Choquet theory on state spaces of C*-algebras and the hyperrigidity conjecture

Raphaël Clouâtre

University of Manitoba

Recent Advances in Operator Theory and Operator Algebras Indian Statistical Institute, Bangalore December 13, 2018

(ロ) (日) (日) (日) (日)

C*-covers of unital operator spaces

 \mathcal{M} unital operator space (unital subspace of some $B(\mathfrak{H})$)

イロン スロン メヨン メヨ

C*-covers of unital operator spaces

 \mathcal{M} unital operator space (unital subspace of some $B(\mathfrak{H})$) \mathfrak{A} unital C*-algebra $\varphi: \mathcal{M} \to \mathfrak{A}$ unital completely isometric map such that $\mathfrak{A} = C^*(\varphi(\mathcal{M}))$ (\mathfrak{A}, φ) is a C*-cover of \mathcal{M}

C*-covers of unital operator spaces

 \mathcal{M} unital operator space (unital subspace of some $B(\mathfrak{H})$) \mathfrak{A} unital C*-algebra $\varphi: \mathcal{M} \to \mathfrak{A}$ unital completely isometric map such that $\mathfrak{A} = C^*(\varphi(\mathcal{M}))$ (\mathfrak{A}, φ) is a C*-cover of \mathcal{M}

Example (C^* -covers of the disc algebra)

Let $A(\mathbb{D})$ be the disc algebra. Consider unital completely isometric maps

$$\varphi_1: A(\mathbb{D}) \to \mathcal{C}(\overline{\mathbb{D}}), \quad \varphi_2: A(\mathbb{D}) \to \mathcal{C}(\mathbb{T}), \quad \varphi_3: A(\mathbb{D}) \to \mathfrak{T}$$

defined as

$$\varphi_1(f) = f, \quad \varphi_2(f) = f|_{\mathbb{T}}, \quad \varphi_3(f) = M_f$$

for every $f \in A(\mathbb{D})$. Then,

 $(C(\overline{\mathbb{D}}), \varphi_1), \quad (C(\mathbb{T}), \varphi_2), \quad (\mathfrak{T}, \varphi_3)$

are C^{*}-covers of $A(\mathbb{D})$.

イロン イヨン イヨン イヨン

The minimal C*-cover

Is there a smallest C^* -cover of \mathcal{M} ?

The minimal C*-cover

Is there a smallest C^* -cover of \mathcal{M} ? Yes, \mathcal{M} has a C^* -envelope.

Theorem (Hamana 1979)

There is a C^{*}-cover $(C_e^*(\mathcal{M}), \varepsilon)$ of \mathcal{M} with the property that given any C^{*}-cover (\mathfrak{A}, φ) of \mathcal{M} , there is a unital *-representation $\pi : \mathfrak{A} \to C_e^*(\mathcal{M})$ such that $\pi \circ \varphi = \varepsilon$.

(日) (四) (三) (三) (三)

The minimal C*-cover

Is there a smallest C^* -cover of \mathcal{M} ? Yes, \mathcal{M} has a C^* -envelope.

Theorem (Hamana 1979)

There is a C^{*}-cover $(C_e^*(\mathcal{M}), \varepsilon)$ of \mathcal{M} with the property that given any C^{*}-cover (\mathfrak{A}, φ) of \mathcal{M} , there is a unital *-representation $\pi : \mathfrak{A} \to C_e^*(\mathcal{M})$ such that $\pi \circ \varphi = \varepsilon$.

How can we identify the C^* -envelope?

