

K-contractions

Dominik Schillo

Recent Advances in Operator Theory and Operator Algebras, 2018-12-13

Joint work with Jörg Eschmeier (Saarland University)

Contractions

Contractions

•000000

Let \mathcal{H} be a complex Hilbert space.

Lemma

Let $T \in B(\mathcal{H})$. The following assertions are equivalent:

1 T is a contraction (i.e., $||T|| \le 1$),

Contractions

Contractions

•000000

Let \mathcal{H} be a complex Hilbert space.

Lemma

Let $T \in B(\mathcal{H})$. The following assertions are equivalent:

- 1 T is a contraction (i.e., $||T|| \le 1$),
- $1/K(T, T^*) \ge 0$, where

$$K \colon \mathbb{D} \times \mathbb{D} \to \mathbb{C}, \ (z, w) \mapsto \frac{1}{1 - z\overline{w}} = \frac{1}{1 - \langle z, w \rangle}$$

is the reproducing kernel of the Hardy space on the unit disc $H^2(\mathbb{D})$.

Contractions

000000

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

Contractions

0000000

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

Radial K-hypercontractions

2 Every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U,U^*)=0.$$

Contractions

0000000

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

Radial K-hypercontractions

2 Every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U,U^*)=0.$$

Contractions

0000000

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

Radial K-hypercontractions

2 Every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U,U^*)=0.$$

Lemma

If $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are contractions, then $T \oplus S$ is a contraction.

Contractions

000000

1 The shift operator $M_z \in B(H^2(\mathbb{D}))$ satisfies

$$\frac{1}{K}(M_z,M_z^*)=P_{\mathbb{C}}\geq 0.$$

Radial K-hypercontractions

2 Every unitary $U \in B(\mathcal{H})$ fulfills

$$\frac{1}{K}(U,U^*)=0.$$

Lemma

- **1** If $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are contractions, then $T \oplus S$ is a contraction.
- **2** If $T \in B(\mathcal{H})$ is a contraction and $\mathcal{M} \subset \mathcal{H}$ is a subspace, then $T|_{\mathcal{M}}$ is a contraction.

Contractions

0000000

We say that a contraction $T \in B(\mathcal{H})$ belongs to the class $C_{\cdot 0}$ or is pure if

$$T_{\infty} = \tau_{\text{SOT}} - \lim_{N \to \infty} T^N T^{*N} = 0.$$

Contractions

0000000

We say that a contraction $T \in B(\mathcal{H})$ belongs to the class C_{0} or is pure if

Radial K-hypercontractions

$$T_{\infty} = \tau_{\text{SOT}} - \lim_{N \to \infty} T^N T^{*N} = 0.$$

Example

The shift operator $M_z \in B(H^2(\mathbb{D}))$ belongs to $C_{\cdot 0}$.

$\mathsf{Theorem}$

Contractions

0000000

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_T \colon \mathcal{H} \to H^2(\mathbb{D}, \mathcal{D}_T), \ h \mapsto \sum_{n=0}^{\infty} (D_T T^{*n} h) z^n,$$

Radial K-hypercontractions

where $D_T = (1 - TT^*)^{1/2} = (1/K(T, T^*))^{1/2}$ and $\mathcal{D}_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator.

Theorem

Contractions

0000000

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_T \colon \mathcal{H} \to H^2(\mathbb{D}, \mathcal{D}_T), \ h \mapsto \sum_{n=0}^{\infty} (D_T T^{*n} h) z^n,$$

where $D_T = (1 - TT^*)^{1/2} = (1/K(T, T^*))^{1/2}$ and $\mathcal{D}_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle T_{\infty} h, h \rangle$$

for all $h \in \mathcal{H}$, and

$$\pi_T T^* = (M_z^{\mathcal{D}_T})^* \pi_T.$$

$\mathsf{Theorem}$

Contractions

0000000

Let $T \in B(\mathcal{H})$ be a contraction. Then

$$\pi_T\colon \mathcal{H}\to H^2(\mathbb{D},\mathcal{D}_T),\ h\mapsto \sum_{n=0}^\infty (D_T\,T^{*n}h)z^n,$$

where $D_T = (1 - TT^*)^{1/2} = (1/K(T, T^*))^{1/2}$ and $D_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle T_{\infty} h, h \rangle$$

for all $h \in \mathcal{H}$, and

$$\pi_T T^* = (M_z^{\mathcal{D}_T})^* \pi_T.$$

Corollary

A contraction $T \in B(\mathcal{H})$ is in $C_{\cdot 0}$ if and only if π_T is an isometry.

