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C∗-covers of unital operator spaces

M unital operator space (unital subspace of some B(H))

A unital C∗-algebra
ϕ :M→ A unital completely isometric map such that A = C∗(ϕ(M))
(A, ϕ) is a C∗-cover of M

Example (C∗-covers of the disc algebra)

Let A(D) be the disc algebra. Consider unital completely isometric maps

ϕ1 : A(D)→ C(D), ϕ2 : A(D)→ C(T), ϕ3 : A(D)→ T

defined as
ϕ1(f) = f, ϕ2(f) = f |T, ϕ3(f) = Mf

for every f ∈ A(D). Then,

(C(D), ϕ1), (C(T), ϕ2), (T, ϕ3)

are C∗-covers of A(D).
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The minimal C∗-cover

Is there a smallest C∗-cover of M?

Yes, M has a C∗-envelope.

Theorem (Hamana 1979)

There is a C∗-cover (C∗e(M), ε) of M with the property that given any C∗-cover
(A, ϕ) of M, there is a unital ∗-representation π : A→ C∗e(M) such that π ◦ ϕ = ε.

How can we identify the C∗-envelope?
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Inspiration from uniform algebra theory: the Shilov boundary

X compact metric space, A ⊂ C(X) uniform algebra
A closed subset ∆ ⊂ X is a boundary for A if

max
x∈X
|ϕ(x)| = max

x∈∆
|ϕ(x)|, ϕ ∈ A.

Alternatively, ∆ ⊂ X is a boundary for A if the restriction map C(X)→ C(∆) is
(completely) isometric on A.

Definition

The Shilov boundary of A is the smallest boundary ΣA ⊂ X for A.

For every boundary ∆ ⊂ X, the surjective restriction map C(∆)→ C(ΣA) is
(completely) isometric on A.
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Peak points and the Choquet boundary

Theorem

Let ξ ∈ X. Then, the following statements are equivalent.

The point ξ is a peak point for A: there is ϕ ∈ A with the property that

ϕ(ξ) = 1 > |ϕ(x)|, x 6= ξ.

The point ξ is in the Choquet boundary of A: the associated point evaluation on
A admits a unique (completely) contractive extension to C(X).

Furthermore,
Choquet boundary = ΣA.
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Arveson’s non-commutative uniform algebra theory

Definition (Arveson 1969)

Let M be a concretely represented unital operator space.

A unital completely contractive linear map ϕ : C∗(M)→ B(H) is said to have
the unique extension property with respect to M if it is the unique unital
completely contractive extension to C∗(M) of ϕ|M.

An irreducible ∗-representation π of C∗(M) is said to be a boundary
representation if it has the unique extension property with respect to M.

Perhaps this non-commutative Choquet boundary can be used to recover the
non-commutative Shilov boundary (i.e the C∗-envelope)?

Theorem (Arveson 1969)

Let F be a set of unital ∗-representations of C∗(M) which have the unique extension
property with respect to M. Assume that ε =

⊕
π∈F π is completely isometric on M.

Then (ε(C∗(M)), ε) is the C∗-envelope of M.

Such a set F always exists (Muhly-Solel 1998, Dritschel–McCullough 2005). The
∗-representations can even be chosen to be irreducible (Arveson 2008,
Davidson–Kennedy 2015).

R. Clouâtre (University of Manitoba) Choquet theory and hyperrigidity OTOA 2018 6 / 17



Arveson’s non-commutative uniform algebra theory

Definition (Arveson 1969)

Let M be a concretely represented unital operator space.

A unital completely contractive linear map ϕ : C∗(M)→ B(H) is said to have
the unique extension property with respect to M if it is the unique unital
completely contractive extension to C∗(M) of ϕ|M.

An irreducible ∗-representation π of C∗(M) is said to be a boundary
representation if it has the unique extension property with respect to M.

Perhaps this non-commutative Choquet boundary can be used to recover the
non-commutative Shilov boundary (i.e the C∗-envelope)?