Inspiration from uniform algebra theory: the Shilov boundary

X compact metric space, $\mathcal{A} \subset C(X)$ uniform algebra A closed subset $\Delta \subset X$ is a boundary for \mathcal{A} if

$$\max_{x \in X} |\varphi(x)| = \max_{x \in \Delta} |\varphi(x)|, \quad \varphi \in \mathcal{A}.$$

Inspiration from uniform algebra theory: the Shilov boundary

X compact metric space, $\mathcal{A} \subset C(X)$ uniform algebra A closed subset $\Delta \subset X$ is a boundary for \mathcal{A} if

$$\max_{x \in X} |\varphi(x)| = \max_{x \in \Delta} |\varphi(x)|, \quad \varphi \in \mathcal{A}.$$

Alternatively, $\Delta \subset X$ is a boundary for \mathcal{A} if the restriction map $C(X) \to C(\Delta)$ is (completely) isometric on \mathcal{A} .

(ロ) (日) (日) (日) (日)

Inspiration from uniform algebra theory: the Shilov boundary

X compact metric space, $\mathcal{A} \subset C(X)$ uniform algebra A closed subset $\Delta \subset X$ is a boundary for \mathcal{A} if

$$\max_{x \in X} |\varphi(x)| = \max_{x \in \Delta} |\varphi(x)|, \quad \varphi \in \mathcal{A}.$$

Alternatively, $\Delta \subset X$ is a boundary for \mathcal{A} if the restriction map $C(X) \to C(\Delta)$ is (completely) isometric on \mathcal{A} .

Definition

The Shilov boundary of \mathcal{A} is the smallest boundary $\Sigma_{\mathcal{A}} \subset X$ for \mathcal{A} .

For every boundary $\Delta \subset X$, the surjective restriction map $C(\Delta) \to C(\Sigma_{\mathcal{A}})$ is (completely) isometric on \mathcal{A} .

Peak points and the Choquet boundary

Theorem

Let $\xi \in X$. Then, the following statements are equivalent.

• The point ξ is a peak point for \mathcal{A} : there is $\varphi \in \mathcal{A}$ with the property that

 $\varphi(\xi)=1>|\varphi(x)|,\quad x\neq\xi.$

<ロ> (四) (四) (日) (日) (日)

Peak points and the Choquet boundary

Theorem

Let $\xi \in X$. Then, the following statements are equivalent.

• The point ξ is a peak point for \mathcal{A} : there is $\varphi \in \mathcal{A}$ with the property that

$$\varphi(\xi) = 1 > |\varphi(x)|, \quad x \neq \xi.$$

 The point ξ is in the Choquet boundary of A: the associated point evaluation on A admits a unique (completely) contractive extension to C(X).

Peak points and the Choquet boundary

Theorem

Let $\xi \in X$. Then, the following statements are equivalent.

• The point ξ is a peak point for \mathcal{A} : there is $\varphi \in \mathcal{A}$ with the property that

$$\varphi(\xi) = 1 > |\varphi(x)|, \quad x \neq \xi.$$

 The point ξ is in the Choquet boundary of A: the associated point evaluation on A admits a unique (completely) contractive extension to C(X).

Furthermore,

 $\overline{Choquet\ boundary} = \Sigma_{\mathcal{A}}.$

Definition (Arveson 1969)

Let ${\mathcal M}$ be a concretely represented unital operator space.

- A unital completely contractive linear map $\varphi : C^*(\mathcal{M}) \to B(\mathfrak{H})$ is said to have the unique extension property with respect to \mathcal{M} if it is the unique unital completely contractive extension to $C^*(\mathcal{M})$ of $\varphi|_{\mathcal{M}}$.
- An irreducible *-representation π of $C^*(\mathcal{M})$ is said to be a boundary representation if it has the unique extension property with respect to \mathcal{M} .

Definition (Arveson 1969)

Let ${\mathcal M}$ be a concretely represented unital operator space.

- A unital completely contractive linear map $\varphi : C^*(\mathcal{M}) \to B(\mathfrak{H})$ is said to have the unique extension property with respect to \mathcal{M} if it is the unique unital completely contractive extension to $C^*(\mathcal{M})$ of $\varphi|_{\mathcal{M}}$.
- An irreducible *-representation π of $C^*(\mathcal{M})$ is said to be a boundary representation if it has the unique extension property with respect to \mathcal{M} .

