Annular representations of free product categories

B Madhav Reddy

Indian Statistical Institute, Kolkata

Dec 13, 2018

B Madhav Reddy Annular representations of free product categories

 $\mathcal{C},\,\mathcal{D}$ - rigid semi-simple C*-tensor categories with simple tensor units

- $\mathcal{C} * \mathcal{D}$
- A description of $Rep(\mathcal{A}(\mathcal{C} * \mathcal{D}))$ annular representation category of $\mathcal{C} * \mathcal{D}$

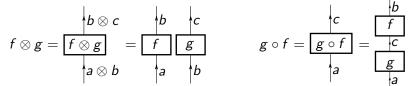
★ Free product already appeared in the work of Bisch- V Jones (in the context of subfactors) and Wang (in the context of compact quantum groups).

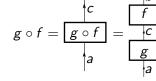
Preliminaries- Graphical calculus for *-tensor categories

C - a rigid *-tensor category

 $\mathsf{replacements} \in \mathcal{C}(b, c), \ f \in \mathcal{C}(a, b), \ g \in \mathcal{C}(b, c), \ h \in \mathcal{C}(1, a)$

$$1_{a} = \begin{vmatrix} a \\ f \end{vmatrix}^{a} \qquad f = \begin{bmatrix} b \\ f \\ b \\ da \end{vmatrix} \qquad h = \begin{bmatrix} h \\ h \end{bmatrix} \qquad \begin{pmatrix} b \\ f \\ da \end{pmatrix}^{*} = \begin{bmatrix} a \\ f^{*} \\ db \\ db \end{vmatrix}^{*}$$



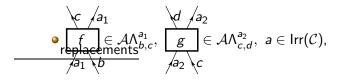


 ${\mathcal C}$ - rigid semi-simple strict $C^*\text{-tensor}$ category with simple tensor unit ${\mathbb 1}.$

- Let $1 \in \Lambda \subseteq Obj(\mathcal{C})$
- Irr(C) be a set of representatives of isomorphism classes of simple objects in C with 1 ∈ Irr(C)
- For any a ∈ lrr(C) and b ∈ Obj(C), there is a natural inner product on C(a, b) given by g*f = ⟨f,g⟩1_a, for f, g ∈ C(a, b)
- Annular algebra of C with weight set Λ, AΛ, is defined as a vector space by

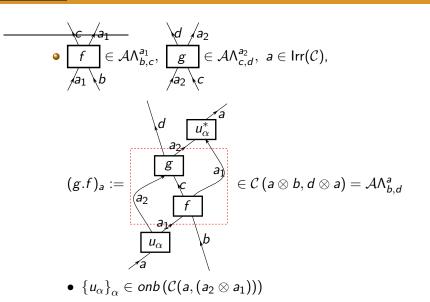
$$\mathcal{A}\Lambda := \bigoplus_{b,c \in \Lambda, a \in \operatorname{Irr}(\mathcal{C})} \mathcal{C}(a \otimes b, c \otimes a)$$

• $\mathcal{A}\Lambda^{a}_{b,c} := \mathcal{C}(a \otimes b, c \otimes a) \ni f \xrightarrow{f}_{fa \in b}$



$$\begin{array}{c} d \quad a_{2} \\ g \\ a_{2} \\ a_{1} \\ b \end{array} \in \mathcal{C} \left(\left(a_{2} \otimes a_{1} \right) \otimes b, d \otimes \left(a_{2} \otimes a_{1} \right) \right)$$

•
$$\{u_{\alpha}\}_{\alpha} \in onb\left(\mathcal{C}(a, (a_2 \otimes a_1))\right)$$



• For
$$f \in \mathcal{A}\Lambda^a_{b,c}$$
, $f^{\#} := f^* \in \mathcal{C}(c \otimes a, a \otimes b)$

Preliminaries- Annular representation category

- With this product and #, AΛ becomes an associative *-algebra
- (Ocneanu's) Tube algebra \mathcal{AC} is the annular algebra with weight set $Irr(\mathcal{C})$
- For any weight set Λ, the annular representation category *Rep*(AΛ) is simply the category of (non-degenerate) *-representations of AΛ as bounded operators on a Hilbert space. It is W*-category.

