CHARACTERIZATION OF MAJORIZATION IN l¹

G Sankara Raju Kosuru

raju@iitrpr.ac.in

Department Of Mathematics IIT Ropar

15th Decemberr 2018

Recent Advances in Operator Theory and Operator Algebras (OTOA-2018)

Indian Statistical Institute, Bangalore

Majorization

• Suppose $x, y \in \mathbb{R}^n$. Then x is said to be majorized by y if

$$\sum_{i=1}^{k} x_i^{\downarrow} \leq \sum_{i=1}^{k} y_i^{\downarrow} \text{ for } 1 \leq k \leq n-1 \text{ and}$$
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i.$$

• $x \leq y$

Let $x, y \in \mathbb{R}^n$.

Let $x, y \in \mathbb{R}^n$. Then

• Hardy, Littlewood and Pólya Theorem [4] $x \leq y$ if and only if x = Dy for some doubly stochastic matrix *D*.

Let $x, y \in \mathbb{R}^n$. Then

- Hardy, Littlewood and Pólya Theorem [4] $x \leq y$ if and only if x = Dy for some doubly stochastic matrix *D*.
- Horn Theorem [5] $x \leq y$ if and only if x = Qy for some orthostochastic matrix Q. A square matrix Q is said to be orthostochastic matrix if it is Schur-square of a orthogonal matrix i.e. $Q = (Q_{ij}) = (U_{ij}^2)$, where U is a orthogonal matrix.

Let $x, y \in \mathbb{R}^n$. Then

- Hardy, Littlewood and Pólya Theorem [4] $x \leq y$ if and only if x = Dy for some doubly stochastic matrix *D*.
- Horn Theorem [5] $x \leq y$ if and only if x = Qy for some orthostochastic matrix Q. A square matrix Q is said to be orthostochastic matrix if it is Schur-square of a orthogonal matrix i.e. $Q = (Q_{ij}) = (U_{ij}^2)$, where U is a orthogonal matrix.
- Schur-Horn Theorem [5] Given a self-adjoint $n \times n$ matrix *H* having eigenvalue list in *y*, there is a basis for which *H* has diagonal entries *x* if and only if $x \leq y$.

Let $x, y \in \mathbb{R}^n$. Then

- Hardy, Littlewood and Pólya Theorem [4] $x \leq y$ if and only if x = Dy for some doubly stochastic matrix *D*.
- Horn Theorem [5] $x \leq y$ if and only if x = Qy for some orthostochastic matrix Q. A square matrix Q is said to be orthostochastic matrix if it is Schur-square of a orthogonal matrix i.e. $Q = (Q_{ij}) = (U_{ij}^2)$, where U is a orthogonal matrix.
- Schur-Horn Theorem [5] Given a self-adjoint *n* × *n* matrix *H* having eigenvalue list in *y*, there is a basis for which *H* has diagonal entries *x* if and only if *x* ≤ *y*.
- $x \leq y$ if and only if $\sum_{j=1}^{n} g(x_j) \leq \sum_{j=1}^{n} g(y_j)$ for any convex function g on \mathbb{R} [4].

Look for characterizations of majorization in the infinite spaces, more precisely on the absolutely summable sequence space l^1 .

Look for characterizations of majorization in the infinite spaces, more precisely on the absolutely summable sequence space l^1 .

Theorem (Existing results)

Markus in [2] proved Hardy-Littlewood-Pólya type theorem for monotonically decreasing sequences in l¹.

Look for characterizations of majorization in the infinite spaces, more precisely on the absolutely summable sequence space l^1 .

Theorem (Existing results)

- Markus in [2] proved Hardy-Littlewood-Pólya type theorem for monotonically decreasing sequences in l¹.
- Markus et. al. in [3] proved Schur-Horn theorem for monotonically decreasing sequences in l¹ for any two elements in the positive cone in l¹.

Look for characterizations of majorization in the infinite spaces, more precisely on the absolutely summable sequence space l^1 .