Perhaps this non-commutative Choquet boundary can be used to recover the non-commutative Shilov boundary (i.e the C*-envelope)?

Definition (Arveson 1969)

Let ${\mathcal M}$ be a concretely represented unital operator space.

- A unital completely contractive linear map $\varphi : C^*(\mathcal{M}) \to B(\mathfrak{H})$ is said to have the unique extension property with respect to \mathcal{M} if it is the unique unital completely contractive extension to $C^*(\mathcal{M})$ of $\varphi|_{\mathcal{M}}$.
- An irreducible *-representation π of $C^*(\mathcal{M})$ is said to be a boundary representation if it has the unique extension property with respect to \mathcal{M} .

Perhaps this non-commutative Choquet boundary can be used to recover the non-commutative Shilov boundary (i.e the C*-envelope)?

Theorem (Arveson 1969)

Let \mathcal{F} be a set of unital *-representations of $C^*(\mathcal{M})$ which have the unique extension property with respect to \mathcal{M} . Assume that $\varepsilon = \bigoplus_{\pi \in \mathcal{F}} \pi$ is completely isometric on \mathcal{M} . Then $(\varepsilon(C^*(\mathcal{M})), \varepsilon)$ is the C*-envelope of \mathcal{M} .

Definition (Arveson 1969)

Let ${\mathcal M}$ be a concretely represented unital operator space.

- A unital completely contractive linear map $\varphi : C^*(\mathcal{M}) \to B(\mathfrak{H})$ is said to have the unique extension property with respect to \mathcal{M} if it is the unique unital completely contractive extension to $C^*(\mathcal{M})$ of $\varphi|_{\mathcal{M}}$.
- An irreducible *-representation π of $C^*(\mathcal{M})$ is said to be a boundary representation if it has the unique extension property with respect to \mathcal{M} .

Perhaps this non-commutative Choquet boundary can be used to recover the non-commutative Shilov boundary (i.e the C*-envelope)?

Theorem (Arveson 1969)

Let \mathcal{F} be a set of unital *-representations of $C^*(\mathcal{M})$ which have the unique extension property with respect to \mathcal{M} . Assume that $\varepsilon = \bigoplus_{\pi \in \mathcal{F}} \pi$ is completely isometric on \mathcal{M} . Then $(\varepsilon(C^*(\mathcal{M})), \varepsilon)$ is the C*-envelope of \mathcal{M} .

Such a set \mathcal{F} always exists (Muhly-Solel 1998, Dritschel-McCullough 2005).

Definition (Arveson 1969)

Let ${\mathcal M}$ be a concretely represented unital operator space.

- A unital completely contractive linear map $\varphi : C^*(\mathcal{M}) \to B(\mathfrak{H})$ is said to have the unique extension property with respect to \mathcal{M} if it is the unique unital completely contractive extension to $C^*(\mathcal{M})$ of $\varphi|_{\mathcal{M}}$.
- An irreducible *-representation π of $C^*(\mathcal{M})$ is said to be a boundary representation if it has the unique extension property with respect to \mathcal{M} .

Perhaps this non-commutative Choquet boundary can be used to recover the non-commutative Shilov boundary (i.e the C*-envelope)?

Theorem (Arveson 1969)

Let \mathcal{F} be a set of unital *-representations of $C^*(\mathcal{M})$ which have the unique extension property with respect to \mathcal{M} . Assume that $\varepsilon = \bigoplus_{\pi \in \mathcal{F}} \pi$ is completely isometric on \mathcal{M} . Then $(\varepsilon(C^*(\mathcal{M})), \varepsilon)$ is the C*-envelope of \mathcal{M} .

Such a set \mathcal{F} always exists (Muhly-Solel 1998, Dritschel–McCullough 2005). The *-representations can even be chosen to be irreducible (Arveson 2008, Davidson–Kennedy 2015).

