» be two joint T -invariant subspaces of H and
S CS1. IfS =81 685 then,

rank (PsT|s) < rank (T|s,).

Let S be a co-doubly commuting submodule of H?(D?), that is
S = (Sy ® H3(D)) + (H3(D) ® Sy)
S = (S5 ® Q) & (H*(D) ® Sy)

£=(¢Qs® Q) ® (Qy ® YQy)

Srijan Sarkar (ISI Bangalore)

15th December, 2018.



Idea of the proof

Lemma

LetT =(Ty,...,T,) be a n-tuple of commuting operators on Hilbert
space H. Let S1,S» be two joint T -invariant subspaces of H and
S CS1. IfS =81 685 then,

rank (PsT|s) < rank (T|s,).

Let S be a co-doubly commuting submodule of H?(D?), that is
S = (Sy ® H3(D)) + (H3(D) ® Sy)
S = (S5 ® Q) & (H*(D) ® Sy)

£=(¢Qs® Q) ® (Qy ® YQy)

Srijan Sarkar (ISI Bangalore)

15th December, 2018.



Genralization.

Letn > 2 and let {¢;}]_; € H>*(D) be inner functions. Is then

rank ((Qp, ® ... ® Qy,)*) = n?
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Genralization.

Letn > 2 and let {¢;}]_; € H>*(D) be inner functions. Is then

rank ((Qp, ® ... ® Qy,)*) = n?

S = (S ® Qp) & (HA(D) ® Sy)

(Sp ® Qu) ® (Qyp @ Sy)

£ =
E€=(6Qs® Q) ®(Qy ©¥Qy)
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Consider,
E=(Sp®Qy) ®(Qp®Sy) CS.
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Consider,
E=(Sg® Qy) ®(Qyp®Sy) CS.
(i) For k € N?,

(MF(Ss 2 Qp)) L (Qp®8y),
(ME(Qs®Sy)) L (Sp® Q).
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Consider,
E=(Sp®Qy) ®(Qp®Sy) CS.

(i) For k € N?,

(MF(Ss 2 Qp)) L (Qp®8y),
(ME(Qs®Sy)) L (Sp® Q).

(ii)
Sp® Qy = \/ (PS¢®Q¢ MZ|5¢®Qw)k(WPS¢®QwMz|S¢®Qw (S ® Qw))
keNn

Q¢ & $¢ = \/ (PQ¢®S¢ MZ|Q¢®Sw)k(WPQ¢®SU)MZ|Q¢®S¢ (Q¢ & S¢))
keNn
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Additive formula for muliplicities.

Let T =(Ty,..., Tn) be a n-tuple of bounded operators on a Hilbert
space H and let S be a closed subspace of # such that
rank(PsT|s) < oo.
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Additive formula for muliplicities.

Let T =(Ty,..., Tn) be a n-tuple of bounded operators on a Hilbert
space H and let S be a closed subspace of # such that
rank(PsT|s) < oo.
e Suppose, S can be orthogonaly decomposed into the sum
S =81 ®S», such that,

TK(S1) L S, and TK(S) L Sy, (k e N™). (1)

o Si= \ (Ps,Tls)*Wps 115)(Si) that is S; has the wandering
kEN” 1 1
subspace property with respect to Ps, T |s,.

Theorem (Chattopadhay, Sarkar, S-)

If rank (Ps, T|s,) = m and rank (Ps,T|s,) = n then

rank (PsT|s) = m+n.
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Proposition (Chattopadhay, Sarkar, S-)

Let H; be an analytic reproducing kernel Hilbert module fori =1,...,n
and S be a co-doubly commuting submodule of H1 ® ... ® Hp with
finite rank, that is,

n
S=) H1®..0H_ 198 @Hi1®...0 Hp;  rank (Mgls) < oo,
i=1
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n
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Proposition (Chattopadhay, Sarkar, S-)
Let S be a co-doubly commuting submodule of H1 ® ... ® Hp, that is,

n
S:Z'H1®---®'Hi_1 QSiOHi41®...Q Hnp,
i=1

where S; is a Mz-invariant subspace of H;. Let £ be a closed subspace
of § defined by,
E=(S1292®...8095)B(21052093R. . .®Qn)®. . . B(L1®2®. ..®Sy).

Then,

rank (PsM;z|¢) < rank (Mg|s).
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Theorem (Chattopadhay, Sarkar, S-)

With the same hypothesis as before,

n
rank (S) = rank (Mz|s) = Z rank (M;|s, ).
k=1

Applications:

Theorem (Chattopadhay, Sarkar, S-)

LetS = (Q1®...® Qn)* be a co-doubly commuting submodule of
H2(D™). Then the rank of S is equal to the number of non-zero quotient
modules Q; which are different from H?(DD) .
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n
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k=1

Applications:

Theorem (Chattopadhay, Sarkar, S-)

LetS = (Q1®...® Qn)* be a co-doubly commuting submodule of
H2(D™). Then the rank of S is equal to the number of non-zero quotient
modules Q; which are different from H?(DD) .

| \

Corollary

Let S be a co-doubly commuting submodule of H?(D"™). Then
rank (S) = m implies S = ©@H?(D") for some n-m variables inner
function © € H>*(D"~).

v
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