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The classical theorems of Korovkin impressed several
mathematicians since their discovery for the simplicity and the
potential. Positive approximation process play a fundamental
role in the approximation theory and it appears in a very
natural way in several problems dealing with the approximation
of continuous functions and qualitative properties such as
monotonicity, convexity, shape preservation and so on.
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Korovkin Theorem

The classical approximation theorem due to Korovkin in 1953
unified many existing approximation processes

Theorem
If a sequence of positive linear maps φn : C [0,1]→ C [0,1],
n = 1,2,3, ..., has the property

lim
n→∞
||φn(fk)− fk ||= 0, k = 0,1,2,

for the three functions f0(x) = 1, f1(x) = x , f2(x) = x2 then

lim
n→∞
||φn(f )− f ||= 0, ∀ f ∈ C [0,1].
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Korovkin Set
The set {1,x ,x2} is called a Korovkin set or test set. Korovkin
showed that, the set {1,x} is not a Korovkin set. Therefore,
the set {1,x ,x2} is a minimal set to satisfy the above assertion.

Korovkin’s theorem generated considerable activity among
researchers in approximation theory. The generalizations make
essential use of the Choquet boundary in one way or another.
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Choquet boundary and Saskin’s theorem

Definition
Let S ⊂ C(X ) containing the constant function 1, where X is a
compact Hausdorff space. The Choquet boundary ∂S of S is
defined as ∂S = {x ∈ X : εx |S has a unique positive linear
extension to C(X ), where εx denotes the evaluation functional
defined by εx (f ) = f (x), f ∈ C(X )}.

Theorem
Let S be a subset of C(X ) that separates points of X and
contains constant function. Then S is a Korovkin set in C(X )
if and only if the Choquet boundary ∂G = X. Where
G = linear span(S)
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In 2011, Arveson initiated the study of noncommutative
approximation theory focusing on the question: How does one
determine whether a set of generators of a C∗-algebra is
hyperrigid?

Definition
A finite or countably infinite set G of generators of a
C∗-algebra A is said to be hyperrigid if for every faithful
representation A ⊆B(H) of A on a Hilbert space H and
every sequence of unital completely positive (UCP) maps
φn : B(H)→B(H), n = 1,2, ...,

lim
n→∞
||φn(g)−g ||= 0, ∀ g ∈G =⇒ lim

n→∞
||φn(a)−a||= 0, ∀ a∈A .

Note that, a set G is hyperrigid if and only if G ∪G ∗ is
hyperrigid if and only if the linear span of G is hyperrigid. If A
is unital, then G is hyperrigid if and only if G ∪{1} is
hyperrigid.
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Non-commutative Choquet boundary

In 1969 Arveson introduced the notion of boundary
representation.

Definition
Let S be an operator system in a C∗-algebra A such that
A = C∗(S ). A representation π : A →B(H) is said to have
unique extension property (UEP) for S , if the only unital
completely positive (UCP) map φ : A →B(H) that satisfies
φ|S = π|S is φ = π itself.

Definition
Let S be an operator system in a C∗-algebra A such that
A = C∗(S ). An irreducible representation π : A →B(H) of
A is said to be a boundary representation for S if π has
unique extension property (UEP) for S .
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Theorem
For every separable operator system S that generates a
C∗-algebra A = C∗(S ), such that S is hyperrigid if and only
if for every nondegenerate representation π : C∗(S )→B(H)
on a separable Hilbert space, π|S has unique extension
property.

Theorem
Let S be a separable operator system generating a C∗-
algebra A such that A = C∗(S ). If S is hyperrigid, then
every irreducible representation of A is a boundary
representation for S .
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Arveson’s hyperrigidity conjecture

Conjecture
If every irreducible representation of a C∗-algebra is a
boundary representation for a separable operator system then
the operator system is hyperrigid.

In 2011, Arveson showed that the hyperrigidity conjecture is
true for C∗-algebras with countable spectrum. In 2014, Kleski
established the hyperrigidity conjecture for all type-I
C∗-algebras with additional assumptions on the co-domain.
Davidson and Kennedy proved the conjecture for function
systems. Clouatre established the hyperrigidity conjecture with
assumption of unperforated pair of subspaces. The
hyperrigidity conjecture is still open for general C∗-algebras.
Namboodiri, Pramod, Shankar and Vijayarajan approached the
hyperrigidity conjecture with weaker notions. They got the
partial answers.
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The interesting examples of hyperrigid generators are obtained
by a direct application. Arveson established the
noncommutative strengthening of a classical
approximation-theoretic result of Korovkin.

Theorem
Let X ∈B(H) be a self adjoint operator with atleast 3 points
in its spectrum and let A be the C∗-algebra generated by X.
Then
(i) G = {X ,X 2} is a hyperrigid generator for A , while
(ii) G0 = {X} is not hyperrigid generator for A .