・ロト ・回ト ・モト ・モト

Hyperrigidity and the unique extension property

Definition

A concretely represented unital operator space \mathcal{M} is said to be hyperrigid if every unital *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Note that this notion depends on the choice of representation of \mathcal{M} . However, if \mathcal{M} is known to be hyperrigid in some representation, then it will be automatically be hyperrigid inside of its C^{*}-envelope.

Hyperrigidity and the unique extension property

Definition

A concretely represented unital operator space \mathcal{M} is said to be hyperrigid if every unital *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Note that this notion depends on the choice of representation of \mathcal{M} . However, if \mathcal{M} is known to be hyperrigid in some representation, then it will be automatically be hyperrigid inside of its C^{*}-envelope.

Theorem (Kennedy–Shalit 2015)

The Arveson-Douglas essential normality conjecture can be rephrased in terms of hyperrigidity of a natural unital operator space.

What rigidity?

Definition

A concretely represented unital operator space \mathcal{M} is said to be hyperrigid if every unital *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

(日) (四) (三) (三) (三)

What rigidity?

Definition

A concretely represented unital operator space \mathcal{M} is said to be hyperrigid if every unital *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Theorem (Arveson 2011)

A concretely represented unital operator space \mathcal{M} is hyperrigid if and only if for every unital *-representation $\pi : C^*(\mathcal{M}) \to B(\mathfrak{H})$ and every sequence of unital completely positive maps

$$\varphi_n : \pi(\mathcal{C}^*(\mathcal{M})) \to B(\mathfrak{H}), \quad n \in \mathbb{N}$$

satisfying

$$\lim_{n \to \infty} \|\varphi_n(\pi(a)) - \pi(a)\| = 0, \quad a \in \mathcal{M},$$

we must have

$$\lim_{n \to \infty} \|\varphi_n(\pi(t)) - \pi(t)\| = 0, \quad t \in \mathcal{C}^*(\mathcal{M}).$$

Theorem (Korovkin 1953)

For each $n \in \mathbb{N}$, let $\varphi_n : C[0,1] \to C[0,1]$ be a (completely) positive linear map and assume that

$$\lim_{n \to \infty} \|\varphi_n(a) - a\| = 0$$

for every $a \in \{1, x, x^2\}$. Then, it must be the case that

$$\lim_{n \to \infty} \|\varphi_n(f) - f\| = 0$$

for every $f \in C[0, 1]$.

(日) (四) (三) (三) (三)

Theorem (Korovkin 1953)

For each $n \in \mathbb{N}$, let $\varphi_n : \mathbb{C}[0,1] \to \mathbb{C}[0,1]$ be a (completely) positive linear map and assume that

$$\lim_{n \to \infty} \|\varphi_n(a) - a\| = 0$$

for every $a \in \{1, x, x^2\}$. Then, it must be the case that

$$\lim_{n \to \infty} \|\varphi_n(f) - f\| = 0$$

for every $f \in C[0,1]$.

(Šaškin 1967) The key property is that every point of [0, 1] is a peak point for some quadratic polynomial.

Theorem (Korovkin 1953)

For each $n \in \mathbb{N}$, let $\varphi_n : \mathbb{C}[0,1] \to \mathbb{C}[0,1]$ be a (completely) positive linear map and assume that

$$\lim_{n \to \infty} \|\varphi_n(a) - a\| = 0$$

for every $a \in \{1, x, x^2\}$. Then, it must be the case that

$$\lim_{n \to \infty} \|\varphi_n(f) - f\| = 0$$

for every $f \in C[0,1]$.

(Šaškin 1967) The key property is that every point of [0, 1] is a peak point for some quadratic polynomial. That is, the Choquet boundary of $\{1, x, x^2\}$ is "maximal" in [0, 1].