Theorem (Existing results)

- Markus in [2] proved Hardy-Littlewood-Pólya type theorem for monotonically decreasing sequences in l¹.
- Markus et. al. in [3] proved Schur-Horn theorem for monotonically decreasing sequences in l¹ for any two elements in the positive cone in l¹.
- Arveson and Kadison[3] obtained other characterizations in using different methods, in a similar kind of settings.

Look for characterizations of majorization in the infinite spaces, more precisely on the absolutely summable sequence space l^1 .

Theorem (Existing results)

- Markus in [2] proved Hardy-Littlewood-Pólya type theorem for monotonically decreasing sequences in l¹.
- Markus et. al. in [3] proved Schur-Horn theorem for monotonically decreasing sequences in l¹ for any two elements in the positive cone in l¹.
- Arveson and Kadison[3] obtained other characterizations in using different methods, in a similar kind of settings.
- More recently, Kaftal and Weiss [6] established infinite dimensional Schur-Horn theorem for sequences decreasing monotonically to zero.

Let $a, b \in \mathbb{R}$. Define $a \lor b = \max\{a, b\}$. The positive part of a (denoted by a^+) is $a \lor 0$, and

Let $a, b \in \mathbb{R}$. Define $a \lor b = \max\{a, b\}$. The positive part of a (denoted by a^+) is $a \lor 0$, and the negative part of a (denoted by a^-) is $-a \lor 0$.

Let $a, b \in \mathbb{R}$. Define $a \lor b = \max\{a, b\}$. The positive part of a (denoted by a^+) is $a \lor 0$, and the negative part of a (denoted by a^-) is $-a \lor 0$. Let $\xi = \{\xi_j\} \in l^1$, the positive part of the sequence ξ is $\xi^+ = (\xi_1^+, \xi_2^+, \dots)$ and

the negative part of the sequence ξ is $\xi^- = (\xi_1^-, \xi_2^-, \dots)$.

Let $a, b \in \mathbb{R}$. Define $a \lor b = \max\{a, b\}$. The positive part of a (denoted by a^+) is $a \lor 0$, and the negative part of a (denoted by a^-) is $-a \lor 0$. Let $\xi = \{\xi_i\} \in l^1$, the positive part of the sequence ξ is $\xi^+ = (\xi_1^+, \xi_2^+, \dots)$ and the negative part of the sequence ξ is $\xi^- = (\xi_1^-, \xi_2^-, \dots)$. Let $\xi^{+\downarrow} = (\xi_1^{+\downarrow}, \xi_2^{+\downarrow}, \dots)$ and $\xi^{-\downarrow} = (\xi_1^{-\downarrow}, \xi_2^{-\downarrow}, \dots)$, where $\xi_1^{+\downarrow} \ge \xi_2^{+\downarrow} \ge \dots$ is the decreasing rearrangement of components of the sequence ξ^+ and $\xi_1^{-\downarrow} \ge \xi_2^{-\downarrow} \ge \dots$ is the decreasing rearrangement of components of the sequence ξ^{-} .

Let $a, b \in \mathbb{R}$. Define $a \lor b = \max\{a, b\}$. The positive part of a (denoted by a^+) is $a \lor 0$, and the negative part of a (denoted by a^-) is $-a \lor 0$. Let $\xi = \{\xi_i\} \in l^1$, the positive part of the sequence ξ is $\xi^+ = (\xi_1^+, \xi_2^+, \dots)$ and the negative part of the sequence ξ is $\xi^- = (\xi_1^-, \xi_2^-, \dots)$. Let $\xi^{+\downarrow} = (\xi_1^{+\downarrow}, \xi_2^{+\downarrow}, \dots)$ and $\xi^{-\downarrow} = (\xi_1^{-\downarrow}, \xi_2^{-\downarrow}, \dots)$, where $\xi_1^{+\downarrow} \ge \xi_2^{+\downarrow} \ge \dots$ is the decreasing rearrangement of components of the sequence ξ^+ and $\xi_1^{-\downarrow} \ge \xi_2^{-\downarrow} \ge \dots$ is the decreasing rearrangement of components of the sequence ξ^{-} . Without loss of generality, we redefine ξ^+ by $\xi^{+\downarrow}$ and ξ^- by $\xi^{-\downarrow}$.