Theorem
Let V ∈B(H) be an isometry that generates a C∗-algebra A .
Then G = {V ,VV ∗} is hyperrigid generator for A .
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Essential use of noncommutative Choquet boundary.
Theorem
Let V ∈B(H) be an irreducible compact operator with
cartesian decomposition V = A+ iB, where A is a finite rank
positive operator and B is essential with KerB = {0}. Then
(i) G = {V ,V 2} is hyperrigid generator for C∗-algebra K (H)

of compact operators. In particular every sequence of
unital completely positive maps φn : B(H)→B(H) for
which

lim
n→∞
||φn(V )−V ||= lim

n→∞
||φn(V 2)−V 2||= 0,

one has
lim
n→∞
||φn(K )−K ||= 0

for every compact operator K ∈B(H).
(ii) The smaller generating set G0 = {V } of K (H) is not

hyperrigid.
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Let S = (S1, ...,Sd) denote the compression of the d-shift to
the complement of a homogeneous ideal I of C[z1, ...,zd ].
Following the remark above, in 2016, Kennedy and Shalit
proved that, if homogeneous ideals are sufficiently non-trivial
then S is essentially normal if and only if it is hyperrigid as the
generating set of a C∗-algebra.
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Essential Unitary and Hyperrigidity

Let B(H) be the algebra of bounded linear operators on a
separable complex Hilbert space H and K (H) ideal of
compact operators on H. Let π : B(H)→B(H)/K (H) be
the natural surjection onto the Calkin algebra B(H)/K (H).
The operator T ∈B(H) is called essentially normal if π(T ) is
normal in the Clakin algebra, or equivalently, T ∗T −TT ∗ is
compact. The operator S ∈B(H) is called essentially unitary
if π(S) is unitary in the Clakin algebra, or equivalently, I−S∗S
and I−SS∗ are compact.
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Here, we will have the following assumptions to proceed. Let S
be a irreducible and essential unitary but not unitary operator
in B(H) and let G = {S,SS∗}. Let S be a operator system
generated by G . Let T = C∗(G ) be the unital C∗-algebra
generated by G . The unital C∗-algebra T contains the
compact operators K (H).

Definition
A representation ρ : T →B(H) is said to be singular
representation if it annihilates the compact operators K (H).
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Lemma
Let ρ : T →B(H) be a representation, and let π : T →B(K )
be a representation such that π|S is a dilation of ρ|S . Then
the subspace H is coinvariant for π(S ).

Proof:
With respect to the decomposition K = H⊕H⊥. By
assumption we have

π(S) =
(

ρ(S) X
Y Z

)
Note that X = PHπ(S)|H⊥ . We must prove that X = 0. By
assumption,
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π(SS∗) =
(

ρ(SS∗) X0
Y0 Z0

)

π(S)π(S)∗ =
(

ρ(S) X
Y Z

)(
ρ(S)∗ Y ∗
X ∗ Z ∗

)
.

We get,

ρ(SS∗) = ρ(S)ρ(S)∗+XX ∗

Therefore, XX ∗ = 0, and hence X = 0.
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Proposition
Suppose that S is irreducible and essential unitary and
G = {S,SS∗}. Let S be a operator system generated by G
and T = C∗(G ). Let ρ : T →B(H) be a singular
representation. Then the restriction ρ|S has unique extension
property.

Proof:
We will use the fact that a UCP map φ ′ has the unique
extension property if and only if φ ′ is maximal, meaning that
every UCP map that dilates φ ′ contains as a direct summand.
Let K be a Hilbert space properly containing H. Let
π : T →B(K ) be a representation such that the restriction
π|S is a dilation of ρ|S . To show that the restriction ρ|S has
unique extension property, it is enough to show that the
dilation π is trivial, that is, π|S = ρ|S ⊕φ for some UCP map
φ .
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Using the Lemma, we can decompose K = H⊕H⊥ and write

π(S) =
(

ρ(S) 0
Y Z

)
.

Since ρ is singular, ρ(S) is unitary, so it cannot be dilated to a
compression. Therefore the dilation π must be trivial.
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Proposition
Suppose that S is irreducible and essential unitary and
G = {S,SS∗}. Let S be a operator system generated by G
and T = C∗(G ). Then the identity representation of T is a
boundary representation for S .