The $C_{.0}$ case

Contractions

0000000

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ be an operator. The following statements are equivalent:

1 T is a contraction which belongs to $C_{.0}$,

The $C_{\cdot 0}$ case

Contractions

0000000

Corollary

Let $T \in B(\mathcal{H})$ be an operator. The following statements are equivalent:

- 1 T is a contraction which belongs to $C_{.0}$,
- 2 there exist a Hilbert space \mathcal{D} , and an isometry $\pi:\mathcal{H}\to H^2(\mathbb{D},\mathcal{D})$ such that

$$\pi T^* = (M_z^{\mathcal{D}})^* \pi.$$

Remark

Contractions

0000000

If $T \in B(\mathcal{H})$ is a $C_{.0}$ -contraction and $S \in Lat(T)$, then $T|_{S}$ is also $C_{.0}$ -contraction.

Radial K-hypercontractions

Remark

Contractions

0000000

If $T \in B(\mathcal{H})$ is a $C_{.0}$ -contraction and $S \in Lat(T)$, then $T|_{S}$ is also $C_{.0}$ -contraction.

Theorem

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H^2(\mathbb{D}, \mathcal{E})$, the following statements are equivalent:

Remark

Contractions

0000000

If $T \in B(\mathcal{H})$ is a $C_{.0}$ -contraction and $S \in Lat(T)$, then $T|_{S}$ is also $C_{.0}$ -contraction.

Theorem

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H^2(\mathbb{D}, \mathcal{E})$, the following statements are equivalent:

$$oldsymbol{\mathbb{I}} \ \mathcal{S} \in \mathsf{Lat}(M_z^{\mathcal{E}}),$$

Remark

Contractions

0000000

If $T \in B(\mathcal{H})$ is a $C_{.0}$ -contraction and $S \in Lat(T)$, then $T|_{S}$ is also $C_{.0}$ -contraction.

Theorem

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H^2(\mathbb{D}, \mathcal{E})$, the following statements are equivalent:

- $\mathcal{S} \in \mathsf{Lat}(M_{\tau}^{\mathcal{E}}),$
- 2 there exist a Hilbert space \mathcal{D} , and a bounded analytic function $\theta \colon \mathbb{D} \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H^2(\mathbb{D}, \mathcal{D}) \to H^2(\mathbb{D}, \mathcal{E}), \ f \mapsto \theta f$$

is a partial isometry with $Im(M_{\theta}) = S$.

Theorem

Contractions

000000

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

Theorem

Contractions

0000000

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

1
$$1/K(T, T^*) \ge 0$$
,

Theorem

Contractions

0000000

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

- 1 $1/K(T, T^*) \geq 0$,
- 2 there exist Hilbert spaces \mathcal{D} and \mathcal{K} , a unitary operator $U \in B(\mathcal{K})$, and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that $\Pi T^* = (M_z^{\mathcal{D}} \oplus U)^* \Pi.$

Theorem

Contractions

0000000

Let $T \in B(\mathcal{H})$ be an operator and write $H_K = H^2(\mathbb{D})$. The following statements are equivalent:

- $1/K(T, T^*) \geq 0$,
- 2 there exist Hilbert spaces \mathcal{D} and \mathcal{K} , a unitary operator $U \in B(\mathcal{K})$, and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that $\Pi T^* = (M_{\tau}^{\mathcal{D}} \oplus U)^* \Pi.$

Question

For which reproducing kernels K does an analogue theorem hold? What happens if we look at commuting tuples $T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$?

Unitarily invariant spaces on \mathbb{B}_d

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

Radial K-hypercontractions

$$k(z) = \sum_{n=0}^{\infty} a_n z^n$$
 $(z \in \mathbb{D})$

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc \mathbb{D} .