Majorization in *l*¹

Definition

Let $\xi = {\xi_j}$ and $\eta = {\eta_j}$ be two non-negative sequences in l^1 . We say that We say that ξ is weekly majorized by η if $\sup_{\pi} \sum_{j=1}^k \xi_{\pi(j)} \leq \sup_{\pi} \sum_{j=1}^k \eta_{\pi(j)}$ for $k \in \mathbb{N}$, where π is a permutation on \mathbb{N} . We denote it by $\xi \prec_w \eta$

Majorization in l^1

Definition

Let $\xi = {\xi_j}$ and $\eta = {\eta_j}$ be two non-negative sequences in l^1 . We say that We say that ξ is weekly majorized by η if $\sup_{\pi} \sum_{j=1}^k \xi_{\pi(j)} \leq \sup_{\pi} \sum_{j=1}^k \eta_{\pi(j)}$ for $k \in \mathbb{N}$, where π is a permutation on \mathbb{N} . We denote it by $\xi \prec_w \eta$

Definition

Let $\xi = {\xi_j}$ and $\eta = {\eta_j}$ be two sequences in l^1 . We say that ξ is majorized by η if $\xi^+ \prec_w \eta^+$, $\xi^- \prec_w \eta^-$ and $\sum_{j=1}^{\infty} \xi_j = \sum_{j=1}^{\infty} \eta_j$. We denote it by $\xi \leq \eta$.

Majorization in l^1

Definition

Let $\xi = {\xi_j}$ and $\eta = {\eta_j}$ be two non-negative sequences in l^1 . We say that We say that ξ is weekly majorized by η if $\sup_{\pi} \sum_{j=1}^k \xi_{\pi(j)} \leq \sup_{\pi} \sum_{j=1}^k \eta_{\pi(j)}$ for $k \in \mathbb{N}$, where π is a permutation on \mathbb{N} . We denote it by $\xi \prec_w \eta$

Definition

Let $\xi = {\xi_j}$ and $\eta = {\eta_j}$ be two sequences in l^1 . We say that ξ is majorized by η if $\xi^+ \prec_w \eta^+$, $\xi^- \prec_w \eta^-$ and $\sum_{j=1}^{\infty} \xi_j = \sum_{j=1}^{\infty} \eta_j$. We denote it by $\xi \leq \eta$.

Let $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. One can think *x* as a sequence of l^1 by setting $x_k = 0$ for all k > n. Let $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ be two elements in \mathbb{R}^n . Then $x \leq y$ if and only if x < y.

Definition

Let $\eta \in l^1$. Then η is said to be pure if η^- and η^+ both either in c_{00} or not in c_{00} , where c_{00} denotes the space of all finite sequences.

Definition

Let $\eta \in l^1$. Then η is said to be pure if η^- and η^+ both either in c_{00} or not in c_{00} , where c_{00} denotes the space of all finite sequences.

Theorem (A)

Let *H* be a self-adjoint operator on a separable Hilbert space *K* and $\xi = \{\xi_j\} \in l^1$. Suppose $\eta = \{\eta_j\} \in l^1$ is the eigenspectrum of *H* and pure. If $\xi \leq \eta$, then there exists an orthonormal basis of *K* which is the union of $\{\phi_j\}_{j=1}^{\infty}$ and $\{f_j\}_{j=1}^{m}$ $(0 \leq m \leq \infty)$ such that $\langle H\phi_j, \phi_j \rangle = \xi_j$ for $j \in \mathbb{N}$ and $\langle Hf_j, f_j \rangle = 0$ for j = 1, 2, 3, ..., m.

Schur-Horn type theorem

Theorem (B)

Let *K* be a separable Hilbert space and $\xi, \eta \in l_1$. Suppose η is pure. If $\xi \leq \eta$, then there exists an orthonormal basis of *K* which is the union of $\{\phi_j\}_{j=1}^{\infty}$ and $\{f_j\}_{j=1}^{m}$ $(0 \leq m \leq \infty)$ and a self-adjoint compact operator *H* on *K* such that $\{\eta_j : j \in \mathbb{N}\}$ is the eigenspectrum of *H* and $\langle H\phi_j, \phi_j \rangle = \xi_j$ for $j \in \mathbb{N}$, $\langle Hf_j, f_j \rangle = 0$ for j = 1, 2, ..., m.

