Rank of Co-Doubly Commuting Hilbert Modules (Joint work with Arup Chattopadhyay and Jaydeb Sarkar)

Srijan Sarkar

Indian Statistical Institute, Bangalore.

OTOA 2018

15th December, 2018.

Rank and Wandering subspaces.

Let $T := (T_1, ..., T_n)$ be an *n*-tuple of commuting bounded linear operators on a Hilbert space \mathcal{H} , and let *E* be a non-empty subset of \mathcal{H} . The *T*-generating hull of *E* is defined by

$$[E]_T = \bigvee_{\boldsymbol{k} \in \mathbb{N}^n} T^{\boldsymbol{k}}(E).$$

Then the *rank* of *T* is the unique number

$$\operatorname{rank}(T) = \min\{\#E : [E]_T = \mathcal{H}, E \subseteq \mathcal{H}\}.$$

Rank and Wandering subspaces.

Let $T := (T_1, ..., T_n)$ be an *n*-tuple of commuting bounded linear operators on a Hilbert space \mathcal{H} , and let *E* be a non-empty subset of \mathcal{H} . The *T*-generating hull of *E* is defined by

$$[E]_T = \bigvee_{\boldsymbol{k} \in \mathbb{N}^n} T^{\boldsymbol{k}}(E).$$

Then the rank of T is the unique number

$$\operatorname{rank}(T) = \min\{\#E : [E]_T = \mathcal{H}, E \subseteq \mathcal{H}\}.$$

Let S be a closed T-invariant subspace of H, then

 $\operatorname{rank}(\mathcal{S}) := \operatorname{rank}(T|_{\mathcal{S}}).$

A closed *T*-invariant subspace $S \subseteq H$ is said to have the *wandering* subspace property with respect to $T|_S$ if

$$\mathcal{S} = \bigvee_{\boldsymbol{k} \in \mathbb{N}^n} T^{\boldsymbol{k}} (\mathcal{W}_T(\mathcal{S})); \quad \mathcal{W}_T(\mathcal{S}) := \mathcal{S} \ominus \big(\sum_{l=1}^n T_l |_{\mathcal{S}}(\mathcal{S}) \big).$$

Rank in Hilbert Spaces.

• (*Beurling '48*): Let S be a M_z -invariant subspace of $H^2(\mathbb{D})$ then rank $(M_z|_S) = 1$.

Rank in Hilbert Spaces.

- (*Beurling '48*): Let S be a M_z -invariant subspace of $H^2(\mathbb{D})$ then rank $(M_z|_S) = 1$.
- (Aleman, Richter, Sundberg '96): Let S be a M_z-invariant subspace of L²_a(D), then rank (M_z|_S) = dim (S ⊖ zS).

- (*Beurling '48*): Let S be a M_z -invariant subspace of $H^2(\mathbb{D})$ then rank $(M_z|_S) = 1$.
- (Aleman, Richter, Sundberg '96): Let S be a M_z-invariant subspace of L²_a(D), then rank (M_z|_S) = dim (S ⊖ zS).
- (*Rudin '69*) There exists a submodule of $H^2(\mathbb{D}^2)$ such that rank $(M_z|_S) = \infty$.

- (*Beurling '48*): Let S be a M_z -invariant subspace of $H^2(\mathbb{D})$ then rank $(M_z|_S) = 1$.
- (Aleman, Richter, Sundberg '96): Let S be a M_z-invariant subspace of L²_a(D), then rank (M_z|_S) = dim (S ⊖ zS).
- (*Rudin '69*) There exists a submodule of $H^2(\mathbb{D}^2)$ such that rank $(M_z|_S) = \infty$.
- (Mandrekar '88, Sarkar, Wick and Sasane '2013): Let S be a doubly commuting submodule of H²(Dⁿ), then rank (M_z|_S) = 1.