- When Λ = Obj(C), Rep(AΛ) ≅ Z(Ind-C), which appears in the work of Neshveyev-Yamashita
- A weight set Λ is said to be full if every simple object is equivalent to a sub-object of some b ∈ Λ

Theorem (Ghosh-C Jones, 2016)

If Λ is full, then $Rep(A\Lambda) \cong Rep(AC)$

- An approach look at representations of the unital centralizer algebras $\mathcal{A}\Lambda_{b,b}$ and see which of them extend to whole of $\mathcal{A}\Lambda$ ("weight *b* admissible representations")
- $C^*_u(A\Lambda_{b,b})$ universal C*-completion with respect to weight b admissible representations
- A representation of AΛ_{b,b} is admissible if and only if it extends to a representation of C^{*}_μ(AΛ_{b,b})
- $Fus(\mathcal{C}) := \mathbb{C}[Irr(\mathcal{C})] \cong \mathcal{A}\Lambda_{1,1}$
- $C^*_u(\mathcal{C}) := C^*_u(\operatorname{Fus}(\mathcal{C}))$

Why annular algebra and annular representations ?

Direction-1:

- Extremal subfactor $N \subseteq M \leftrightarrow P^{N \subseteq M}$ "subfactor planar algebra"
- \bullet V Jones introduced the notion of "affine annular category of a planar algebra P", denoted by \mathcal{AP}
- Rep(AP), the category of *-linear functors from AP into the category of vector spaces with morphisms as natural transformations
- $N \subseteq M \rightsquigarrow \mathcal{C}_{NN}$ and \mathcal{C}_{MM} , the categories of N N and M Mbimodules appearing as submodules of tensor powers of ${}_{N}L^{2}(M) \otimes L^{2}(M)_{N}$ and ${}_{M}L^{2}(M) \otimes L^{2}(M)_{M}$ respectively • $Rep(\mathcal{A}P^{N\subseteq M}) \cong Rep(\mathcal{A}\mathcal{C}_{NN}) \cong Rep(\mathcal{A}\mathcal{C}_{MM})$

Why annular algebra and annular representations ?

Direction-2:

- Popa-Vaes introduced the concept of cp-multipliers for C which are a class of functions in $I^{\infty}(Irr(C))$.
- cp-multipliers give positive linear functionals on the fusion algebra $\mathbb{C}[\mathsf{Irr}(\mathcal{C})]$ after a certain normalization.
- A *-representation is said to be **admissible** if every vector state is a normalization of some cp-multiplier.
- \bullet The class of admissible representations provides a good notion for the representation theory for ${\cal C}$
- \bullet Popa-Vaes' admissibility \cong Ghosh-Jones' weight 1 admissibility
- Annular representation theory encapsulates the representation theory of Popa-Vaes

• This correspondence also allows to state properties like amenability, Haagerup and property (T) for C*-tensor categories in terms of convergence of certain states on the fusion algebra

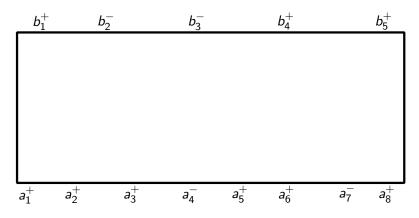
- C₊ and C₋ be two strict semi-simple C*-tensor categories with simple tensor units 1₊ and 1₋ respectively
- Σ words with letter in $Obj(\mathcal{C}_+) \cup Obj(\mathcal{C}_-)$
- $\sigma \in \Sigma \rightsquigarrow (\sigma_+, \sigma_-) \rightsquigarrow (t(\sigma_+), t(\sigma_-)) \in \mathsf{Obj}(\mathcal{C}_+) \times \mathsf{Obj}(\mathcal{C}_-)$
- For $\sigma = a_1^+ a_2^- a_3^+ a_4^- a_5^-$, $a_i^{\varepsilon} \in \text{Obj}(\mathcal{C}_{\varepsilon})$, $\varepsilon \in \{+, -\}$