Unitarily invariant spaces on \mathbb{B}_d

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

$$k(z) = \sum_{n=0}^{\infty} a_n z^n$$
 $(z \in \mathbb{D})$

Radial K-hypercontractions

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc \mathbb{D} . The map

$$K \colon \mathbb{B}_d \times \mathbb{B}_d \to \mathbb{C}, \ (z, w) \mapsto \sum_{n=0}^{\infty} a_n \langle z, w \rangle^n$$

defines a semianalytic positive definite function and hence, there exists a reproducing kernel Hilbert space $H_K \subset \mathcal{O}(\mathbb{B}_d)$ with kernel K.

Unitarily invariant spaces on \mathbb{B}_d

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of positive numbers with $a_0=1$ and such that

$$k(z) = \sum_{n=0}^{\infty} a_n z^n$$
 $(z \in \mathbb{D})$

Radial K-hypercontractions

defines a holomorphic function with radius of convergence at least 1 and no zeros in the unit disc \mathbb{D} . The map

$$K \colon \mathbb{B}_d \times \mathbb{B}_d \to \mathbb{C}, \ (z, w) \mapsto \sum_{n=0}^{\infty} a_n \langle z, w \rangle^n$$

defines a semianalytic positive definite function and hence, there exists a reproducing kernel Hilbert space $H_K \subset \mathcal{O}(\mathbb{B}_d)$ with kernel K. The space H_K is a so called unitarily invariant space on \mathbb{B}_d .

Furthermore, we suppose that $\sup_{n\in\mathbb{N}} a_n/a_{n+1} < \infty$ such that the K-shift $M_z = (M_{z_1}, \dots, M_{z_d}) \in B(H_K)^d$ is well-defined.

Furthermore, we suppose that $\sup_{n\in\mathbb{N}} a_n/a_{n+1} < \infty$ such that the K-shift $M_z = (M_{z_1}, \dots, M_{z_d}) \in B(H_K)^d$ is well-defined. Since k has no zeros in \mathbb{D} , the function

Radial K-hypercontractions

$$\frac{1}{k} \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto \frac{1}{k(z)}$$

is again holomorphic and hence admits a Taylor expansion

$$\frac{1}{k}(z) = \sum_{n=0}^{\infty} c_n z^n \qquad (z \in \mathbb{D})$$

with a suitable sequence $(c_n)_{n\in\mathbb{N}}$ in \mathbb{R} .

If $a_n = 1$ for all $n \in \mathbb{N}$, then H_K is the Hardy space (d = 1) or the Drury-Arveson space $(d \ge 2)$.

Radial K-hypercontractions

Contractions

If $a_n = 1$ for all $n \in \mathbb{N}$, then H_K is the Hardy space (d = 1) or the Drury-Arveson space $(d \ge 2)$.

Radial K-hypercontractions

2 If $\nu > 0$ and $a_n = a_n^{(\nu)} = (-1)^n {\binom{-\nu}{n}}$ for all $n \in \mathbb{N}$, then

$$K(z,w) = K^{(\nu)}(z,w) = \frac{1}{(1-\langle z,w\rangle)^{\nu}} \qquad (z,w\in\mathbb{B}_d),$$

i.e., $H_{K(\nu)}$ is a weighted Bergman space.

Contractions

If $a_n = 1$ for all $n \in \mathbb{N}$, then H_K is the Hardy space (d = 1) or the Drury-Arveson space $(d \ge 2)$.

Radial K-hypercontractions

2 If $\nu > 0$ and $a_n = a_n^{(\nu)} = (-1)^n \binom{-\nu}{n}$ for all $n \in \mathbb{N}$, then

$$K(z,w) = K^{(\nu)}(z,w) = \frac{1}{(1-\langle z,w\rangle)^{\nu}} \qquad (z,w\in\mathbb{B}_d),$$

i.e., $H_{K(\nu)}$ is a weighted Bergman space.

The space H_K is a complete Nevanlinna-Pick space if and only if

$$c_n \leq 0$$

for all n > 1.