- (*Beurling '48*): Let S be a M_z -invariant subspace of $H^2(\mathbb{D})$ then rank $(M_z|_S) = 1$.
- (Aleman, Richter, Sundberg '96): Let S be a M_z-invariant subspace of L²_a(D), then rank (M_z|_S) = dim (S ⊖ zS).
- (*Rudin '69*) There exists a submodule of $H^2(\mathbb{D}^2)$ such that rank $(M_z|_S) = \infty$.
- (Mandrekar '88, Sarkar, Wick and Sasane '2013): Let S be a doubly commuting submodule of H²(Dⁿ), then rank (M_z|_S) = 1.

Fact: Let ${\mathcal S}$ be a ${\it T}\mbox{-invariant}$ subspace of a Hilbert space ${\mathcal H}$ then

rank $(T|_{\mathcal{S}}) \geq \dim (\mathcal{W}_{T}(\mathcal{S})).$

(4) (5) (4) (5)

- (*Beurling '48*): Let S be a M_z -invariant subspace of $H^2(\mathbb{D})$ then rank $(M_z|_S) = 1$.
- (Aleman, Richter, Sundberg '96): Let S be a M_z-invariant subspace of L²_a(D), then rank (M_z|_S) = dim (S ⊖ zS).
- (*Rudin '69*) There exists a submodule of $H^2(\mathbb{D}^2)$ such that rank $(M_z|_S) = \infty$.
- (Mandrekar '88, Sarkar, Wick and Sasane '2013): Let S be a doubly commuting submodule of H²(Dⁿ), then rank (M_z|_S) = 1.

Fact: Let ${\mathcal S}$ be a ${\it T}\mbox{-invariant}$ subspace of a Hilbert space ${\mathcal H}$ then

rank $(T|_{\mathcal{S}}) \geq \dim (\mathcal{W}_T(\mathcal{S})).$

If rank $(T|_{\mathcal{S}}) < \infty$ then rank $(T|_{\mathcal{S}}) = \dim (\mathcal{W}_{\mathcal{T}}(\mathcal{S}))$ if and only \mathcal{S} has the *wandering subspace property* with respect to $T|_{\mathcal{S}}$.

Reproducing kernel Hilbert spaces and modules

Let *E* be a Hilbert space, Λ be a set and *K* : Λ × Λ → *B*(*E*) be a function. Let *H_K* be a Hilbert space of *E*-valued functions on Λ. Then *H_K* is said to be a reproducing kernel Hilbert space if

$$\langle f, \mathcal{K}_{\lambda}\eta \rangle_{\mathcal{H}_{\mathcal{K}}} = \langle f(\lambda), \eta \rangle_{\mathcal{E}}, \lambda \in \Lambda, \eta \in \mathcal{E}.$$

.

Reproducing kernel Hilbert spaces and modules

Let *E* be a Hilbert space, Λ be a set and *K* : Λ × Λ → *B*(*E*) be a function. Let *H_K* be a Hilbert space of *E*-valued functions on Λ. Then *H_K* is said to be a reproducing kernel Hilbert space if

$$\langle f, \mathcal{K}_{\lambda}\eta \rangle_{\mathcal{H}_{\mathcal{K}}} = \langle f(\lambda), \eta \rangle_{\mathcal{E}}, \lambda \in \Lambda, \eta \in \mathcal{E}.$$

Let Ω be a bounded domain in Cⁿ and let K be a B(E)-valued kernel on Ω. Let K(z, w) be holomorphic in {z₁,..., z_n}. Then

 $\mathcal{H}_{\mathcal{K}} = \overline{\operatorname{span}}\{\mathcal{K}(\cdot, \boldsymbol{w})\eta : \boldsymbol{w} \in \Omega, \eta \in \mathcal{E}\} \subseteq \mathcal{O}(\Omega, \mathcal{E}).$

