Classification of crossed products of irrational rotation algebras by cyclic subgroups of $SL_2(\mathbb{Z})$

Sayan Chakraborty (ISI Kolkata)

December 18, 2018

OTOA 2018, Bangalore

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

A little bit background...

In noncommutative geometry one studies "spaces" in terms of algebras.

A little bit background...

In noncommutative geometry one studies "spaces" in terms of algebras.

Sources of C*-algebras:

- topological spaces
- groups, groupoids,...
- group actions on other C*-algebras

A little bit background...

In noncommutative geometry one studies "spaces" in terms of algebras.

Sources of C*-algebras:

- topological spaces
- groups, groupoids,...
- group actions on other C*-algebras

One basic example (noncommutative torus)

The universal C*-algebra generated by two unitaries U_1 and U_2 with the relation

$$U_2 U_1 = e^{2\pi i \theta} U_1 U_2, \quad \theta \in \mathbb{R} \setminus \mathbb{Q}.$$

We denote the algebra by A_{θ} .

Structure of C*-algebras

Elliott invariant (Ell(.))
 Classifying C*-algebras using invariants (K-theory, trace, ...)
 Examples: 1. A_θ (Elliott '93) (AT algebras),
 2. A_θ × F, F finite cyclic (Echterhoff-Lück-Phillips-Walters '10) (AF algebras).

Structure of C*-algebras

Elliott invariant (Ell(.))
 Classifying C*-algebras using invariants (K-theory, trace, ...)
 Examples: 1. A_θ (Elliott '93) (AT algebras),
 2. A_θ ⋊ F, F finite cyclic (Echterhoff-Lück-Phillips-Walters '10) (AF algebras).

Isomorphism classes of C*-algebras

- $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta' \pmod{\mathbb{Z}}$.
- A similar result holds for $A_{\theta} \rtimes F$.

Structure of C*-algebras

Elliott invariant (Ell(.))
 Classifying C*-algebras using invariants (K-theory, trace, ...)
 Examples: 1. A_θ (Elliott '93) (AT algebras),
 2. A_θ ⋊ F, F finite cyclic (Echterhoff-Lück-Phillips-Walters '10) (AF algebras).

Isomorphism classes of C*-algebras

- $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta' \pmod{\mathbb{Z}}$.
- A similar result holds for $A_{\theta} \rtimes F$.

Question: What happens for $A_{\theta} \rtimes \mathbb{Z}$? Crossed product algebras

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Crossed product algebras

Definition

 $A \rtimes_{\alpha} G$, for a unital C*-algebra A and a discrete group G, has a natural representation (also called regular representation) ι on the Hilbert module $l^{2}(G, A)$ which is given by

$$\iota(\mathbf{a})(\xi)(g) = \alpha_{g^{-1}}(\mathbf{a})\xi(g), \quad \iota(h)(\xi)(g) = \xi(h^{-1}g),$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

for $a \in A$ and $g, h \in G$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 $\blacktriangleright \text{ (Rieffel) } A_{\theta} \cong C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}.$

 $\blacktriangleright \text{ (Rieffel) } A_{\theta} \cong C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}.$

 (Watatani, Brenken) Define an action of SL₂(Z) on A_θ by sending a matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

to the automorphism α_A of A_{θ} defined by

$$\alpha_{\mathcal{A}}(U_1) := e^{\pi i (ac)\theta} U_1^a U_2^c, \qquad \alpha_{\mathcal{A}}(U_2) := e^{\pi i (bd)\theta} U_1^b U_2^d.$$

 $\blacktriangleright \text{ (Rieffel) } A_{\theta} \cong C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}.$

 (Watatani, Brenken) Define an action of SL₂(Z) on A_θ by sending a matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

to the automorphism α_A of A_{θ} defined by

$$\alpha_{\mathcal{A}}(U_1) := e^{\pi i (ac)\theta} U_1^a U_2^c, \qquad \alpha_{\mathcal{A}}(U_2) := e^{\pi i (bd)\theta} U_1^b U_2^d.$$

Let $A \in SL_2(\mathbb{Z})$ be a matrix of infinite order, and consider the restriction of the above action to the (infinite cyclic) subgroup generated by A. Denote the corresponding crossed product by \mathbb{Z} as $A_{\theta} \rtimes_A \mathbb{Z}$.

• A_{θ} is unital, simple, nuclear, monotracial. The trace is given by $\tau_{\theta}(\sum a_{mn}U^mV^n) := a_{00}$.

• A_{θ} is unital, simple, nuclear, monotracial. The trace is given by $\tau_{\theta}(\sum a_{mn}U^mV^n) := a_{00}$.