Contractions

Let $T = (T_1, \dots, T_d) \in B(\mathcal{H})^d$ be a commuting tuple. Define

$$\left(\frac{1}{K}\right)_N(T,T^*) = \sum_{n=0}^N c_n \sigma_T^k(1)$$

Radial K-hypercontractions

for all $N \in \mathbb{N}$, where

$$\sigma_T \colon B(\mathcal{H}) \to B(\mathcal{H}), \ X \mapsto \sum_{i=1}^d T_i X T_i^*.$$

Contractions

Let $T = (T_1, \dots, T_d) \in B(\mathcal{H})^d$ be a commuting tuple. Define

$$\left(rac{1}{K}
ight)_N(T,T^*)=\sum_{n=0}^N c_n\sigma_T^k(1)$$

Radial K-hypercontractions

for all $N \in \mathbb{N}$, where

$$\sigma_T \colon \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), \ X \mapsto \sum_{i=1}^d T_i X T_i^*.$$

Furthermore, we write

$$\frac{1}{K}(T, T^*) = \tau_{\text{SOT}} - \lim_{N \to \infty} \left(\frac{1}{K}\right)_N (T, T^*)$$

if the latter exists.

Contractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.

Contractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

- 1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.
- **2** We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Radial K-hypercontractions

Contractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

- 1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.
- **2** We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Radial K-hypercontractions

Contractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

- 1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.
- **2** We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Example

If d=1, a $K^{(1)}$ -contraction is a contraction.

Contractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

- 1 We call T a K-contraction if $1/K(T, T^*) \ge 0$.
- **2** We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Radial K-hypercontractions

Example

- If d = 1. a $K^{(1)}$ -contraction is a contraction.
- If d > 2, a $K^{(1)}$ -contraction is a row contraction.

Contractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple.

- 11 We call T a K-contraction if $1/K(T, T^*) > 0$.
- **2** We call T a spherical unitary if T satisfies $\sigma_T(1) = 1$ and consists of normal operators.

Radial K-hypercontractions

Example

- If d=1, a $K^{(1)}$ -contraction is a contraction.
- If d > 2, a $K^{(1)}$ -contraction is a row contraction.
- **3** Let $m \in \mathbb{N}^*$. We call a commuting tuple $T \in B(\mathcal{H})^d$ an *m*-hypercontraction if T is a $K^{(\ell)}$ -contraction for all $\ell=1,\ldots,m$.

If there exists a natural number $p \in \mathbb{N}$ such that

$$c_n \ge 0$$
 for all $n \ge p$ or $c_n \le 0$ for all $n \ge p$

holds, then

$$\frac{1}{K}(M_z, M_z^*) = P_{\mathbb{C}}$$
 and $\sum_{n=0}^{\infty} |c_n| < \infty$.

If there exists a natural number $p \in \mathbb{N}$ such that

$$c_n \ge 0$$
 for all $n \ge p$ or $c_n \le 0$ for all $n \ge p$

holds, then

Contractions

$$\frac{1}{K}(M_z, M_z^*) = P_{\mathbb{C}}$$
 and $\sum_{n=0}^{\infty} |c_n| < \infty$.

Example

The condition above is satisfied in the case when H_K is a

1 weighted Bergman space,

If there exists a natural number $p \in \mathbb{N}$ such that

$$c_n \ge 0$$
 for all $n \ge p$ or $c_n \le 0$ for all $n \ge p$

Radial K-hypercontractions

holds, then

$$\frac{1}{K}(M_z, M_z^*) = P_{\mathbb{C}}$$
 and $\sum_{n=0}^{\infty} |c_n| < \infty$.

Example

The condition above is satisfied in the case when H_K is a

- 1 weighted Bergman space,
- 2 complete Nevanlinna-Pick space.

If there exists a natural number $p \in \mathbb{N}$ such that

$$c_n \ge 0$$
 for all $n \ge p$ or $c_n \le 0$ for all $n \ge p$

holds, then

Contractions

$$\frac{1}{K}(M_z, M_z^*) = P_{\mathbb{C}}$$
 and $\sum_{n=0}^{\infty} |c_n| < \infty$.

Example

The condition above is satisfied in the case when H_K is a

- 1 weighted Bergman space,
- 2 complete Nevanlinna-Pick space.

For the rest of this section, we suppose that the condition in the last proposition holds.