We say that $\mathcal{H}_{\mathcal{K}}$ is a reproducing kernel Hilbert module if

$$egin{aligned} & z_j\mathcal{H}_K\subseteq\mathcal{H}_K & (j=1,\ldots,n).\ & (M_{z_j}f)(oldsymbol{w})=w_jf(oldsymbol{w}) & (oldsymbol{w}\in\Omega,f\in\mathcal{H}_K), \end{aligned}$$

induces a $\mathbb{C}[\boldsymbol{z}]$ -module action on $\mathcal{H}_{\mathcal{K}}$ as follows:

$$p \cdot h = p(M_{z_1}, \ldots, M_{z_n})h$$
 $(p \in \mathbb{C}[z_1, \ldots, z_n], h \in \mathcal{H}_K).$

Let $\{\mathcal{H}_{K_i}\}_{i=1}^n$ be a collection of reproducing kernel Hilbert modules over \mathbb{D} corresponding to the positive definite kernel functions $K_i : \mathbb{D} \times \mathbb{D} \to \mathbb{C}, i = 1, ..., n$. Thus

$$K(\boldsymbol{z}, \boldsymbol{w}) = \prod_{i=1}^{n} K_i(z_i, w_i), \qquad (\boldsymbol{z}, \boldsymbol{w} \in \mathbb{D}^n)$$

defines a positive definite kernel on \mathbb{D}^n .

$$\mathcal{H}_{K}\cong\mathcal{H}_{K_{1}}\otimes\cdots\otimes\mathcal{H}_{K_{n}}$$

is a reproducing kernel Hilbert module over $\mathbb{C}[\mathbf{z}]$.

A B F A B F

 \mathcal{H}_{K} is said to be an analytic reproducing kernel Hilbert module over $\mathbb{C}[\mathbf{z}]$ if it satisfies the following conditions (for i = 1, ..., n):

- $1 \in \mathcal{H}_{K_i}$,
- K_i^{-1} is a polynomial in z and \bar{w} ,
- There does not exist two non-zero quotient modules of \mathcal{H}_{K_i} which are orthogonal to each other.

- A B M A B M

A D M A A A M M

 \mathcal{H}_{K} is said to be an analytic reproducing kernel Hilbert module over $\mathbb{C}[\mathbf{z}]$ if it satisfies the following conditions (for i = 1, ..., n):

- $1 \in \mathcal{H}_{K_i}$,
- K_i^{-1} is a polynomial in z and \bar{w} ,
- There does not exist two non-zero quotient modules of \mathcal{H}_{K_i} which are orthogonal to each other.

Examples:

(i)
$$H^2(\mathbb{D}^n)$$
,

(ii)
$$L^2_{a,\alpha}(\mathbb{D}^n).$$

- A B M A B M

A D M A A A M M

A closed subspace S of \mathcal{H}_K is said to be a *submodule* if S is M_{z_i} -invariant for i = 1, ..., n.

A closed subspace S of \mathcal{H}_K is said to be a *submodule* if S is M_{Z_i} -invariant for i = 1, ..., n.

A closed subspace Q is said to be a *quotient module* of \mathcal{H}_{K} if \mathcal{H}/Q is a submodule of \mathcal{H}_{K} .

A closed subspace S of \mathcal{H}_K is said to be a *submodule* if S is M_{z_i} -invariant for i = 1, ..., n.

A closed subspace Q is said to be a *quotient module* of \mathcal{H}_{K} if \mathcal{H}/Q is a submodule of \mathcal{H}_{K} .

For a quotient module Q of $\mathcal{H}_{\mathcal{K}}$ let,

$$C_{z_i} = P_{\mathcal{Q}} T_{z_i}|_{\mathcal{Q}},$$

for i = 1, ..., n.

A closed subspace S of \mathcal{H}_K is said to be a *submodule* if S is M_{z_i} -invariant for i = 1, ..., n.

A closed subspace Q is said to be a *quotient module* of \mathcal{H}_{K} if \mathcal{H}/Q is a submodule of \mathcal{H}_{K} .

