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A little bit background...

In noncommutative geometry one studies "spaces" in terms of
algebras.

Sources of C*-algebras:

I topological spaces
I groups, groupoids,...
I group actions on other C*-algebras

One basic example (noncommutative torus)
The universal C*-algebra generated by two unitaries U1 and U2
with the relation

U2U1 = e2πiθU1U2, θ ∈ R \Q.

We denote the algebra by Aθ.
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What is classification?

Structure of C*-algebras

I Elliott invariant (Ell(.))
Classifying C*-algebras using invariants (K-theory, trace, ...)
Examples: 1. Aθ (Elliott ’93) (AT algebras),
2. Aθ o F , F finite cyclic (Echterhoff–Lück–Phillips–Walters
’10) (AF algebras).

Isomorphism classes of C*-algebras

I Aθ
∼= Aθ′ if and only if θ = ±θ′ (mod Z).

I A similar result holds for Aθ o F .

Question:
What happens for Aθ o Z?
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Crossed product algebras

Definition
Aoα G , for a unital C*-algebra A and a discrete group G , has a
natural representation (also called regular representation) ι on the
Hilbert module l2(G ,A) which is given by

ι(a)(ξ)(g) = αg−1(a)ξ(g), ι(h)(ξ)(g) = ξ(h−1g),

for a ∈ A and g , h ∈ G .
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Some examples....

I (Rieffel) Aθ
∼= C (T)oθ Z.

I (Watatani, Brenken) Define an action of SL2(Z) on Aθ by
sending a matrix

A =

(
a b
c d

)
to the automorphism αA of Aθ defined by

αA(U1) := eπi(ac)θUa
1U

c
2 , αA(U2) := eπi(bd)θUb

1U
d
2 .

Let A ∈ SL2(Z) be a matrix of infinite order, and consider the
restriction of the above action to the (infinite cyclic) subgroup
generated by A. Denote the corresponding crossed product by
Z as Aθ oA Z.
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Some facts about Aθ

I Aθ is unital, simple, nuclear, monotracial. The trace is given
by τθ(

∑
amnU

mV n) := a00.

I Aθ has tracial rank zero. Also AT alegbra.
I K0(Aθ) ∼= Z2 with generators [1]0 and [pθ]0, where pθ is a

projection in Aθ satisfying τθ(pθ) = θ (this is the so-called
Rieffel projection).

I K1(Aθ) ∼= Z2.

I Aθ
∼= Aθ′ if and only if θ = ±θ′ (mod Z).
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Aθ oA Z : K-theory and generators

Theorem

1. If Tr(A) = 2 then I2 − A−1 has the "Smith normal form"
diag(h1, 0), and

K0(Aθ oA Z) ∼= Z⊕ Z⊕ Z,
K1(Aθ oA Z) ∼= Z⊕ Z⊕ Z⊕ Zh1 ,

(τA)∗(K0(Aθ oA Z)) = Z+ θZ,
K0(Aθ oA Z) = 〈[1]0, i∗([pθ]0), [PA]0〉.

2. If Tr(A) 6∈ {0,±1, 2} then I2 − A−1 has the Smith normal
form diag(h1, h2), and

K0(Aθ oA Z) ∼= Z⊕ Z,
K1(Aθ oA Z) ∼= Z⊕ Z⊕ Zh1 ⊕ Zh2 ,
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Aθ oA Z : sturucture

Theorem
I The Z-action on Aθ has the "tracial Rokhlin property".

I Aθ oA Z is a unital, simple, nuclear, monotracial C ∗-algebra
with tracial rank zero and satisfies the UCT.

Corollary
Aθ oA Z ∼= Aθ′ oB Z if and only if Ell(Aθ oA Z) and Ell(Aθ′ oB Z)
are isomorphic.
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Theorem
TFAE:
1. Aθ oA Z and Aθ′ oB Z are ∗-isomorphic;
2. θ = ±θ′ (mod Z) and P(I2 − A−1)Q = I2 − B−1 for some

P,Q in GL2(Z).

Corollary
Suppose Tr(A) = 3. K0(Aθ oA Z) ∼= K1(Aθ oA Z) ∼= Z2.The
crossed product Aθ oA Z is an AT algebra and

i∗ : K0(Aθ)→ K0(Aθ oA Z)

is an (order) isomorphism. Hence Aθ oA Z ∼= Aθ.
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