Schur-Horn type theorem

Theorem (B)

Let *K* be a separable Hilbert space and $\xi, \eta \in l_1$. Suppose η is pure. If $\xi \leq \eta$, then there exists an orthonormal basis of *K* which is the union of $\{\phi_j\}_{j=1}^{\infty}$ and $\{f_j\}_{j=1}^{m}$ $(0 \leq m \leq \infty)$ and a self-adjoint compact operator *H* on *K* such that $\{\eta_j : j \in \mathbb{N}\}$ is the eigenspectrum of *H* and $\langle H\phi_j, \phi_j \rangle = \xi_j$ for $j \in \mathbb{N}$, $\langle Hf_j, f_j \rangle = 0$ for j = 1, 2, ..., m.

Proof: Let $\{\psi_j\}_{j=1}^{\infty}$ be any orthonormal basis of *K*. Let

$$H(x) = \sum_{j=1}^{\infty} \eta_j \langle x, \psi_j \rangle \psi_j \text{ for all } x \in K.$$

- *H* is bounded, self-adjoint and compact operator on *K*.
- $\{\eta_j : j \in \mathbb{N}\}$ is the eigenspectrum of *H*.

The proof of the theorem follows from Theorem(A).

Hardy-Littlewood-pólya type theorem

Let $\xi = {\xi_j} \in l^1$. Denote a new sequence $\hat{\xi} := {\hat{\xi}_j}$ by including finite or infinite number of zeros as components in the sequence ξ .

Theorem

Let
$$\xi = {\xi_j}, \eta = {\eta_j} \in l^1$$
 and η is pure. Then $\xi \leq \eta$ iff $\hat{\xi} = M\eta$ for some infinite matrix $M = (m_{ij})$, with $m_{ij} \geq 0$ and $\sum_{j=1}^{\infty} m_{ij} = 1$, $\sum_{i=1}^{\infty} m_{ij} = 1$ for $i, j \in \mathbb{N}$, where $\hat{\xi}$ is defined above

Hardy-Littlewood-pólya type theorem

Let $\xi = {\xi_j} \in l^1$. Denote a new sequence $\hat{\xi} := {\hat{\xi}_j}$ by including finite or infinite number of zeros as components in the sequence ξ .

Theorem

Let
$$\xi = {\xi_j}, \eta = {\eta_j} \in l^1$$
 and η is pure. Then $\xi \leq \eta$ iff $\widehat{\xi} = M\eta$ for some infinite matrix $M = (m_{ij})$, with $m_{ij} \geq 0$ and $\sum_{j=1}^{\infty} m_{ij} = 1$, $\sum_{i=1}^{\infty} m_{ij} = 1$ for $i, j \in \mathbb{N}$, where $\widehat{\xi}$ is defined above

Proof: Assume that $\xi \leq \eta$.

Let *K* be a separable Hilbert space with an orthonormal basis $\{\psi_j : j \in \mathbb{N}\}$. Then there exists a self-adjoint, compact operator *H* and an orthonormal basis $\{\phi_j\}_{j=1}^{\infty} \cup \{f_j\}_{j=1}^{m}$ such that $\{\eta_j : j \in \mathbb{N}\}$ is the eigenspectrum of *H* and $\langle H\phi_j, \phi_j \rangle = \xi_j$ for $j \in \mathbb{N}$, $\langle Hf_j, f_j \rangle = 0$ for j = 1, 2, ..., m.

Proof cont...

Then

$$\widehat{\xi_j} = \langle H\phi_j', \phi_j' \rangle = \langle H(U\psi_j), U\psi_j \rangle = \Big\langle \sum_{k=1}^{\infty} \eta_k \langle U\psi_j, \psi_k \rangle \psi_k, U\psi_j \Big\rangle.$$

Hence

$$\widehat{\xi_j} = \sum_{k=1}^{\infty} \eta_k \langle U\psi_j, \psi_k \rangle \langle \psi_k, U\psi_j \rangle = \sum_{k=1}^{\infty} \eta_k | \langle U\psi_j, \psi_k \rangle |^2.$$

Set $m_{jk} = | \langle U\psi_j, \psi_k \rangle |^2$ for $j,k \in \mathbb{N}$. Then $m_{jk} \ge 0$ and $\widehat{\xi} = M\eta$, where $M = (m_{ij})$.