For a quotient module Q of $\mathcal{H}_{\mathcal{K}}$ let,

$$C_{Z_i}=P_{\mathcal{Q}}T_{Z_i}|_{\mathcal{Q}},$$

for *i* = 1, . . . , *n*.

A quotient module Q of \mathcal{H}_K is *doubly commuting* if for $1 \le i < j \le n$,

$$C_{z_i}C^*_{z_j}=C^*_{z_j}C_{z_i}.$$

(日) (同) (三) (三)

A closed subspace S of \mathcal{H}_K is said to be a *submodule* if S is M_{z_i} -invariant for i = 1, ..., n.

A closed subspace Q is said to be a *quotient module* of \mathcal{H}_{K} if \mathcal{H}/Q is a submodule of \mathcal{H}_{K} .

For a quotient module Q of $\mathcal{H}_{\mathcal{K}}$ let,

$$C_{z_i} = P_{\mathcal{Q}} T_{z_i} |_{\mathcal{Q}},$$

for *i* = 1, . . . , *n*.

A quotient module Q of \mathcal{H}_K is *doubly commuting* if for $1 \le i < j \le n$,

$$C_{z_i}C^*_{z_j}=C^*_{z_j}C_{z_i}.$$

A submodule S of \mathcal{H}_K is *co-doubly commuting* if the quotient module \mathcal{H}_K/S is doubly commuting.

Theorem (Chattopadhyay, Das and Sarkar '2015)

Let $\mathcal{H}_{K} = \mathcal{H}_{K_{1}} \otimes \ldots \otimes \mathcal{H}_{K_{n}}$ be an analytic Hilbert module over $\mathbb{C}[\mathbf{z}]$ and S be a submodule of \mathcal{H}_{K} . Then S is co-doubly commuting if and only if

$$\mathcal{S} = (\mathcal{Q}_1 \otimes \ldots \otimes \mathcal{Q}_n)^{\perp} = \sum_{i=1}^n \mathcal{H}_{K_1} \otimes \ldots \mathcal{H}_{K_{i-1}} \otimes \mathcal{Q}_i^{\perp} \otimes \mathcal{H}_{K_{i+1}} \otimes \ldots \otimes \mathcal{H}_{K_n},$$

for some quotient modules Q_i of \mathcal{H}_{K_i} for i = 1, ..., n.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question (Douglas, Yang '2000)

Let S be a rank one co-doubly commuting submodule of $H^2(\mathbb{D}^2)$, then $S = \Theta H^2(\mathbb{D}^2)$ for some inner function Θ depending on a single variable?

・ロト ・ 同ト ・ ヨト ・ ヨ

Question (Douglas, Yang '2000)

Let S be a rank one co-doubly commuting submodule of $H^2(\mathbb{D}^2)$, then $S = \Theta H^2(\mathbb{D}^2)$ for some inner function Θ depending on a single variable?

Answer (Chattopadhyay, Das and Sarkar '18)

True !

< ロ > < 同 > < 回 > < 回 >

Question (Douglas, Yang '2000)

Let S be a rank one co-doubly commuting submodule of $H^2(\mathbb{D}^2)$, then $S = \Theta H^2(\mathbb{D}^2)$ for some inner function Θ depending on a single variable?

Answer (Chattopadhyay, Das and Sarkar '18)

True !

Let S be a co-doubly commuting submodule of $H^2(\mathbb{D}^2)$, then

$$\mathcal{S} = (\mathcal{Q}_{\phi} \otimes \mathcal{Q}_{\psi})^{\perp},$$

for some inner functions $\phi, \psi \in H^{\infty}(\mathbb{D})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea of the proof

Lemma

Let $T = (T_1, ..., T_n)$ be a n-tuple of commuting operators on Hilbert space \mathcal{H} . Let S_1, S_2 be two joint T-invariant subspaces of \mathcal{H} and $S_2 \subseteq S_1$. If $S = S_1 \ominus S_2$ then,

 $rank(P_{\mathcal{S}}T|_{\mathcal{S}}) \leq rank(T|_{\mathcal{S}_1}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea of the proof