Theorem (Korovkin 1953)

For each $n \in \mathbb{N}$, let $\varphi_n : \mathbb{C}[0,1] \to \mathbb{C}[0,1]$ be a (completely) positive linear map and assume that

$$\lim_{n \to \infty} \|\varphi_n(a) - a\| = 0$$

for every $a \in \{1, x, x^2\}$. Then, it must be the case that

$$\lim_{n \to \infty} \|\varphi_n(f) - f\| = 0$$

for every $f \in C[0,1]$.

(Šaškin 1967) The key property is that every point of [0, 1] is a peak point for some quadratic polynomial. That is, the Choquet boundary of $\{1, x, x^2\}$ is "maximal" in [0, 1].

Theorem (Korovkin 1953)

For each $n \in \mathbb{N}$, let $\varphi_n : C[0,1] \to C[0,1]$ be a (completely) positive linear map and assume that

$$\lim_{n \to \infty} \|\varphi_n(a) - a\| = 0$$

for every $a \in \{1, x, x^2\}$. Then, it must be the case that

$$\lim_{n \to \infty} \|\varphi_n(f) - f\| = 0$$

for every $f \in C[0,1]$.

(Šaškin 1967) The key property is that every point of [0, 1] is a peak point for some quadratic polynomial. That is, the Choquet boundary of $\{1, x, x^2\}$ is "maximal" in [0, 1].

In order for a general unital operator space to be hyperrigid, is it sufficient for the non-commutative Choquet boundary to be maximal?

(ロ) (日) (日) (日) (日)

The conjecture and some supporting evidence

Hyperrigidity conjecture (Arveson 2011)

Let \mathcal{M} be a concretely represented unital operator space. Then, \mathcal{M} is hyperrigid if and only if every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Hyperrigidity conjecture (Arveson 2011)

Let \mathcal{M} be a concretely represented unital operator space. Then, \mathcal{M} is hyperrigid if and only if every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Some examples of unital operator spaces satisfying the hyperrigidity conjecture:

- multiplier algebras of certain reproducing kernel Hilbert spaces (C.-Hartz 2017)
- tensor algebras of certain directed graphs. (Dor On–Salomon 2018)

Irreducible *-representations as building blocks

Hyperrigidity conjecture

Let \mathcal{M} be a concretely represented unital operator space. Then, \mathcal{M} is hyperrigid if and only if every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Irreducible *-representations as building blocks

Hyperrigidity conjecture

Let \mathcal{M} be a concretely represented unital operator space. Then, \mathcal{M} is hyperrigid if and only if every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Lemma (Arveson 2011)

Let \mathcal{M} be a concretely represented unital operator space. For each $\lambda \in \Lambda$, let $\pi_{\lambda} : C^*(\mathcal{M}) \to B(\mathfrak{H}_{\lambda})$ be a unital *-representation. Then,

$$\bigoplus_{\lambda \in \Lambda} \pi_{\lambda} : \mathrm{C}^*(\mathcal{M}) \to \bigoplus_{\lambda \in \Lambda} B(\mathfrak{H}_{\lambda})$$

has the unique extension property with respect to \mathcal{M} if and only if π_{λ} has it for every $\lambda \in \Lambda$.

(ロ) (日) (日) (日) (日)

Irreducible *-representations as building blocks

Hyperrigidity conjecture

Let \mathcal{M} be a concretely represented unital operator space. Then, \mathcal{M} is hyperrigid if and only if every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M} .

Lemma (Arveson 2011)

Let \mathcal{M} be a concretely represented unital operator space. For each $\lambda \in \Lambda$, let $\pi_{\lambda} : C^*(\mathcal{M}) \to B(\mathfrak{H}_{\lambda})$ be a unital *-representation. Then,

$$\bigoplus_{\lambda \in \Lambda} \pi_{\lambda} : \mathrm{C}^*(\mathcal{M}) \to \bigoplus_{\lambda \in \Lambda} B(\mathfrak{H}_{\lambda})$$

has the unique extension property with respect to \mathcal{M} if and only if π_{λ} has it for every $\lambda \in \Lambda$.

Recall that the **spectrum** of a C^{*}-algebra is the set of unitary equivalence classes of its irreducible representations.