Proof cont...

Conversely, let $\widehat{\xi} = M\eta$.

$$\begin{split} \sum_{j=1}^{n} \widehat{\xi}_{j}^{+} &= \sum_{j=1}^{N} \widehat{\xi}_{j}^{+} = \sum_{j=1}^{N} \xi_{j} = \sum_{j=1}^{N} \sum_{k=1}^{\infty} m_{jk} \eta_{k} \\ &\leq \sum_{j=1}^{N} \sum_{k=1}^{\infty} m_{j2k} \eta_{k}^{+} = \sum_{k=1}^{\infty} \sum_{j=1}^{N} m_{j2k} \eta_{k}^{+} \\ &= \sum_{k=1}^{\infty} S_{k} \eta_{k}^{+}, \quad \text{where } S_{k} = \sum_{j=1}^{N} m_{j2k} \\ &\leq \sum_{k=1}^{N-1} S_{k} \eta_{k}^{+} + \sum_{k=N}^{\infty} S_{k} \eta_{N}^{+} \\ &\leq \sum_{k=1}^{N-1} S_{k} \eta_{k}^{+} + \left(N - \sum_{k=1}^{N-1} S_{k}\right) \eta_{N}^{+} \leq \sum_{k=1}^{n} \eta_{k}^{+}. \end{split}$$
So $\widehat{\xi}^{+} \prec_{w} \eta^{+}$. Similarly $\widehat{\xi}^{-} \prec_{w} \eta^{-}$. Also $\sum_{j=1}^{\infty} \widehat{\xi}_{j} = \sum_{k=1}^{\infty} \eta_{k}$. Hence $\widehat{\xi} \preceq \eta$.

11/16

Relations between majorization in l^1 and convex function.

Theorem

Let $\xi = {\xi_j}, \eta = {\eta_j} \in l^1$ and η is pure. Assume that $\xi \leq \eta$. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous convex function. Then the following hold.

イロト イヨト イヨト イヨト

• If
$$\{g(\eta_j)\} \in l_1$$
, then $\sum_{j=1}^{\infty} g(\xi_j) \leq \sum_{j=1}^{\infty} g(\eta_j)$.

Relations between majorization in l^1 and convex function.

Theorem

Let $\xi = {\xi_j}, \eta = {\eta_j} \in l^1$ and η is pure. Assume that $\xi \leq \eta$. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous convex function. Then the following hold.

• If
$$\{g(\eta_j)\} \in l_1$$
, then $\sum_{j=1}^{\infty} g(\xi_j) \leq \sum_{j=1}^{\infty} g(\eta_j)$.

• If $g(\eta_j)$'s has same sign except finitely many, then $\sum_{j=1}^{\infty} g(\widehat{\xi}_j) \le \sum_{j=1}^{\infty} g(\eta_j)$, where $\widehat{\xi} = \{\widehat{\xi}_j\}$ defined above.

Characterization of majorization in l^1

Theorem

Let $\alpha = {\alpha_j}, \beta = {\beta_j} \in l^1$. Then the following are equivalent • $\alpha \leq \beta$ • $\sum_{j=1}^{\infty} (\alpha_j - t)^+ \leq \sum_{j=1}^{\infty} (\beta_j - t)^+, \quad \sum_{j=1}^{\infty} (t - \alpha_j)^+ \leq \sum_{j=1}^{\infty} (t - \beta_j)^+ \text{ for all } t \in \mathbb{R}$ and $\sum_{j=1}^{\infty} \alpha_j = \sum_{j=1}^{\infty} \beta_j.$