Lemma

Let $T = (T_1, ..., T_n)$ be a n-tuple of commuting operators on Hilbert space \mathcal{H} . Let S_1, S_2 be two joint T-invariant subspaces of \mathcal{H} and $S_2 \subseteq S_1$. If $S = S_1 \ominus S_2$ then,

$$\operatorname{rank}(P_{\mathcal{S}}T|_{\mathcal{S}}) \leq \operatorname{rank}(T|_{\mathcal{S}_1}).$$

Let S be a co-doubly commuting submodule of $H^2(\mathbb{D}^2)$, that is

$$\begin{split} \mathcal{S} &= (\mathcal{S}_{\phi} \otimes \mathcal{H}^{2}(\mathbb{D})) + (\mathcal{H}^{2}(\mathbb{D}) \otimes \mathcal{S}_{\psi}) \\ \mathcal{S} &= (\mathcal{S}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{H}^{2}(\mathbb{D}) \otimes \mathcal{S}_{\psi}) \\ \vdots \\ \widetilde{\mathcal{E}} &= (\phi \mathcal{Q}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{Q}_{\phi} \otimes \psi \mathcal{Q}_{\psi}) \end{split}$$

Idea of the proof

Lemma

Let $T = (T_1, ..., T_n)$ be a n-tuple of commuting operators on Hilbert space \mathcal{H} . Let S_1, S_2 be two joint T-invariant subspaces of \mathcal{H} and $S_2 \subseteq S_1$. If $S = S_1 \ominus S_2$ then,

$$\operatorname{rank}(P_{\mathcal{S}}T|_{\mathcal{S}}) \leq \operatorname{rank}(T|_{\mathcal{S}_1}).$$

Let S be a co-doubly commuting submodule of $H^2(\mathbb{D}^2)$, that is

$$\begin{split} \mathcal{S} &= (\mathcal{S}_{\phi} \otimes \mathcal{H}^{2}(\mathbb{D})) + (\mathcal{H}^{2}(\mathbb{D}) \otimes \mathcal{S}_{\psi}) \\ \mathcal{S} &= (\mathcal{S}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{H}^{2}(\mathbb{D}) \otimes \mathcal{S}_{\psi}) \\ \vdots \\ \widetilde{\mathcal{E}} &= (\phi \mathcal{Q}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{Q}_{\phi} \otimes \psi \mathcal{Q}_{\psi}) \end{split}$$

Question

Let $n \ge 2$ and let $\{\phi_j\}_{j=1}^n \subseteq H^\infty(\mathbb{D})$ be inner functions. Is then

 $rank\left((\mathcal{Q}_{\phi_1}\otimes\ldots\otimes\mathcal{Q}_{\phi_m})^{\perp}\right)=n?$

3

Question

Let $n \ge 2$ and let $\{\phi_j\}_{j=1}^n \subseteq H^\infty(\mathbb{D})$ be inner functions. Is then

$$\mathsf{rank}\left((\mathcal{Q}_{\phi_1}\otimes\ldots\otimes\mathcal{Q}_{\phi_m})^\perp
ight)=\mathsf{n}?$$

Properties

Consider,

$$\mathcal{E} = (\mathcal{S}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{Q}_{\phi} \otimes \mathcal{S}_{\psi}) \subseteq \mathcal{S}.$$

Srijan Sarkar (ISI Bangalore)

2

イロト イヨト イヨト イヨト

Properties

Consider,

$$\mathcal{E} = (\mathcal{S}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{Q}_{\phi} \otimes \mathcal{S}_{\psi}) \subseteq \mathcal{S}.$$

(i) For $\boldsymbol{k} \in \mathbb{N}^2$,

$$\begin{array}{lll} \left(\mathcal{M}_{\mathsf{z}}^{\mathsf{k}}(\mathcal{S}_{\phi}\otimes\mathcal{Q}_{\psi}) \right) & \perp & (\mathcal{Q}_{\phi}\otimes\mathcal{S}_{\psi}), \\ \left(\mathcal{M}_{\mathsf{z}}^{\mathsf{k}}(\mathcal{Q}_{\phi}\otimes\mathcal{S}_{\psi}) \right) & \perp & (\mathcal{S}_{\phi}\otimes\mathcal{Q}_{\psi}). \end{array}$$

Э.