Contractions

Let $T \in B(\mathcal{H})^d$ be a K-contraction. We define

$$\Sigma_{N}(T) = 1 - \sum_{n=0}^{N} a_{n} \sigma_{T}^{n} \left(\frac{1}{K}(T, T^{*}) \right)$$

Radial K-hypercontractions

for $N \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists.

Contractions

Let $T \in B(\mathcal{H})^d$ be a K-contraction. We define

$$\Sigma_{N}(T) = 1 - \sum_{n=0}^{N} a_{n} \sigma_{T}^{n} \left(\frac{1}{K} (T, T^{*}) \right)$$

Radial K-hypercontractions

for $N \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists. If $\Sigma(T) = 0$, we call T K-pure.

Let $T \in B(\mathcal{H})^d$ be a K-contraction. We define

$$\Sigma_{N}(T) = 1 - \sum_{n=0}^{N} a_{n} \sigma_{T}^{n} \left(\frac{1}{K}(T, T^{*}) \right)$$

for $N \in \mathbb{N}$ and write

$$\Sigma(T) = \tau_{\text{SOT}} - \lim_{N \to \infty} \Sigma_N(T)$$

if the latter exists. If $\Sigma(T) = 0$, we call T K-pure.

Remark

If $K = K^{(1)}$ and $T \in B(\mathcal{H})^d$ is a $K^{(1)}$ -contraction, then

$$\Sigma_N(T) = \sigma_T^{N+1}(1)$$

for all $N \in \mathbb{N}$, and hence,

$$\Sigma(T) = T_{\infty} \geq 0.$$

K-contractions 15

Proposition

Contractions

Let $T \in B(\mathcal{H})^d$ be a K-contraction such that $\Sigma(T)$ exists.

Radial K-hypercontractions

Proposition

Contractions

Let $T \in B(\mathcal{H})^d$ be a K-contraction such that $\Sigma(T)$ exists. The map

Radial K-hypercontractions

$$\pi_T \colon \mathcal{H} \to H_K(\mathcal{D}_T), \ h \mapsto \sum_{\alpha \in \mathbb{N}^d} \left(a_{|\alpha|} \frac{|\alpha|!}{\alpha!} D_T T^{*\alpha} h \right) z^{\alpha},$$

where $D_T = (1/K(T, T^*))^{\frac{1}{2}}$ and $\mathcal{D}_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator.

Proposition

Contractions

Let $T \in B(\mathcal{H})^d$ be a K-contraction such that $\Sigma(T)$ exists. The map

$$\pi_{\mathcal{T}} \colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}_{\mathcal{T}}), \ h \mapsto \sum_{\alpha \in \mathbb{N}^d} \left(a_{|\alpha|} \frac{|\alpha|!}{\alpha!} D_{\mathcal{T}} T^{*\alpha} h \right) z^{\alpha},$$

where $D_T = (1/K(T, T^*))^{\frac{1}{2}}$ and $\mathcal{D}_T = \overline{D_T \mathcal{H}}$, is a well-defined bounded linear operator. Furthermore, we have

$$\|\pi_T h\|^2 = \|h\|^2 - \langle \Sigma(T)h, h \rangle$$

for all $h \in \mathcal{H}$ and

$$\pi_T T_i^* = (M_{z_i}^{\mathcal{D}_T})^* \pi_T$$

for all $i = 1, \ldots, d$.

Contractions

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

Radial K-hypercontractions

1 T is a K-contraction which is K-pure,

The pure case

Contractions

Theorem (Eschmeier, S.)

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

Radial K-hypercontractions

- 1 T is a K-contraction which is K-pure,
- **2** there exist a Hilbert space \mathcal{D} and an isometry $\Pi: \mathcal{H} \to H_{\kappa}(\mathcal{D})$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}})^* \Pi$$

for all $i = 1, \ldots, d$.

A Beurling-type theorem

Theorem (Eschmeier, S.)

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H_K(\mathcal{E})$, the following statements are equivalent:

Radial K-hypercontractions

1 $S \in \text{Lat}(M_z^{\mathcal{E}})$ and $M_z^{\mathcal{E}}|_{S}$ is K-pure,

A Beurling-type theorem

Theorem (Eschmeier, S.)