• A_{θ} has tracial rank zero. Also AT alegbra.

- A_θ is unital, simple, nuclear, monotracial. The trace is given by τ_θ(∑ a_{mn}U^mVⁿ) := a₀₀.
- A_{θ} has tracial rank zero. Also AT alegbra.
- $K_0(A_\theta) \cong \mathbb{Z}^2$ with generators $[1]_0$ and $[p_\theta]_0$, where p_θ is a projection in A_θ satisfying $\tau_\theta(p_\theta) = \theta$ (this is the so-called *Rieffel projection*).

- A_θ is unital, simple, nuclear, monotracial. The trace is given by τ_θ(∑ a_{mn}U^mVⁿ) := a₀₀.
- A_{θ} has tracial rank zero. Also AT alegbra.
- $K_0(A_\theta) \cong \mathbb{Z}^2$ with generators $[1]_0$ and $[p_\theta]_0$, where p_θ is a projection in A_θ satisfying $\tau_\theta(p_\theta) = \theta$ (this is the so-called *Rieffel projection*).

$$\blacktriangleright \text{ } \text{K}_1(A_\theta) \cong \mathbb{Z}^2.$$

- A_θ is unital, simple, nuclear, monotracial. The trace is given by τ_θ(∑ a_{mn}U^mVⁿ) := a₀₀.
- A_{θ} has tracial rank zero. Also AT alegbra.
- $K_0(A_\theta) \cong \mathbb{Z}^2$ with generators $[1]_0$ and $[p_\theta]_0$, where p_θ is a projection in A_θ satisfying $\tau_\theta(p_\theta) = \theta$ (this is the so-called *Rieffel projection*).

$$\blacktriangleright \text{ } \text{K}_1(A_\theta) \cong \mathbb{Z}^2.$$

• $A_{\theta} \cong A_{\theta'}$ if and only if $\theta = \pm \theta' \pmod{\mathbb{Z}}$.

$A_{\theta} \rtimes_A \mathbb{Z}$: K-theory and generators

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

$A_{\theta} \rtimes_A \mathbb{Z}$: K-theory and generators Theorem

1. If Tr(A) = 2 then $I_2 - A^{-1}$ has the "Smith normal form" diag $(h_1, 0)$, and

$$\begin{split} \mathrm{K}_{0}(A_{\theta}\rtimes_{A}\mathbb{Z}) &\cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, \\ \mathrm{K}_{1}(A_{\theta}\rtimes_{A}\mathbb{Z}) &\cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{h_{1}}, \\ (\tau_{A})_{*}(\mathrm{K}_{0}(A_{\theta}\rtimes_{A}\mathbb{Z})) &= \mathbb{Z} + \theta\mathbb{Z}, \\ \mathrm{K}_{0}(A_{\theta}\rtimes_{A}\mathbb{Z}) &= \langle [1]_{0}, i_{*}([p_{\theta}]_{0}), [P_{A}]_{0} \rangle. \end{split}$$

$A_{ heta} times_A \mathbb{Z}$: K-theory and generators Theorem

1. If Tr(A) = 2 then $I_2 - A^{-1}$ has the "Smith normal form" diag $(h_1, 0)$, and

$$\begin{split} \mathrm{K}_{0}(A_{\theta}\rtimes_{A}\mathbb{Z}) &\cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, \\ \mathrm{K}_{1}(A_{\theta}\rtimes_{A}\mathbb{Z}) &\cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{h_{1}}, \\ (\tau_{A})_{*}(\mathrm{K}_{0}(A_{\theta}\rtimes_{A}\mathbb{Z})) &= \mathbb{Z} + \theta\mathbb{Z}, \\ \mathrm{K}_{0}(A_{\theta}\rtimes_{A}\mathbb{Z}) &= \langle [1]_{0}, i_{*}([p_{\theta}]_{0}), [P_{A}]_{0} \rangle. \end{split}$$

2. If $Tr(A) \notin \{0, \pm 1, 2\}$ then $l_2 - A^{-1}$ has the Smith normal form diag (h_1, h_2) , and

$$\begin{split} \mathrm{K}_{0}(\mathcal{A}_{\theta}\rtimes_{\mathcal{A}}\mathbb{Z}) &\cong \mathbb{Z} \oplus \mathbb{Z}, \\ \mathrm{K}_{1}(\mathcal{A}_{\theta}\rtimes_{\mathcal{A}}\mathbb{Z}) &\cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{h_{1}} \oplus \mathbb{Z}_{h_{2}}, \\ (\tau_{\mathcal{A}})_{*}(\mathrm{K}_{0}(\mathcal{A}_{\theta}\rtimes_{\mathcal{A}}\mathbb{Z})) &= \mathbb{Z} + \theta\mathbb{Z}, \\ \mathrm{K}_{0}(\mathcal{A}_{\theta}\rtimes_{\mathcal{A}}\mathbb{Z}) &= \langle [1]_{0}, i_{*}([p_{\theta}]_{0}) \rangle. \end{split}$$

$A_{\theta} \rtimes_A \mathbb{Z}$: sturucture

Theorem

• The \mathbb{Z} -action on A_{θ} has the "tracial Rokhlin property".