イロト イヨト イヨト イヨト

Properties

Consider,

$$\mathcal{E} = (\mathcal{S}_{\phi} \otimes \mathcal{Q}_{\psi}) \oplus (\mathcal{Q}_{\phi} \otimes \mathcal{S}_{\psi}) \subseteq \mathcal{S}.$$

(i) For $\pmb{k} \in \mathbb{N}^2$,

$$\begin{array}{lll} \left(\mathcal{M}_{\mathsf{z}}^{\mathsf{k}}(\mathcal{S}_{\phi}\otimes\mathcal{Q}_{\psi}) \right) & \perp & (\mathcal{Q}_{\phi}\otimes\mathcal{S}_{\psi}), \\ \left(\mathcal{M}_{\mathsf{z}}^{\mathsf{k}}(\mathcal{Q}_{\phi}\otimes\mathcal{S}_{\psi}) \right) & \perp & (\mathcal{S}_{\phi}\otimes\mathcal{Q}_{\psi}). \end{array}$$

(ii)

$$S_{\phi} \otimes \mathcal{Q}_{\psi} = \bigvee_{\boldsymbol{k} \in \mathbb{N}^{n}} (P_{S_{\phi} \otimes \mathcal{Q}_{\psi}} M_{\boldsymbol{z}}|_{S_{\phi} \otimes \mathcal{Q}_{\psi}})^{\boldsymbol{k}} (\mathcal{W}_{P_{S_{\phi} \otimes \mathcal{Q}_{\psi}} M_{\boldsymbol{z}}|_{S_{\phi} \otimes \mathcal{Q}_{\psi}}} (S_{\phi} \otimes \mathcal{Q}_{\psi}))$$
$$\mathcal{Q}_{\phi} \otimes S_{\psi} = \bigvee_{\boldsymbol{k} \in \mathbb{N}^{n}} (P_{\mathcal{Q}_{\phi} \otimes S_{\psi}} M_{\boldsymbol{z}}|_{\mathcal{Q}_{\phi} \otimes S_{\psi}})^{\boldsymbol{k}} (\mathcal{W}_{P_{\mathcal{Q}_{\phi} \otimes S_{\psi}} M_{\boldsymbol{z}}|_{\mathcal{Q}_{\phi} \otimes S_{\psi}}} (\mathcal{Q}_{\phi} \otimes S_{\psi}))$$

Э.

イロト イヨト イヨト イヨト

Let $T = (T_1, ..., T_n)$ be a n-tuple of bounded operators on a Hilbert space \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that rank $(P_{\mathcal{S}}T|_{\mathcal{S}}) < \infty$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $T = (T_1, \ldots, T_n)$ be a n-tuple of bounded operators on a Hilbert space \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $\operatorname{rank}(P_{\mathcal{S}}T|_{\mathcal{S}}) < \infty$.

• Suppose, ${\cal S}$ can be orthogonaly decomposed into the sum ${\cal S}={\cal S}_1\oplus{\cal S}_2,$ such that,

$$T^{\boldsymbol{k}}(\mathcal{S}_1) \perp \mathcal{S}_2$$
 and $T^{\boldsymbol{k}}(\mathcal{S}_2) \perp \mathcal{S}_1$, $(\boldsymbol{k} \in \mathbb{N}^n)$. (1)

Let $T = (T_1, ..., T_n)$ be a n-tuple of bounded operators on a Hilbert space \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $\operatorname{rank}(P_{\mathcal{S}}T|_{\mathcal{S}}) < \infty$.

