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History and Motivation

Arne Beurling (1949) - Characterizes the closed subspaces of
H2 that are invariant under the action of Tz , the operator of
multiplication with the coordinate function z .

Peter Lax (1959)- Vector-valued generalization of Beurlings’s
work for shifts of finite multiplicity.

Paul Halmos (1961)- Vector-valued generalization of
Beurlings’s work for shifts of infinite multiplicity.

Louis de Branges - Not only extended Beurling’s theorem but
also its vector-valued generalizations due to Lax and Halmos.

U. N. Singh and D. Singh (1991)- Generalized de Branges
theorem (scalar case).
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Notations and Definitions

H2- the class of analytic function on D whose Taylor
coefficients are square summable.

(i) H2 is a Hilbert space with respect to the inner product

〈f , g〉 =
∞∑
n=0

anbn

for f =
∑∞

n=0 anz
n and g =

∑∞
n=0 bnz

n in H2.

(ii) {zn}∞n=0 forms an orthonormal basis for H2.

H∞-the class of bounded analytic functions on D.
(i) H∞ is a Banach algebra with ||φ||∞ = sup{|φ(z)| : z ∈ D}.
(ii) H∞ = {φ ∈ H2 : φH2 ⊆ H2}.
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Notations and Definition contd...

Let {βn} be a sequence of positive numbers.

H2(β) =

{
f (z) =

∞∑
n=0

αnz
n :

∞∑
n=0

|αn|2β2n <∞

}

with the inner product

〈f , g〉 =
∞∑
n=0

αnγnβ
2
n

for all f =
∑∞

n=0 αnz
n and g =

∑∞
n=0 γnz

n in H2(β).

H2(β) is a Hilbert space with respect to the above inner
product space.

For βn = 1 for all n, H2(β) = H2.
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Notations and Definition contd...

T ∈ B(H) is called an injective weighted shift with weight
sequence {wn}∞n=0 if

Ten = wnen+1,

where {en}∞n=0 is an orthonormal basis for H and {wn}∞n=0 is a
bounded sequence of positive numbers.

When H = H2, en = zn and wn = 1, we use Tz to denote the
injective weighted shift operator.

T ∈ B(H) is said to shift an orthogonal basis {hn} of H if
Thn = hn+1 for each n.
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A. Beurling: If M is a closed subspace of H2 invariant under
the action of Tz , then there is an inner function b (i.e.,
|b| = 1 a.e. on T) such that M = bH2.

de Branges: Let M be a Hilbert space such that:
(i) M is contractively contained in H2, that is, M ⊆ H2 and
||f ||2 ≤ ||f ||M ,

(ii) Tz(M) ⊆ M and Tz is an isometry on M.

Then there exists a b ∈ H∞ with ||b||∞ ≤ 1 such that

M = bH2 and ||bf ||M = ||f ||2 ∀f ∈ H2

Singh and Singh: Let M be a Hilbert space such that:
(i) M ⊆ H2,
(ii) Tz(M) ⊆ M and Tz acts isometrically on M.

Then there exists a b ∈ H∞ such that

M = bH2 and ||bf ||M = ||f ||2 ∀f ∈ H2.
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Question

Can we weaken the hypotheses any further?
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Our Theorem

Theorem (L. & Singh)

Let M be a Hilbert space contained in H2. Suppose the operator
Tz , which denotes multiplication by z , is well defined on M, and
satisfies:

(i) There exists a δ > 0 such that δ||f ||M ≤ ||Tz f ||M ≤ ||f ||M for
all f ∈ M.

(ii) For each n ∈ N, T ∗nz T n+1
z (M) ⊆ Tz(M) (the adjoint of Tz is

with respect to the inner product on M).

Then Tz acts as a weighted shift on M, and there exists a b ∈ H∞

such that

M = bH2 (the closure is in the norm of M)

and
||bf ||M ≤ ||f ||2 for all f ∈ H2.
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Analogue of Wold’s decomposition

Lemma (L. & Singh)

Let T ∈ B(H) be bounded below and T ∗nT n+1(H) ⊆ T (H) for all
n ∈ N. Let N be the orthogonal complement of the range of T .
Then:

(i) H =
∑∞

n=0⊕T n(N)⊕
⋂∞

n=1 T
n(H).

(ii) The subspace
⋂∞

n=1 T
n(H) is reducing for T and T restricted

to it is an invertible operator.

Example

Take H = H2(β) and T = Tz where

βn =


1

2n/2
if n even,

1
2(n−1)/2 if n odd .
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Outline of the proof

Using the lemma,

M =
∞∑
n=0

T n
z (N)⊕

∞⋂
n=1

T n
z (M),

where N = M 	 Tz(M).

Since elements of M are analytic on D,
⋂∞

n=1 T
n
z (M) = {0}.

N multiplies H2 into M which implies that N ⊆ H∞.

dim(N) = 1.

Take b a unit vector in N. Then {bzn}∞n=0 is an orthogonal
basis for M. Therefore, bH2 is dense in M.

Tz shifts this orthogonal basis.
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Theorem (A. Shields,1974)

T ∈ B(H) is an injective weighted shift if and only if T shifts an
orthogonal basis of H.
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Theorem
Let M be a Hilbert space contained in H2. Suppose the operator
Tz , which denotes multiplication by z , is well defined on M, and
satisfies:

(i) There exists a δ > 0 such that δ||f ||M ≤ ||Tz f ||M ≤ ||f ||M for
all f ∈ M.

(ii) For each n ∈ N, T ∗nz T n+1
z (M) ⊆ Tz(M) (the adjoint of Tz is

with respect to the inner product on M).

Then Tz acts as a weighted shift on M, and there exists a b ∈ H∞

such that

M = bH2 (the closure is in the norm of M)

and
||bf ||M ≤ ||f ||2 for all f ∈ H2.
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Remark

When is bH2 closed in M, that is, when can we have M = bH2?

The subspace bH2 is closed in M ⇐⇒ there exists a δ > 0 such
that

δ||f ||M ≤ ||T n
z f ||M ≤ ||f ||M (1)

for all f ∈ M and all n ≥ 0.

Example

Choose {βn} such that c ≤ βn+1 ≤ βn for some c > 0 and for all
n.

Take βn = (n + 3)1/(n+3) for n ≥ 0.
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Important consequences

Corollary (Singh and Singh, 1991)

Let M be a Hilbert space contained in H2 as a vector subspace
and such that Tz(M) ⊆ M and let Tz act isometrically on M.
Then there exists a b ∈ H∞ such that M = bH2, and
||bf ||M = ||f ||2 for all f ∈ H2.

The above result generalizes the result of de Branges and therefore
of Beurling as well. Hence our result also implies these two
classical results.
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