Let \mathcal{E} be a Hilbert space. For $\mathcal{S} \subset H_K(\mathcal{E})$, the following statements are equivalent:

- **1** $S \in \text{Lat}(M_z^{\mathcal{E}})$ and $M_z^{\mathcal{E}}|_{S}$ is K-pure,
- 2 there exist a Hilbert space \mathcal{D} and a bounded analytic function $\theta \colon \mathbb{B}_d \to B(\mathcal{D}, \mathcal{E})$ such that

$$M_{\theta} \colon H_{K}(\mathcal{D}) \to H_{K}(\mathcal{E}), \ f \mapsto \theta \cdot f$$

is a partial isometry with $Im(M_{\theta}) = S$.

The general case

Definition

We call a K-contraction $T \in B(\mathcal{H})^d$ strong if $\Sigma(T) \geq 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Radial K-hypercontractions

The general case

Contractions

Definition

We call a K-contraction $T \in B(\mathcal{H})^d$ strong if $\Sigma(T) \geq 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Remark

If a K-contraction is K-pure, then it is also strong. Hence, the K-shift $M_z \in B(H_K)^d$ is a strong K-contraction.

The general case

Contractions

Definition

We call a K-contraction $T \in B(\mathcal{H})^d$ strong if $\Sigma(T) \geq 0$ and $\Sigma(T) = \sigma_T(\Sigma(T))$ holds.

Remark

- If a K-contraction is K-pure, then it is also strong. Hence, the K-shift $M_z \in B(H_K)^d$ is a strong K-contraction.
- 2 Every spherical unitary is a strong K-contraction.

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

Radial K-hypercontractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

Radial K-hypercontractions

■ T is a strong K-contraction,

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

- T is a strong K-contraction,
- there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in \mathcal{B}(\mathcal{K})^d$, and an isometry $\Pi \colon \mathcal{H} \to \mathcal{H}_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \quad (i = 1, \dots, d).$$

Radial K-hypercontractions

Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following statements are equivalent:

- T is a strong K-contraction,
- there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^d$, and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \quad (i = 1, \dots, d).$$

Radial K-hypercontractions

If we assume that H_K is regular, i.e., $\lim_{n\to\infty} a_n/a_{n+1}=1$, then the above are also equivalent to

 there is a unital completely contractive linear map ρ : span $\{id_{H_K}, M_{z_i}, M_{z_i}M_{z_i}^*; i=1,\ldots,d\} \rightarrow B(\mathcal{H})$ with $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \qquad (i = 1, ..., d).$

Radial K-hypercontractions

Definition

Contractions

We call a commuting tuple $T \in B(\mathcal{H})^d$ with $\sigma(T) \subset \overline{\mathbb{B}}_d$ a radial K-hypercontraction if, for all 0 < r < 1, $rT \in B(\mathcal{H})^d$ is a K-contraction.

Radial K-hypercontractions

Definition

We call a commuting tuple $T \in B(\mathcal{H})^d$ with $\sigma(T) \subset \overline{\mathbb{B}}_d$ a radial K-hypercontraction if, for all 0 < r < 1, $rT \in B(\mathcal{H})^d$ is a K-contraction.

Example

Spherical unitaries are radial K-hypercontractions.

Remark

Contractions

We define

$$k_r \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto k(rz) \qquad (r \in [0,1]).$$

Radial K-hypercontractions

00000

Remark

Contractions

We define

$$k_r \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto k(rz) \qquad (r \in [0,1]).$$

Radial K-hypercontractions

00000

For $r, s \in [0, 1]$, the function k_s/k_r has a Taylor expansion on \mathbb{D}

$$\sum_{n=0}^{\infty} a_n(s,r)z^n.$$

Remark

Contractions

We define

$$k_r \colon \mathbb{D} \to \mathbb{C}, \ z \mapsto k(rz) \qquad (r \in [0,1]).$$

Radial K-hypercontractions

00000

For $r, s \in [0, 1]$, the function k_s/k_r has a Taylor expansion on \mathbb{D}

$$\sum_{n=0}^{\infty} a_n(s,r)z^n.$$

Note that

$$a_n(1,0) = a_n$$
 and $a_n(0,1) = c_n$ $(n \in \mathbb{N}).$

If H_K is regular, then $\sigma(M_z) \subset \overline{\mathbb{B}}_d$.