• Suppose, ${\cal S}$ can be orthogonaly decomposed into the sum ${\cal S}={\cal S}_1\oplus{\cal S}_2,$ such that,

$$T^{\boldsymbol{k}}(\mathcal{S}_1) \perp \mathcal{S}_2$$
 and $T^{\boldsymbol{k}}(\mathcal{S}_2) \perp \mathcal{S}_1, \quad (\boldsymbol{k} \in \mathbb{N}^n).$ (1)

• $S_i = \bigvee_{\mathbf{k} \in \mathbb{N}^n} (P_{S_i} T|_{S_i})^{\mathbf{k}} \mathcal{W}_{(P_{S_i} T|_{S_i})}(S_i)$ that is S_i has the wandering subspace property with respect to $P_{S_i} T|_{S_i}$.

Let $T = (T_1, ..., T_n)$ be a n-tuple of bounded operators on a Hilbert space \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $\operatorname{rank}(P_{\mathcal{S}}T|_{\mathcal{S}}) < \infty$.

• Suppose, ${\cal S}$ can be orthogonaly decomposed into the sum ${\cal S}={\cal S}_1\oplus{\cal S}_2,$ such that,

$$T^{\boldsymbol{k}}(\mathcal{S}_1) \perp \mathcal{S}_2$$
 and $T^{\boldsymbol{k}}(\mathcal{S}_2) \perp \mathcal{S}_1$, $(\boldsymbol{k} \in \mathbb{N}^n)$. (1)

•
$$S_i = \bigvee_{\mathbf{k} \in \mathbb{N}^n} (P_{S_i} T|_{S_i})^{\mathbf{k}} \mathcal{W}_{(P_{S_i} T|_{S_i})}(S_i)$$
 that is S_i has the wandering subspace property with respect to $P_{S_i} T|_{S_i}$.

Theorem (Chattopadhay, Sarkar, S-)

If rank $(P_{S_1}T|_{S_1}) = m$ and rank $(P_{S_2}T|_{S_2}) = n$ then

$$rank(P_{\mathcal{S}}T|_{\mathcal{S}})=m+n.$$

Srijan Sarkar (ISI Bangalore)

Let \mathcal{H}_i be an analytic reproducing kernel Hilbert module for i = 1, ..., nand S be a co-doubly commuting submodule of $\mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$ with finite rank, that is,

$$\mathcal{S} = \sum_{i=1}^{n} \mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{i-1} \otimes \mathcal{S}_{i} \otimes \mathcal{H}_{i+1} \otimes \ldots \otimes \mathcal{H}_{n}; \quad \text{rank} (M_{\mathbf{z}}|_{\mathcal{S}}) < \infty,$$

Let \mathcal{H}_i be an analytic reproducing kernel Hilbert module for i = 1, ..., nand S be a co-doubly commuting submodule of $\mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$ with finite rank, that is,

$$\mathcal{S} = \sum_{i=1}^{n} \mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{i-1} \otimes \mathcal{S}_{i} \otimes \mathcal{H}_{i+1} \otimes \ldots \otimes \mathcal{H}_{n}; \quad \text{rank} \left(M_{\mathbf{z}} |_{\mathcal{S}} \right) < \infty,$$

where S_i is a M_z -invariant subspace of H_i . If each S_i has the wandering subspace property with respect to M_z ,

- E - - E -

Let \mathcal{H}_i be an analytic reproducing kernel Hilbert module for i = 1, ..., nand S be a co-doubly commuting submodule of $\mathcal{H}_1 \otimes ... \otimes \mathcal{H}_n$ with finite rank, that is,

$$\mathcal{S} = \sum_{i=1}^{n} \mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{i-1} \otimes \mathcal{S}_{i} \otimes \mathcal{H}_{i+1} \otimes \ldots \otimes \mathcal{H}_{n}; \quad \text{rank} \left(M_{\mathbf{z}} |_{\mathcal{S}} \right) < \infty,$$

where S_i is a M_z -invariant subspace of H_i . If each S_i has the wandering subspace property with respect to M_z , then

rank
$$(P_{\mathcal{E}}M_{\mathbf{z}}|_{\mathcal{E}}) = \sum_{i=1}^{n} \operatorname{rank}(M_{z}|_{\mathcal{S}_{i}}).$$