Theorem (Arveson 1969)

Let F be a set of unital ∗-representations of C∗(M) which have the unique extension
property with respect to M. Assume that ε =

⊕
π∈F π is completely isometric on M.

Then (ε(C∗(M)), ε) is the C∗-envelope of M.

Such a set F always exists (Muhly-Solel 1998, Dritschel–McCullough 2005). The
∗-representations can even be chosen to be irreducible (Arveson 2008,
Davidson–Kennedy 2015).
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R. Clouâtre (University of Manitoba) Choquet theory and hyperrigidity OTOA 2018 6 / 17



Hyperrigidity and the unique extension property

Definition

A concretely represented unital operator space M is said to be hyperrigid if every
unital ∗-representation of C∗(M) has the unique extension property with respect to
M.

Note that this notion depends on the choice of representation of M. However, if M
is known to be hyperrigid in some representation, then it will be automatically be
hyperrigid inside of its C∗-envelope.

Theorem (Kennedy–Shalit 2015)

The Arveson-Douglas essential normality conjecture can be rephrased in terms of
hyperrigidity of a natural unital operator space.
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What rigidity?

Definition

A concretely represented unital operator space M is said to be hyperrigid if every
unital ∗-representation of C∗(M) has the unique extension property with respect to
M.

Theorem (Arveson 2011)

A concretely represented unital operator space M is hyperrigid if and only if for every
unital ∗-representation π : C∗(M)→ B(H) and every sequence of unital completely
positive maps

ϕn : π(C∗(M))→ B(H), n ∈ N

satisfying
lim
n→∞

‖ϕn(π(a))− π(a)‖ = 0, a ∈M,

we must have
lim
n→∞

‖ϕn(π(t))− π(t)‖ = 0, t ∈ C∗(M).
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Hyperrigidity in approximation theory

Theorem (Korovkin 1953)

For each n ∈ N, let ϕn : C[0, 1]→ C[0, 1] be a (completely) positive linear map and
assume that

lim
n→∞

‖ϕn(a)− a‖ = 0

for every a ∈ {1, x, x2}. Then, it must be the case that

lim
n→∞

‖ϕn(f)− f‖ = 0

for every f ∈ C[0, 1].

(Šaškin 1967) The key property is that every point of [0, 1] is a peak point for some
quadratic polynomial. That is, the Choquet boundary of {1, x, x2} is “maximal” in
[0, 1].

In order for a general unital operator space to be hyperrigid, is it sufficient for the
non-commutative Choquet boundary to be maximal?
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The conjecture and some supporting evidence

Hyperrigidity conjecture (Arveson 2011)

Let M be a concretely represented unital operator space. Then, M is hyperrigid if
and only if every irreducible ∗-representation of C∗(M) has the unique extension
property with respect to M.

Some examples of unital operator spaces satisfying the hyperrigidity conjecture:

multiplier algebras of certain reproducing kernel Hilbert spaces (C.–Hartz 2017)

tensor algebras of certain directed graphs. (Dor On–Salomon 2018)
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Irreducible ∗-representations as building blocks

Hyperrigidity conjecture

Let M be a concretely represented unital operator space. Then, M is hyperrigid if
and only if every irreducible ∗-representation of C∗(M) has the unique extension
property with respect to M.

Lemma (Arveson 2011)

Let M be a concretely represented unital operator space. For each λ ∈ Λ, let
πλ : C∗(M)→ B(Hλ) be a unital ∗-representation. Then,⊕

λ∈Λ

πλ : C∗(M)→
⊕
λ∈Λ

B(Hλ)

has the unique extension property with respect to M if and only if πλ has it for every
λ ∈ Λ.

Recall that the spectrum of a C∗-algebra is the set of unitary equivalence classes of
its irreducible representations.

