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A commutator is an operator AB −BA for A,B ∈ B(H).
H: finite dimensional Hilbert space

Fillmore (1969): A matrix C is a commutator iff tr(C) = 0.

H: infinite dimensional Hilbert space

Brown-Pearcy (1965): A ∈ B(H) is a commutator iff
A ≠ λI +K(H) for λ ≠ 0.
Question. (Pearcy-Topping ’71): Is every compact operator a
single commutator of compact operators? (open!)

Fan-Fong (1980): A selfadjoint trace class operator
T = AA∗ −A∗A for A a compact operator iff tr(T) = 0.

Test question. Is every rank one projection operator a
commutator of compact operators?
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Breakthrough work by J. Anderson (1977)

P = (1 0 ⋯
0 0 . . .⋮ ⋮ ⋱ )

is a commutator of compact operators C and Z given by

C = ⎛⎜⎝
0 A1
B1 0 A2

B2 0 ⋱⋱ ⋱
⎞⎟⎠ and Z = ⎛⎜⎝

0 X1
Y1 0 X2

Y2 0 ⋱⋱ ⋱
⎞⎟⎠

where

An =
⎛
⎜
⎝

a1,n 0 ⋯ 0 0
0 a2,n 0 ⋯ 0
⋮ 0 ⋱ 0 ⋮
0 0 ⋯ an,n 0

⎞
⎟
⎠

Bn =
⎛
⎜⎜⎜
⎝

0 0 ⋯ 0
−b1,n 0 0 ⋯
0 −b2,n 0 0
0 0 ⋱ 0
0 ⋯ ⋯ −bn,n

⎞
⎟⎟⎟
⎠

Xn =
⎛
⎜
⎝

0 x1,n 0 ⋯ 0
0 0 x2,n 0 0
⋮ 0 0 ⋱ ⋮
0 0 ⋯ 0 xn,n

⎞
⎟
⎠

Yn =
⎛
⎜⎜
⎝

y1,n 0 0 0
0 y2,n 0 0
⋮ 0 ⋱ ⋮
0 0 ⋯ yn,n
0 0 ⋯ 0

⎞
⎟⎟
⎠

ak,n(t) = (n + 1 − k)tn−1, bk,n(t) = kt(n + 1)−1

xk,n(t) = k1−tn−1, yk,n(t) = (n + 1 − k)(1−t)(n + 1)−1

for each 0 < t < 1.
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Consequence:

▸ A compact operator whose kernel has an infinite
dimensional reducing subspace is a single commutator of
compacts. Example: Finite rank operators

▸ Every compact operator is a single commutator of a
compact and a bounded operator.

Question (Weiss ’76): Are there any strictly positive operators
that are commutators of compact operators?



P.-Weiss modification of Anderson’s model (2013)

Compact positive diagonal operators with zero kernel as single
commutator of compacts.

C = ⎛⎜⎜⎝
0

√
c1A1√

c1B1 0
√
c2A2√

c2B2 0 ⋱⋱ ⋱
⎞⎟⎟⎠ ,Z =

⎛⎜⎜⎝
0

√
c1X1√

c1Y1 0
√
c2X2√

c2Y2 0 ⋱⋱ ⋱
⎞⎟⎟⎠

The commutator CZ − ZC is the diagonal operator

diag(c1, c2 − c1
2

,

c2 − c1
2

,⋯, cn+1 − cn
n + 1 ,⋯, cn+1 − cn

n + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1 times

,⋯)

To keep C ,Z compact operators, choose cn
n
→ 0, and furthermore to

obtain a strictly positive compact operator choose cn ↑.



Another variation of the Anderson model (P. -Petrovic-Weiss (2018)):

Positive compact diagonal with ‘distinct diagonal entries’ as
single commutator of compacts

▸ The sequence (dn) of positive numbers is increasing

▸ limn→∞
dn
n
= 0

▸ lim inf n ( dn+1
dn
− 1) > 0

▸ f ∶ N→ R such that max1≤k≤n+1
f (k)√

n
→ 0 as n →∞

For n ∈ N and 1 ≤ k ≤ n, we define numbers

ak,n = √dn

√
n + 1 − k

n
, xk,n = √dn

f (k)
n

,

bk,n = √dn
f (k)
n + 1 , yk,n = √dn

√
n + 1 − k
n + 1 ,

Then CZ −ZC is a strictly positive compact operator with distinct entries.



