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Introduction

Majorization

Suppose x,y ∈ Rn. Then x is said to be majorized by y if

k

∑
i=1

x↓i ≤
k

∑
i=1

y↓i for 1≤ k ≤ n−1 and

n

∑
i=1

xi =
n

∑
i=1

yi.

x� y
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Introduction

Characterizations of Majorization

Let x,y ∈ Rn.

Then
1 Hardy, Littlewood and Pólya Theorem [4] x� y if and only if x = Dy

for some doubly stochastic matrix D.
2 Horn Theorem [5] x� y if and only if x = Qy for some orthostochastic

matrix Q. A square matrix Q is said to be orthostochastic matrix if it is
Schur-square of a orthogonal matrix i.e. Q = (Qij) = (U2

ij), where U is
a orthogonal matrix.

3 Schur-Horn Theorem [5] Given a self-adjoint n×n matrix H having
eigenvalue list in y, there is a basis for which H has diagonal entries x if
and only if x� y.

4 x� y if and only if
n

∑
j=1

g(xj)≤
n

∑
j=1

g(yj) for any convex function g on R

[4].
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Introduction

Aim

Look for characterizations of majorization in the infinite spaces, more
precisely on the absolutely summable sequence space l1.

Theorem (Existing results)
1 Markus in [2] proved Hardy-Littlewood-Pólya type theorem for

monotonically decreasing sequences in l1.
2 Markus et. al. in [3] proved Schur-Horn theorem for monotonically

decreasing sequences in l1 for any two elements in the positive cone in
l1.

3 Arveson and Kadison[3] obtained other characterizations in using
different methods, in a similar kind of settings.

4 More recently, Kaftal and Weiss [6] established infinite dimensional
Schur-Horn theorem for sequences decreasing monotonically to zero.
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Introduction

Notations

Let a,b ∈ R. Define a∨b = max{a,b}.
The positive part of a (denoted by a+) is a∨0, and

the negative part of a (denoted by a−) is −a∨0.
Let ξ = {ξj} ∈ l1, the positive part of the sequence ξ is ξ+ = (ξ+

1 ,ξ+
2 , . . .)

and
the negative part of the sequence ξ is ξ− = (ξ−1 ,ξ−2 , . . .).
Let ξ+↓ = (ξ+↓

1 ,ξ+↓
2 , . . .) and ξ−↓ = (ξ−↓1 ,ξ−↓2 , . . .), where

ξ
+↓
1 ≥ ξ

+↓
2 ≥ . . . is the decreasing rearrangement of components of the

sequence ξ+ and
ξ
−↓
1 ≥ ξ

−↓
2 ≥ . . . is the decreasing rearrangement of components of the

sequence ξ−.
Without loss of generality, we redefine ξ+ by ξ+↓ and ξ− by ξ−↓.
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Introduction

Majorization in l1

Definition

Let ξ = {ξj} and η = {ηj} be two non-negative sequences in l1. We say

that We say that ξ is weekly majorized by η if sup
π

k

∑
j=1

ξπ(j) ≤ sup
π

k

∑
j=1

ηπ(j)

for k ∈ N, where π is a permutation on N. We denote it by ξ ≺w η

Definition

Let ξ = {ξj} and η = {ηj} be two sequences in l1. We say that ξ is

majorized by η if ξ+ ≺w η+, ξ− ≺w η− and
∞

∑
j=1

ξj =
∞

∑
j=1

ηj. We denote it

by ξ � η .

Let x = (x1,x2, · · · ,xn) ∈ Rn. One can think x as a sequence of l1 by setting
xk = 0 for all k > n.
Let x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) be two elements in Rn. Then
x � y if and only if x ≺ y.
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Introduction

Definition

Let η ∈ l1. Then η is said to be pure if η− and η+ both either in c00 or not
in c00, where c00 denotes the space of all finite sequences.

Theorem (A)

Let H be a self-adjoint operator on a separable Hilbert space K and
ξ = {ξj} ∈ l1. Suppose η = {ηj} ∈ l1 is the eigenspectrum of H and pure. If
ξ � η , then there exists an orthonormal basis of K which is the union of
{φj}∞

j=1 and {fj}m
j=1 (0≤ m≤ ∞) such that 〈Hφj,φj〉= ξj for j ∈ N and

〈Hfj, fj〉= 0 for j = 1,2,3, . . . ,m.
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Introduction

Schur-Horn type theorem

Theorem (B)

Let K be a separable Hilbert space and ξ ,η ∈ l1. Suppose η is pure. If
ξ � η , then there exists an orthonormal basis of K which is the union of
{φj}∞

j=1 and {fj}m
j=1 (0≤ m≤ ∞) and a self-adjoint compact operator H on K

such that {ηj : j ∈ N} is the eigenspectrum of H and 〈Hφj,φj〉= ξj for j ∈ N,
〈Hfj, fj〉= 0 for j = 1,2, ...,m.

Proof: Let {ψj}∞
j=1 be any orthonormal basis of K. Let

H(x) =
∞

∑
j=1

ηj〈x,ψj〉ψj for all x ∈ K.

H is bounded, self-adjoint and compact operator on K.
{ηj : j ∈ N} is the eigenspectrum of H.

