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One basic example (noncommutative torus)

The universal C*-algebra generated by two unitaries U; and U,
with the relation

UrUy = Ui U, 0 €eR\ Q.

We denote the algebra by Ay.
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What is classification?

Structure of C*-algebras

» Elliott invariant (EIlI(.))
Classifying C*-algebras using invariants (K-theory, trace, ...)
Examples: 1. Ag (Elliott '93) (AT algebras),
2. Ag x F, F finite cyclic (Echterhoff-Liick—Phillips—Walters
'10) (AF algebras).

Isomorphism classes of C*-algebras

> Ap = Ay if and only if § = +60" (mod Z).
» A similar result holds for Ag x F.

Question:
What happens for Ag x Z7?
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Crossed product algebras

Definition

A X, G, for a unital C*-algebra A and a discrete group G, has a
natural representation (also called regular representation) ¢+ on the
Hilbert module /2(G, A) which is given by

(a)(€)(g) = ag-1(a)élg), (h)(E)(g) =&(h ),

forae Aand g,h € G.
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Some examples....

> (Rieffel) Ag = C(T) xp Z.
» (Watatani, Brenken) Define an action of SLy(Z) on Ag by

sending a matrix
a b
A= (2 3)

to the automorphism a4 of Ag defined by
aa(Uy) = e”i(aC)QUfo, aa(lp) = e“i(bd)eU{’Ug.

Let A € SLy(Z) be a matrix of infinite order, and consider the
restriction of the above action to the (infinite cyclic) subgroup
generated by A. Denote the corresponding crossed product by
Z as A9 XA 7.
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Some facts about Ay

> Ay is unital, simple, nuclear, monotracial. The trace is given
by TQ(Z am,,U’"V”) 1= 4ago-

> Ay has tracial rank zero. Also AT alegbra.

> Ko(Ag) = 72 with generators [1]o and [pg]o, where py is a
projection in Ay satisfying 79(pg) = 6 (this is the so-called
Rieffel projection).

> Ki(Ag) = 72

> Ay = Ay if and only if § = £6’ (mod Z).
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1. If Tr(A) = 2 then I — A~1 has the "Smith normal form"
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Ay X a Z : K-theory and generators

Theorem

1. If Tr(A) = 2 then I — A~1 has the "Smith normal form"

diag(h1,0), and

Ko(Ag x4 Z)
K1 (Ag x4 Z)
(7a)«(Ko(Ag x4 Z)) =
Ko(Ag xaZ) =

7ZOLDL,
ZOLOL® I,
7+ 07,

([1]o, ix([poo), [Palo)-

2. If Tr(A) € {0,41,2} then I, — A~1 has the Smith normal

form diag(h1, h2), and

Ko(Ag xa Z) =
Ki(Ap XaZ) =
(Ta)«(Ko(Ag x4 Z)) =
KO(A9 XA Z)

YASYA
Z@Z@Zm@Zhy
7+ 07,

([1]o, i+ ([pslo))-
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Ay X Z : sturucture

Theorem

» The Z-action on Ay has the "tracial Rokhlin property".

> Ay XaZ is a unital, simple, nuclear, monotracial C*-algebra
with tracial rank zero and satisfies the UCT.

Corollary
Ap XaZ = Ag xg Z if and only if EIl(Ag x4 Z) and Ell(Ag xg Z)
are isomorphic.
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Ap XA Z : classification

Theorem
TFAE:

1. Ag XaZ and Agr X g Z are x-isomorphic;

2. =460 (mod Z) and P(l, — A"1)Q = I, — B~ for some
P,Q in GLy(Z).

Corollary
Suppose Tr(A) = 3. Ko(Ag xaZ) =2 K1(Ag x4 Z) = 7. The
crossed product Ag Xa Z is an AT algebra and

Iy KQ(AQ) — Ko(Ae XA Z)

is an (order) isomorphism. Hence Ag xaZ = Ay.
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