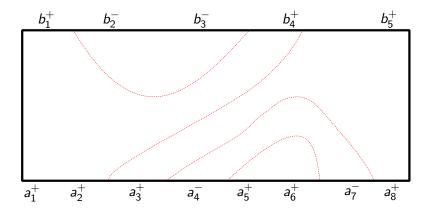
$$(\sigma_{+}, \sigma_{-}) = (a_{1}^{+}a_{3}^{+}, a_{2}^{-}a_{4}^{-}a_{5}^{-})$$

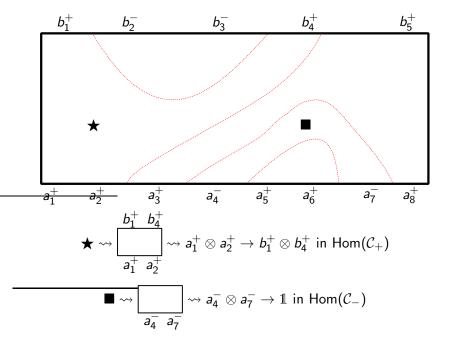
$$(t(\sigma_{+}), t(\sigma_{-})) = (a_{1}^{+} \otimes a_{3}^{+}, a_{2}^{-} \otimes a_{4}^{-} \otimes a_{5}^{-})$$

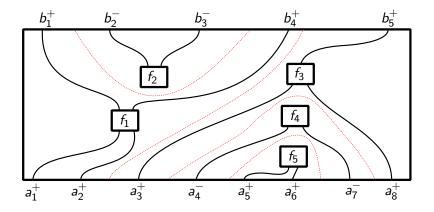
•
$$\sigma = a_1^+ a_2^+ a_3^+ a_4^- a_5^+ a_6^+ a_7^- a_8^+$$
 and $\tau = b_1^+ b_2^- b_3^- b_4^+ b_5^+$ with $-a_i^{\varepsilon}, b_j^{\varepsilon} \in C_{\varepsilon}, \ \varepsilon \in \{+, -\}$

• A ' (σ, τ) -*NCP*' consists of:

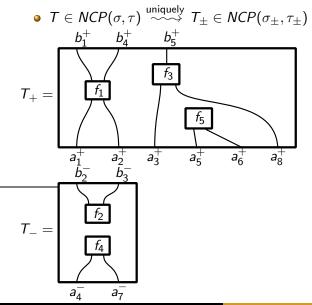








- (σ, τ)-NCP comes with the data of partition as well as the set of morphisms assigned for each non-crossing partition.
- $NCP(\sigma, \tau) := \{T : T \text{ is a } (\sigma, \tau)\text{-NCP}\}$



B Madhav Reddy Annular representations of free product categories

*T*_± ~→ *Z*_{*T*_±} ∈ *C*_± (*t*(*σ*_±), *t*(*τ*_±)) using the standard graphical calculus for tensor categories

$$Z_{\mathcal{T}_{+}} = (f_1 \otimes f_3) \circ (1_{a_1^+ \otimes a_2^+ \otimes a_3^+} \otimes f_5 \otimes 1_{a_8^+}) \text{ and } Z_{\mathcal{T}_{-}} = f_2 \circ f_4$$

• $Z_{\mathcal{T}} := Z_{\mathcal{T}_{+}} \otimes Z_{\mathcal{T}_{-}} \in \mathcal{C}_+ (t(\sigma_+), t(\tau_+)) \otimes \mathcal{C}_- (t(\sigma_-), t(\tau_-))$
• Define category \mathcal{NCP} :

- Objects in \mathcal{NCP} are given by Σ
- For $\sigma, \tau \in \Sigma$, the morphism space is defined by

$$\mathcal{NCP}(\sigma, \tau) := \mathbb{C}$$
-span { $Z_T : T \in NCP(\sigma, \tau)$ }