The proof of the theorem follows from Theorem(A).
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Introduction

Hardy-Littlewood-pólya type theorem

Let ξ = {ξj} ∈ l1. Denote a new sequence ξ̂ := {ξ̂j} by including finite or
infinite number of zeros as components in the sequence ξ .

Theorem

Let ξ = {ξj},η = {ηj} ∈ l1 and η is pure. Then ξ � η iff ξ̂ = Mη for some

infinite matrix M = (mij), with mij ≥ 0 and
∞

∑
j=1

mij = 1,
∞

∑
i=1

mij = 1 for i, j ∈N,

where ξ̂ is defined above

Proof: Assume that ξ � η .
Let K be a separable Hilbert space with an orthonormal basis {ψj : j ∈ N}.
Then there exists a self-adjoint, compact operator H and an orthonormal
basis {φj}∞

j=1∪{fj}m
j=1 such that {ηj : j ∈ N} is the eigenspectrum of H and

〈Hφj,φj〉= ξj for j ∈ N, 〈Hfj, fj〉= 0 for j = 1,2, ...,m.
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Introduction

Proof cont...

Denote {φ ′j }∞
j=1 = {φj}∞

j=1∪{fj}m
j=1

U(ψj) = φ
′
j for j ∈ N.

Then

ξ̂j = 〈Hφ
′
j ,φ

′
j 〉= 〈H(Uψj),Uψj〉=

〈 ∞

∑
k=1

ηk〈Uψj,ψk〉ψk,Uψj

〉
.

Hence

ξ̂j =
∞

∑
k=1

ηk〈Uψj,ψk〉〈ψk,Uψj〉=
∞

∑
k=1

ηk | 〈Uψj,ψk〉 |2 .

Set mjk =| 〈Uψj,ψk〉 |2 for j,k ∈ N. Then mjk ≥ 0 and ξ̂ = Mη , where
M = (mij).
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Introduction

Proof cont...

Conversely, let ξ̂ = Mη .

n

∑
j=1

ξ̂j
+

=
N

∑
j=1

ξ̂j
+
=

N

∑
j=1

ξj =
N

∑
j=1

∞

∑
k=1

mjkηk

≤
N

∑
j=1

∞

∑
k=1

mj2kη
+
k =

∞

∑
k=1

N

∑
j=1

mj2kη
+
k

=
∞

∑
k=1

Skη
+
k , where Sk =

N

∑
j=1

mj2k

≤
N−1

∑
k=1

Skη
+
k +

∞

∑
k=N

Skη
+
N

≤
N−1

∑
k=1

Skη
+
k +

(
N−

N−1

∑
k=1

Sk

)
η
+
N ≤

n

∑
k=1

η
+
k .

So ξ̂+ ≺w η+. Similarly ξ̂− ≺w η−. Also
∞

∑
j=1

ξ̂j =
∞

∑
k=1

ηk. Hence ξ̂ � η .
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Introduction

Relations between majorization in l1 and convex function.

Theorem

Let ξ = {ξj},η = {ηj} ∈ l1 and η is pure. Assume that ξ � η . Suppose
g : R→ R is a continuous convex function. Then the following hold.

1 If {g(ηj)} ∈ l1, then
∞

∑
j=1

g(ξj)≤
∞

∑
j=1

g(ηj).

2 If g(ηj)’s has same sign except finitely many, then
∞

∑
j=1

g(ξ̂j)≤
∞

∑
j=1

g(ηj),

where ξ̂ = {ξ̂j} defined above.
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Introduction

Characterization of majorization in l1

Theorem

Let α = {αj},β = {βj} ∈ l1. Then the following are equivalent

1 α � β

2

∞

∑
j=1

(αj− t)+ ≤
∞

∑
j=1

(βj− t)+,
∞

∑
j=1

(t−αj)
+ ≤

∞

∑
j=1

(t−βj)
+ for all t ∈ R

and
∞

∑
j=1

αj =
∞

∑
j=1

βj.

Corollary

Let α,β ∈ l1 with
∞

∑
j=1

αj =
∞

∑
j=1

βj. If
∞

∑
j=1

g(αj)≤
∞

∑
j=1

g(βj) for any convex

function g on R, then α � β .

13 / 16



Introduction

Characterization of majorization in l1

Theorem

Let α = {αj},β = {βj} ∈ l1. Then the following are equivalent

1 α � β

2

∞

∑
j=1

(αj− t)+ ≤
∞

∑
j=1

(βj− t)+,
∞

∑
j=1

(t−αj)
+ ≤

∞

∑
j=1

(t−βj)
+ for all t ∈ R

and
∞

∑
j=1

αj =
∞

∑
j=1

βj.

Corollary

Let α,β ∈ l1 with
∞

∑
j=1

αj =
∞

∑
j=1

βj. If
∞

∑
j=1

g(αj)≤
∞

∑
j=1

g(βj) for any convex

function g on R, then α � β .
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interconversion of bipartite states, Quantum Information &
Computation, 1 (2001), 76–93.

W. BURNSIDE, A rapidly convergent series for logN!, Messenger
Math. 46, 1 (1917), 157–159.

16 / 16



Introduction

Thank you

17 / 16


	Introduction 