$A_{\theta} \rtimes_A \mathbb{Z}$: sturucture

Theorem

- The \mathbb{Z} -action on A_{θ} has the "tracial Rokhlin property".
- $A_{\theta} \rtimes_A \mathbb{Z}$ is a unital, simple, nuclear, monotracial C*-algebra with tracial rank zero and satisfies the UCT.

Theorem

- The \mathbb{Z} -action on A_{θ} has the "tracial Rokhlin property".
- ► $A_{\theta} \rtimes_A \mathbb{Z}$ is a unital, simple, nuclear, monotracial C*-algebra with tracial rank zero and satisfies the UCT.

Corollary

 $A_{\theta} \rtimes_A \mathbb{Z} \cong A_{\theta'} \rtimes_B \mathbb{Z}$ if and only if $\text{Ell}(A_{\theta} \rtimes_A \mathbb{Z})$ and $\text{Ell}(A_{\theta'} \rtimes_B \mathbb{Z})$ are isomorphic.

Theorem

- 1. $A_{\theta} \rtimes_A \mathbb{Z}$ and $A_{\theta'} \rtimes_B \mathbb{Z}$ are *-isomorphic;
- 2. $\theta = \pm \theta' \pmod{\mathbb{Z}}$ and $P(I_2 A^{-1})Q = I_2 B^{-1}$ for some P, Q in $GL_2(\mathbb{Z})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

- 1. $A_{\theta} \rtimes_A \mathbb{Z}$ and $A_{\theta'} \rtimes_B \mathbb{Z}$ are *-isomorphic;
- 2. $\theta = \pm \theta' \pmod{\mathbb{Z}}$ and $P(I_2 A^{-1})Q = I_2 B^{-1}$ for some P, Q in $GL_2(\mathbb{Z})$.

Corollary

Suppose $\operatorname{Tr}(A) = 3$. $\operatorname{K}_0(A_{\theta} \rtimes_A \mathbb{Z}) \cong \operatorname{K}_1(A_{\theta} \rtimes_A \mathbb{Z}) \cong \mathbb{Z}^2$. The crossed product $A_{\theta} \rtimes_A \mathbb{Z}$ is an AT algebra and

$$i_*: \mathrm{K}_0(A_{\theta}) \to \mathrm{K}_0(A_{\theta} \rtimes_A \mathbb{Z})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

is an (order) isomorphism.

Theorem

- 1. $A_{\theta} \rtimes_A \mathbb{Z}$ and $A_{\theta'} \rtimes_B \mathbb{Z}$ are *-isomorphic;
- 2. $\theta = \pm \theta' \pmod{\mathbb{Z}}$ and $P(I_2 A^{-1})Q = I_2 B^{-1}$ for some P, Q in $GL_2(\mathbb{Z})$.

Corollary

Suppose $\operatorname{Tr}(A) = 3$. $\operatorname{K}_0(A_{\theta} \rtimes_A \mathbb{Z}) \cong \operatorname{K}_1(A_{\theta} \rtimes_A \mathbb{Z}) \cong \mathbb{Z}^2$. The crossed product $A_{\theta} \rtimes_A \mathbb{Z}$ is an AT algebra and

$$i_*: \mathrm{K}_0(A_\theta) \to \mathrm{K}_0(A_\theta \rtimes_A \mathbb{Z})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

is an (order) isomorphism. Hence $A_{\theta} \rtimes_A \mathbb{Z} \cong A_{\theta}$.

References

- C Bönicke, S Chakraborty, Z He, and H-C Liao. Isomorphism and morita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of *SL*₂(ℤ). *J. Funct. Anal.* 275 (2018), no. 11, 3208–3243.
- [2] S. Echterhoff, W. Lück, N.Phillips, and S. Walters. The structure of crossed products of irrational rotation algebras by finite subgroups of SL₂(Z). J. Reine Angew. Math, 639:173-221, 2010.
- [3] G.A. Elliott and D.E. Evans. The structure of the irrational rotation C*-algebra. Ann. of Math. (2), 138(3):477–501, 1993.

Thank You