• \mathcal{NCP} is a C*-tensor category and C_{\pm} sit inside \mathcal{NCP} as full *-subcategories

- $\mathcal{C}_+*\mathcal{C}_-$ is a semi-simple C*-tensor category containing \mathcal{C}_\pm as full subcategories
- Identify $\Sigma \ni \sigma \iff (\sigma, 1_{\sigma}) \in \mathsf{Obj}(\mathcal{C}_{+} * \mathcal{C}_{-})$
- $Irr(C_+ * C_-)$ is given by words with alternating letters from $Irr(C_+)$ and $Irr(C_-)$, and the empty word

Annular algebra of free product of categories

- \mathcal{C}, \mathcal{D} rigid, semi-simple C*-tensor categories with simple unit objects
- I_C (respectively I_D) be a set of representatives of the isomorphism classes of simple objects in C (respectively D) excluding the isomorphism class of the unit object
- $Irr(\mathcal{C} * \mathcal{D})$ is given by words (including the empty one) with letters coming alternatively from $I_{\mathcal{C}}$ and $I_{\mathcal{D}}$
- W be the subset of these words with strictly positive and even length, such that the first letter comes from I_C
- $\Lambda := \{\emptyset\} \cup I_{\mathcal{C}} \cup I_{\mathcal{D}} \cup W$
- A is not full the alternating words of odd length and the alternating words of even length starting with a letter from $I_{\mathcal{D}}$ do not appear in A

Annular representation category of free product of categories

Lemma

 $Rep(A\Lambda)$ and the representation category of the tube algebra A of C * D, are unitarily equivalent as linear *-categories.

An independent fact

- B be an arbitrary rigid C*-tensor category, and Γ ⊆ Obj B be an arbitrary weight set containing 1 which is "essentially full"
- $\mathcal{J}\Gamma_0 := \mathcal{A}\Gamma \cdot \mathcal{A}\Gamma_{1,1} \cdot \mathcal{A}\Gamma$, the ideal in $\mathcal{A}\Gamma$ generated by $\mathcal{A}\Gamma_{1,1}$

•
$$\Gamma = Irr(\mathcal{C})$$
, we write \mathcal{JC}_0 for $\mathcal{J}\Gamma_0$

- Rep₀(AΓ) category of admissible representations of the fusion algebra with respect to Γ. That is, Rep₀(AΓ) ≅ Rep(C^{*}_u(B))
- Rep₊(AΓ) := Rep(AΓ/JΓ₀) is the representations of AΓ which contain JΓ₀ in their kernel

Proposition

For any essentially full weight set Γ ,

$$Rep(\mathcal{A}\Gamma) \cong Rep_0(\mathcal{A}\Gamma) \oplus Rep_+(\mathcal{A}\Gamma)$$

• We may consider $\mathcal{A} W$ as a *-subalgebra of $\mathcal{A} \Lambda$ (as $W \subset \Lambda$)

Lemma

- $\mathcal{A}\mathbf{W}$ is a direct summand of the algebra $\mathcal{A}\Lambda$
- As *-algebras, $\mathcal{A}\Lambda/\mathcal{J}\Lambda_0 \cong \mathcal{A}\mathcal{C}/\mathcal{J}\mathcal{C}_0 \oplus \mathcal{A}\mathcal{D}/\mathcal{J}\mathcal{D}_0 \oplus \mathcal{A}W$.
 - $\operatorname{Rep}(\mathcal{A}\Lambda) \cong \operatorname{Rep}_0(\mathcal{A}\Lambda) \oplus \operatorname{Rep}_+(\mathcal{A}\mathcal{C}) \oplus \operatorname{Rep}_+(\mathcal{A}\mathcal{D}) \oplus \operatorname{Rep}(\mathcal{A}W)$
 - terms of our interest $Rep_0(A\Lambda)$ and Rep(AW)

Annular representation category of free product of categories

Proposition

As *-algebras, $\mathcal{A}\mathbf{W} \cong \bigoplus_{[w] \in \mathbf{W}_0} M_{|w|}(\mathbb{C}) \otimes \mathbb{C}[\mathbb{Z}]$