If H_K is regular, then $\sigma(M_z) \subset \overline{\mathbb{B}}_d$.

From now on, we suppose that H_K is regular.

If H_K is regular, then $\sigma(M_z) \subset \overline{\mathbb{B}}_d$.

From now on, we suppose that H_K is regular.

Proposition (Olofsson, 2015)

The K-shift $M_z \in B(H_K)^d$ is a radial K-hypercontraction if and only if

$$a_n(1,r)\geq 0$$

for all $n \in \mathbb{N}$ and 0 < r < 1.

If H_K is regular, then $\sigma(M_z) \subset \overline{\mathbb{B}}_d$.

From now on, we suppose that H_K is regular.

Proposition (Olofsson, 2015)

The K-shift $M_z \in B(H_K)^d$ is a radial K-hypercontraction if and only if

$$a_n(1,r) \geq 0$$

for all $n \in \mathbb{N}$ and 0 < r < 1.

Remark (Olofsson, 2015)

If H_K is a complete Nevanlinna-Pick space or a generalized Bergman space, then M_Z is a radial K-hypercontraction.

Proposition (Olofsson, 2015)

Suppose that M_z is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^d$ be a radial K-hypercontraction. Then

$$\frac{1}{K_{\text{rad}}}(T, T^*) = \tau_{\text{SOT}} - \lim_{r \to 1} \frac{1}{K}(rT, rT^*)$$

exists and defines a positive operator.

Proposition (Olofsson, 2015)

Suppose that M_z is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^d$ be a radial K-hypercontraction. Then

$$\frac{1}{K_{\text{rad}}}(T, T^*) = \tau_{\text{SOT}} - \lim_{r \to 1} \frac{1}{K}(rT, rT^*)$$

exists and defines a positive operator.

Corollary

Contractions

If M_{τ} is a radial K-hypercontraction, then

$$\frac{1}{K_{\rm rad}}(M_z, M_z^*) = P_{\mathbb{C}}.$$

Suppose that $M_z \in B(H_K)^d$ is a radial K-hypercontraction. Let $T \in \mathcal{B}(\mathcal{H})^d$ be a commuting tuple. The following assertions are equivalent:

Suppose that $M_z \in B(H_K)^d$ is a radial K-hypercontraction. Let $T \in B(\mathcal{H})^d$ be a commuting tuple. The following assertions are equivalent:

1 T is a radial K-hypercontraction,

Suppose that $M_z \in B(H_K)^d$ is a radial K-hypercontraction. Let $T \in \mathcal{B}(\mathcal{H})^d$ be a commuting tuple. The following assertions are equivalent:

- T is a radial K-hypercontraction.
- 2 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^d$, and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^*\Pi \qquad (i = 1, \dots, d),$$

Suppose that $M_z \in B(H_K)^d$ is a radial K-hypercontraction. Let $T \in \mathcal{B}(\mathcal{H})^d$ be a commuting tuple. The following assertions are equivalent:

- T is a radial K-hypercontraction.
- 2 there exist Hilbert spaces \mathcal{D}, \mathcal{K} , a spherical unitary $U \in B(\mathcal{K})^d$, and an isometry $\Pi \colon \mathcal{H} \to H_{\mathcal{K}}(\mathcal{D}) \oplus \mathcal{K}$ such that

$$\Pi T_i^* = (M_{z_i}^{\mathcal{D}} \oplus U_i)^* \Pi \qquad (i = 1, \dots, d),$$

3 there is a unital completely contractive linear map $\rho \colon S \to B(\mathcal{H})$ on the operator space $S = \text{span} \{ \text{id}_{H_{\kappa}}, M_{z_i}, M_{z_i}, M_{z_i}^*, i = 1, \dots, d \}$ with $\rho(M_{z_i}) = T_i, \ \rho(M_{z_i}M_{z_i}^*) = T_iT_i^* \qquad (i = 1, ..., d).$

イロト イ部ト イミト イミト