A B F A B F

Let S be a co-doubly commuting submodule of $\mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_n$, that is,

$$S = \sum_{i=1}^{n} \mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_{i-1} \otimes S_i \otimes \mathcal{H}_{i+1} \otimes \ldots \otimes \mathcal{H}_n,$$

where S_i is a M_z -invariant subspace of H_i . Let \mathcal{E} be a closed subspace of S defined by,

 $\mathcal{E} = (\mathcal{S}_1 \otimes \mathcal{Q}_2 \otimes \ldots \otimes \mathcal{Q}_n) \oplus (\mathcal{Q}_1 \otimes \mathcal{S}_2 \otimes \mathcal{Q}_3 \otimes \ldots \otimes \mathcal{Q}_n) \oplus \ldots \oplus (\mathcal{Q}_1 \otimes \mathcal{Q}_2 \otimes \ldots \otimes \mathcal{S}_n).$

Then,

$$\operatorname{rank}(P_{\mathcal{E}}M_{\mathbf{z}}|_{\mathcal{E}}) \leq \operatorname{rank}(M_{\mathbf{z}}|_{\mathcal{S}}).$$

A B F A B F

A D M A A A M M

Theorem (Chattopadhay, Sarkar, S-)

With the same hypothesis as before,

rank
$$(S)$$
 = rank $(M_{\mathbf{z}}|_{S}) = \sum_{k=1}^{n} \operatorname{rank} (M_{\mathbf{z}}|_{S_{k}}).$

Applications:

Theorem (Chattopadhay, Sarkar, S-)

Let $S = (Q_1 \otimes \ldots \otimes Q_n)^{\perp}$ be a co-doubly commuting submodule of $H^2(\mathbb{D}^n)$. Then the rank of S is equal to the number of non-zero quotient modules Q_i which are different from $H^2(\mathbb{D})$.

Theorem (Chattopadhay, Sarkar, S-)

With the same hypothesis as before,

rank
$$(S)$$
 = rank $(M_{\mathbf{z}}|_{S}) = \sum_{k=1}^{n} \operatorname{rank} (M_{\mathbf{z}}|_{S_{k}}).$

Applications:

Theorem (Chattopadhay, Sarkar, S-)

Let $S = (Q_1 \otimes \ldots \otimes Q_n)^{\perp}$ be a co-doubly commuting submodule of $H^2(\mathbb{D}^n)$. Then the rank of S is equal to the number of non-zero quotient modules Q_i which are different from $H^2(\mathbb{D})$.

Corollary

Let S be a co-doubly commuting submodule of $H^2(\mathbb{D}^n)$. Then rank (S) = m implies $S = \Theta H^2(\mathbb{D}^n)$ for some n-m variables inner function $\Theta \in H^{\infty}(\mathbb{D}^{n-m})$.

- R. Douglas and R. Yang, Operator theory in the Hardy space over the bidisk (I), Integral Equations Operator Theory 38 (2000), no. 2, 207–221.
- A. Chattopadhyay, B.K. Das and J. Sarkar, *Rank of a co-doubly commuting submodule is 2*, Proceedings of American Math Society, 146 (2018), 1181–1187.
- A. Chattopadhyay, B.K. Das and J. Sarkar, *Tensor product of quotient Hilbert modules*, Journal of Mathematical Analysis and Applications, 424 (2015), 727–747.
- A. Chattopadhyay , J. Sarkar and S. Sarkar, *An additive formula for multiplicities on reproducing kernel Hilbert spaces* , arXiv:1812.05435.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank You!

э

★ ∃ > < ∃ >

< 4 →