Thus, $Rep(\mathcal{A}W) \cong Rep(\mathbb{Z})^{\oplus W_0}$, where W_{0^-} set of cyclic equivalence classes of words in W

Proposition

$$C^*_u(\mathcal{C}*\mathcal{D})\cong C^*_u(\mathcal{C})*C^*_u(\mathcal{D})$$

Hence, $Rep_0(A\Lambda) \cong Rep(C_u^*(\mathcal{C} * \mathcal{D})) \cong Rep(C_u^*(\mathcal{C}) * C_u^*(\mathcal{D}))$ as W^* -categories.

• Substituting these in the following,

 $Rep(\mathcal{A}\Lambda) \cong Rep_0(\mathcal{A}\Lambda) \oplus Rep_+(\mathcal{A}\mathcal{C}) \oplus Rep_+(\mathcal{A}\mathcal{D}) \oplus Rep(\mathcal{A}W)$

we get end up with the main result:

Theorem

Let C and D be rigid C*-tensor categories. Then as W*-categories,

 $\begin{aligned} \mathsf{Rep}(\mathcal{A}(\mathcal{C}*\mathcal{D})) &\cong \mathsf{Rep}(\mathsf{C}^*_u(\mathcal{C})*\mathsf{C}^*_u(\mathcal{D})) \oplus \mathsf{Rep}_+(\mathcal{AC}) \oplus \mathsf{Rep}_+(\mathcal{AD}) \\ &\oplus \mathsf{Rep}(\mathbb{Z})^{\oplus \mathsf{W}_0} \end{aligned}$

Application - Fuss-Catalan planar algebra

C and D are weakly Morita equivalent (wMe) if there is a rigid C*-2 category with two 0-cells, say, 0 and 1, such that End(0) ≅ C and End(1) ≅ D

• \mathcal{C} and \mathcal{D} are wMe $\implies \operatorname{Rep}(\mathcal{AC}) \cong \operatorname{Rep}(\mathcal{AD})$

- $N \subseteq M \iff P^{N \subseteq M}$, the "even parts" C_{NN} and C_{MM} are wMe
- $Rep(\mathcal{AP}^{N\subseteq M}) \cong Rep(\mathcal{AC}_{NN}) \cong Rep(\mathcal{AC}_{NN})$
- *TLJ*₀(δ) be the even part of the Temperley-Lieb-Jones subfactor planar algebra *TLJ*(δ)

Proposition

The even part of Fuss-Catalan planar algebra $FC(\alpha, \beta)$ is wMe to $\mathcal{TLJ}_0(\alpha) * \mathcal{TLJ}_0(\beta)$.

Thus, $\operatorname{Rep}(\operatorname{AFC}(\alpha,\beta)) \cong \operatorname{Rep}(\operatorname{A}(\operatorname{TLJ}_0(\alpha) * \operatorname{TLJ}_0(\beta)))$

• $\mathcal{A}(\mathcal{TLJ}_0(\delta))$ is fully described by Jones-Reznikoff

References

- S. Ghosh, C. Jones, B. M. Reddy, Annular representations of free product categories, J. Non-comm. Geom. (to appear), arXiv:1803.06817, 2018
- S. Ghosh, C. Jones, Annular representation theory for rigid C*-tensor categories. J. Funct. Anal., 270-4, pp. 1537-1584, 2016
- V.F.R. Jones, The annular structure of subfactors. Essays on geometry and related topics, Vol.1,2. Monogr. Enseign. Math., 38, pp.401-463, 2001
- V.F.R. Jones, S. Reznikoff, Hilbert space representations of the annular Temperley-Lieb algebra. Pacific J. Math., 228-2, pp. 219-248, 2006
- S. Popa, S. Vaes, Representation theory for subfactors, λ-lattices, and C*-tensor categories. Comm. Math. Phys. 340-3, pp. 1239-1280, 2015

Thank You!