Limitation of the Anderson Model

An,Bn,Xn, and Yn denote arbitrary rectangular matrices of size
n × (n + 1), (n + 1) × n,n × (n + 1), and (n + 1) × n respectively in the
Anderson model.

Consider the Anderson operators C and Z with these An,Bn,Xn, and Yn.

C = ⎛⎜⎝
0 A1

B1 0 A2

B2 0 ⋱⋱ ⋱
⎞⎟⎠ and Z = ⎛⎜⎝

0 X1

Y1 0 X2

Y2 0 ⋱⋱ ⋱
⎞⎟⎠

Then there are strictly positive compact diagonal operators D = diag(dn)
which cannot be obtained using the Anderson model with C ,Z ∈ K(H),
i.e., CZ − ZC ≠ D.

A sufficient condition for nonsolvability is

1

n
(d1 +⋯+ d (n+2)(n+1)

2

)→∞.

Example: dn = 1
log(n+1)
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1

n
(d1 +⋯+ d (n+2)(n+1)

2

) →∞
and C and Z compact operators. The first (n + 1) × (n + 1) diagonal
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2

= ∣tr(An+1Yn+1) − tr(Xn+1Bn+1)∣
≤ (n + 1)(∣∣An+1∣∣∣∣Yn+1 ∣∣ + ∣∣Xn+1∣∣∣∣Bn+1 ∣∣)

1

n + 1 (d1 +⋯+ d (n+2)(n+1)2

) ≤ ∣∣An+1∣∣∣∣Yn+1 ∣∣ + ∣∣Bn+1∣∣∣∣Xn+1 ∣∣
Therefore, the sequence

1

n + 1 (d1 + d2 +⋯+ d (n+2)(n+1)2

) is bounded.



A new model that avoids Anderson model constraint:

Staircase form

For T ∈ B(H), there is a tri-block diagonal partition of the
matrix of T with respect to an orthonormal basis given by

T =
⎛
⎜⎜⎜
⎝

C1 A1 0
B1 C2 A2

0 B2 C3 ⋱
⋱ ⋱

⎞
⎟⎟⎟
⎠

where C1,A1, and B1 are 1 × 1, 1 × 2 and 2 × 1 matrices
respectively. And for k ≥ 1,

Ck+1 ∶ 2(3k−1) × 2(3k−1) matrix

Ak+1 ∶ 2(3k−1) × 2(3k) matrix

Bk+1 ∶ 2(3k) × 2(3k−1) matrix



C =
⎛
⎜⎜⎜
⎝

0 A1

B1 0 A2

B2 0 ⋱
⋱ ⋱

⎞
⎟⎟⎟
⎠

and Z =
⎛
⎜⎜⎜
⎝

0 X1

Y1 0 X2

Y2 0 ⋱
⋱ ⋱

⎞
⎟⎟⎟
⎠

where C and Z are in the staircase form.

Suppose CZ − ZC = D where D = diag(dn) with dn ↓ 0.
1

2(3n)(d1 +⋯+ d3n) ≤ ∣∣An+1∣∣∣∣Yn+1∣∣ + ∣∣Xn+1∣∣∣∣Bn+1∣∣

L.H.S. and R.H.S. tend to 0, if C and Z are assumed compact.
This is in contrast to the Anderson model that yields

1

n + 1 (d1 +⋯+ d (n+2)(n+1)2

) ≤ ∣∣An+1∣∣∣∣Yn+1∣∣ + ∣∣Bn+1∣∣∣∣Xn+1∣∣

for which there are compact diagonals D for which
CZ − ZC ≠ D for C and Z bounded operators.



Thank you ,