Characterization of majorization in l^1

Theorem

Let $\alpha = {\alpha_j}, \beta = {\beta_j} \in l^1$. Then the following are equivalent • $\alpha \leq \beta$ • $\sum_{j=1}^{\infty} (\alpha_j - t)^+ \leq \sum_{j=1}^{\infty} (\beta_j - t)^+, \quad \sum_{j=1}^{\infty} (t - \alpha_j)^+ \leq \sum_{j=1}^{\infty} (t - \beta_j)^+ \text{ for all } t \in \mathbb{R}$ and $\sum_{j=1}^{\infty} \alpha_j = \sum_{j=1}^{\infty} \beta_j.$

Corollary

Let
$$\alpha, \beta \in l^1$$
 with $\sum_{j=1}^{\infty} \alpha_j = \sum_{j=1}^{\infty} \beta_j$. If $\sum_{j=1}^{\infty} g(\alpha_j) \le \sum_{j=1}^{\infty} g(\beta_j)$ for any convex function g on \mathbb{R} , then $\alpha \preceq \beta$.

References

- ANDO, T., *Majorization, doubly stochastic matrices, and comparison of eigenvalues*, Linear Algebra Appl. **118** (1989), 163–248.
- ANDO, T., *Majorizations and inequalities in matrix*, Linear Algebra Appl., **199** (1994), 17-67.
- W. ARVESON, R.V. KADISON, *Diagonals of self-adjoint operators, in: Operator Theory, Operator Algebras, and Applications, in: Contemp. Math.*, vol. 414, Amer. Math. Soc., Providence, RI, 2006, pp. 247–263.
- ANTEZANA, J. AND MASSEY, P. AND RUIZ, M. AND STOJANOFF, D., The Schur-Horn theorem for operators and frames with prescribed norms and frame operator, Illinois J. Math., 51 (2007) no. 2, 537–560.
- ARVESON, W. AND KADISON, R.V., Diagonals of self-adjoint operators, Operator theory, operator algebras, and applications, Contemp. Math., 414, Amer. Math. Soc., Prov, RI, (2006), 247–263.
- B. V. RAJARAMA BHAT, ARUP CHATTOPADHYAY, AND G. SANKARA RAJU KOSURU, *On submajorization and eigenvalue inequalities*, Linear Multilinear Algebra., **63** (2015), no. 11, 4245-4253.

References cont...

- CANOSA, N AND ROSSIGNOLI, R AND PORTESI, M, *Majorization relations and disorder in generalized statistics*, Physica A: Statistical Mechanics and its Applications, **371** (2006), 126-129.
- DAHL, GEIR, Majorization and distances in trees, Networks, An International Journal, 50 (2007), 251–257.
- GOHBERG, I. C. AND MARKUS, A. S., Some relations between eigenvalues and matrix elements of linear operators, Mat. Sb. (N.S.), 64 (106) (1964), 93–123.
- HARDY, G. H. AND LITTLEWOOD, J. E. AND PÓLYA, G., *Inequalities*, 2d ed, Cambridge, at the University Press, 1952.
- HORN, ALFRED, *Doubly stochastic matrices and the diagonal of a rotation matrix*, Linear Multilinear Algebra, **76** (1954), 620–630.
- VICTOR KAFTAL AND GARY WEISS, An infinite dimensional Schur-Horn theorem and majorization theory, J. Funct. Anal., **259** (2010), no. 2, 3115–3162.

References cont...

- JIREH LOREAUX AND GARY WEISS, *Majorization and a Schur-Horn theorem for positive compact operators, the nonzero kernel case,* J. Funct. Anal., **258** (2015), no. 3, 703–731.
- MARKUS A. S, *Eigenvalues and singular values of the sum and product of linear operators*, Uspehi Mat. Nauk, **19** (1964) no. 4 (118), 93–123.
- MARSHALL, ALBERT W. AND OLKIN, INGRAM AND ARNOLD, BARRY C., *Inequalities: theory of majorization and its applications*, Springer Series in Statistics, Springer, New York, 2011.
- NIELSEN, MICHAEL A. AND VIDAL, GUIFRÉ, Majorization and the interconversion of bipartite states, Quantum Information & Computation, 1 (2001), 76–93.
 - W. BURNSIDE, *A rapidly convergent series for* log*N*!, Messenger Math. **46**, 1 (1917), 157–159.

Thank you

<ロト < 部ト < 差ト < 差ト = うへで 17/16