Theorem (Arveson 2011)

Let M be a concretely represented unital operator space such that C∗(M) has
countable spectrum. Then, M satisfies the hyperrigidity conjecture.
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Linearizing the problem

M concretely represented unital operator space such that every irreducible
∗-representation of C∗(M) has the unique extension property with respect to M

π : C∗(M)→ B(H) unital ∗-representation
Π : C∗(M)→ B(H) unital completely contractive map such that

π(a) = Π(a), a ∈M

Goal

π(t)−Π(t) = 0 for every t ∈ C∗(M)

Lemma

The following statements are equivalent.

(i) We have π = Π.

(ii) There is a family of states on B(H) which separate (Π− π)(C∗(M)) and restrict
to pure states on π(C∗(M)).

How do we manufacture such a family of states?
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How do we manufacture such a family of states?
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Unperforated pairs

Definition

Let A be a unital C∗-algebra. Let S and T be self-adjoint subspaces of A. We say
that the pair (S, T ) is unperforated if for every pair of self-adjoint elements
a ∈ S, b ∈ T such that a ≤ b, we can find another self-adjoint element b′ ∈ T with the
property that ‖b′‖ ≤ ‖a‖ and a ≤ b′ ≤ b.

Theorem (C. 2018)

The pair ((Π− π)(C∗(M)), π(C∗(M))) is unperforated if and only if Π = π.

Example

If B ⊂ A is a unital C∗-subalgebra that commutes with a self-adjoint subspace
S ⊂ A, then the pair (S,B) is unperforated.

Even in finite-dimensional settings, unperforated pairs appear elusive in the
absence of some form of commutativity.

Let A be a unital C∗-algebra and let B ⊂ A be a unital C∗-subalgebra with the
weak expectation property. Then, the pair (A,B) is “approximately”
unperforated. (C. 2018)
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A local version of the conjecture?
X be a compact metric space
M⊂ C(X) unital subspace such that C∗(M) = C(X)
π : C(X)→ B(H) unital ∗-representation
Π : C(X)→ B(H) unital completely contractive map such that

π(a) = Π(a), a ∈M

Theorem (Arveson 2011)

Let ξ ∈ X be a point in the Choquet boundary of M. Then,

lim
δ→0
‖(π(f)−Π(f))Eπ(ξ, δ)‖ = 0, f ∈ C(X).

Example

Let X be a compact metric space and A ⊂ C(X) be a uniform algebra. Let ξ ∈ X be
a peak point for A, so that there is a function ϕ ∈ A with the property that

|ϕ(y)| < ϕ(ξ) = 1

for each y ∈ X, y 6= ξ. Then, limn→∞ ‖ϕnf‖ = |f(ξ)| for every f ∈ C(X).
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R. Clouâtre (University of Manitoba) Choquet theory and hyperrigidity OTOA 2018 14 / 17



Characteristic sequences

Definition

Let A be a unital C∗-algebra and let ψ be a state on A. A sequence (∆n)n in A is
said to be a characteristic sequence for ψ if the following conditions are satisfied:

(a) ‖∆n‖ = 1 for every n ∈ N,

(b) limn→∞ ψ(∆n) = 1, and

(c) lim supn→∞ ‖∆∗na∆n‖ ≤ |ψ(a)| for every a ∈ A.

Intuitively, states that admit a characteristic sequence are “approximate peak points
for A” within the state space.

Example

Let Ad denote the norm closure of the polynomial multipliers on the Drury-Arveson
space. Let Td = C∗(Ad) denote the Toeplitz algebra. Every pure state on Td admits
a characteristic sequence in K +Ad.
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Local hyperrigidity in general

M concretely represented unital operator space
π : C∗(M)→ B(H) unital ∗-representation
Π : C∗(M)→ B(H) unital completely contractive map such that

π(a) = Π(a), a ∈M

Theorem (C. 2018)

Let ψ be a state on C∗(M) which admits a characteristic sequence (∆n)n in M.
Then, we have

lim
n→∞

‖π(∆n)∗(Π(t)− π(t))π(∆n)‖ = 0

for every t ∈ C∗(M).

Note that although the conclusion is merely “local”, so is the assumption!
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Thank you!
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