Proof:
Since S is irreducible and essential unitary. The unital
C∗-algebra generated by G contains the compact operators,
that is, K (H)⊆T = C∗(G ). The operator system S ⊂T is
irreducible and contains the identity operator. By our
assumption, 0 6= K = I−SS∗ ∈S is a compact operator, we
have ||K −K ||< ||K ||. Therefore, the quotient map
q : B(H)→B(H)/K (H) is not completely isometric on S .
Hence by boundary theorem of Arveson, identity representation
of T is a boundary representation for S .
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Theorem
Let S be an irreducible and essential unitary and G = {S,SS∗}.
Let T = C∗(G ) be the unital C∗-algebra generated by G .
Then G is a hyperrigid generator for T .

Proof:
Let S be the operator system generated by G . Note that G is
hyperrigid if and only if S is hyperrigid. It suffices to show
that for every nondegenerate representation ρ of T , ρ|S has
the unique extension property.
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The Proposition implies that every singular nondegenerate
representation π of T , π|S has the unique extension property.
By Proposition, the restriction of the identity representation of
T to S has the unique extension property. Since every
nondegenerate representation of T splits as the direct sum of
a multiple of the identity representation and a singular
nondegenerate representation and by the unique extension
property passes to direct sums. Hence every nondegenerate
representation of T restricted to S has the unique extension
property.
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Hyperrigid Generators

Here, We discuss the hyperrigid generators for the C∗-algebras
generated by a single operator.

Theorem
Let T be an operator in B(H) that generate a unital
C∗-algebra A and let G = {T ,T ∗T ,TT ∗}. Then G is
hyperrigid generators for unital C∗-algebra A .

Proof:
Let S be the operator system generated by G . It suffices to
show that for every nondegenerate representation π of A , π|S
has the unique extension property.
Let π : A →B(H) be a nondegenerate representation. Let
φ : A →B(H) be a UCP map satisfying
φ(T ) = π(T ),φ(T ∗T ) = π(T ∗T ) and φ(TT ∗) = π(TT ∗). We
have to show that φ = π on A .
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Using Stinespring theorem, we can express φ in the form

φ(S) = V ∗σ(S)V , ∀ S ∈A .

Where σ is a representation of A on a Hilbert space K ,
V : H → K is an isometry, and which is minimal in the sense
that σ(A)VH = K .
We first claim that σ(T )V = Vπ(T ), We have

V ∗σ(T )∗VV ∗σ(T )V = φ(T )∗φ(T ) = π(T )∗π(T ) = π(T ∗T )

Hence,

V ∗σ(T )∗(1−VV ∗)σ(T )V
= V ∗σ(T )∗σ(T )V −V ∗σ(T )∗VV ∗σ(T )V
= V ∗σ(T ∗T )V −π(T )∗π(T )
= π(T ∗T )−π(T ∗T ) = 0.

σ(T ) leaves VH invariant.
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Therefore σ(T )V = VV ∗σ(T )V = V φ(T ) = Vπ(T ).

VV ∗σ(T )(1K −VV ∗)σ(T )∗VV ∗
= VV ∗σ(T )σ(T )∗VV ∗
−VV ∗σ(T )VV ∗σ(T )∗VV ∗

= VV ∗σ(TT ∗)VV ∗−Vπ(T )π(T )∗V ∗
= Vπ(TT ∗)V ∗−Vπ(TT ∗)V ∗ = 0.

Hence (1K −VV ∗)σ(T )∗VV ∗ = 0, we conclude that VH is
invariant under both σ(T ) and σ(T )∗. Since A is generated
by T it follows that σ(A )VH ⊆ VH. By minimality we must
have VH = K , which implies that V is unitary and therefore
φ(S) = V−1σ(S)V is a representation. Since φ agrees with π

on a generating set. Therefore φ = π on A .
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Corollary
Let T be a normal operator in B(H) that generate a unital
C∗-algebra A and let G = {T ,TT ∗}. Then G is hyperrigid
generator for unital C∗-algebra A .

Corollary
Let T be an unitary operator in B(H) that generate a
C∗-algebra A and let G = {T}. Then G is hyperrigid
generator for C∗-algebra A .
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Proposition
Let V ∈B(H) be an isometry (not unitary) that generates a
C∗-algebra A . Then
(i) G = {V ,VV ∗} is hyperrigid generator for A .
(ii) The smaller generating set G0 = {V } is not hyperrigid.

Proof:
Let S be the operator system generated by G0. Let Id denote
the identity representation of a C∗-algebra A . Let V ∗Id(·)V
be a completely positive map on the C∗-algebra A . We have
V ∗IdV |S = Id |S , but V ∗Id(VV ∗)V = I 6= VV ∗ = Id(VV ∗).
This implies that Id representation restricted to S has two
UCP map extensions V ∗IdV and Id . Therefore the
nondegenerate representation Id |S does not have unique
extension property. S is not hyperrigid operator system in a
C∗-algebra A . This will imply that G0 is not hyperrigid in A .
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