Theorem (Arveson 2011)

Let \mathcal{M} be a concretely represented unital operator space such that $C^*(\mathcal{M})$ has countable spectrum. Then, \mathcal{M} satisfies the hyperrigidity conjecture.

 \mathcal{M} concretely represented unital operator space such that every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M}

 \mathcal{M} concretely represented unital operator space such that every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M}

 $\pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital *-representation $\Pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital completely contractive map such that

 $\pi(a) = \Pi(a), \quad a \in \mathcal{M}$

 \mathcal{M} concretely represented unital operator space such that every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M}

 $\pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital *-representation $\Pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital completely contractive map such that

$$\pi(a) = \Pi(a), \quad a \in \mathcal{M}$$

Goal

 $\pi(t) - \Pi(t) = 0$ for every $t \in C^*(\mathcal{M})$

イロン イヨン イヨン イヨン

 \mathcal{M} concretely represented unital operator space such that every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M}

 $\pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital *-representation $\Pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital completely contractive map such that

$$\pi(a) = \Pi(a), \quad a \in \mathcal{M}$$

Goal

$$\pi(t) - \Pi(t) = 0$$
 for every $t \in C^*(\mathcal{M})$

Lemma

The following statements are equivalent.

- (i) We have $\pi = \Pi$.
- (ii) There is a family of states on B(𝔅) which separate (Π − π)(C^{*}(𝔅)) and restrict to pure states on π(C^{*}(𝔅)).

Linearizing the problem

 \mathcal{M} concretely represented unital operator space such that every irreducible *-representation of $C^*(\mathcal{M})$ has the unique extension property with respect to \mathcal{M}

 $\pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital *-representation $\Pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital completely contractive map such that

$$\pi(a) = \Pi(a), \quad a \in \mathcal{M}$$

Goal

$$\pi(t) - \Pi(t) = 0$$
 for every $t \in C^*(\mathcal{M})$

Lemma

The following statements are equivalent.

- (i) We have $\pi = \Pi$.
- (ii) There is a family of states on B(𝔅) which separate (Π − π)(C*(𝓜)) and restrict to pure states on π(C*(𝓜)).

How do we manufacture such a family of states?

(日) (四) (王) (王) (王) (王)

Definition

Let \mathfrak{A} be a unital C*-algebra. Let S and \mathcal{T} be self-adjoint subspaces of \mathfrak{A} . We say that the pair (S, \mathcal{T}) is unperforated if for every pair of self-adjoint elements $a \in S, b \in \mathcal{T}$ such that $a \leq b$, we can find another self-adjoint element $b' \in \mathcal{T}$ with the property that $\|b'\| \leq \|a\|$ and $a \leq b' \leq b$.

Definition

Let \mathfrak{A} be a unital C*-algebra. Let S and \mathcal{T} be self-adjoint subspaces of \mathfrak{A} . We say that the pair (S, \mathcal{T}) is **unperforated** if for every pair of self-adjoint elements $a \in S, b \in \mathcal{T}$ such that $a \leq b$, we can find another self-adjoint element $b' \in \mathcal{T}$ with the property that $\|b'\| \leq \|a\|$ and $a \leq b' \leq b$.

Theorem (C. 2018)

The pair $((\Pi - \pi)(C^*(\mathcal{M})), \pi(C^*(\mathcal{M})))$ is unperforated if and only if $\Pi = \pi$.

Definition

Let \mathfrak{A} be a unital C*-algebra. Let S and \mathcal{T} be self-adjoint subspaces of \mathfrak{A} . We say that the pair (S, \mathcal{T}) is **unperforated** if for every pair of self-adjoint elements $a \in S, b \in \mathcal{T}$ such that $a \leq b$, we can find another self-adjoint element $b' \in \mathcal{T}$ with the property that $\|b'\| \leq \|a\|$ and $a \leq b' \leq b$.

Theorem (C. 2018)

The pair $((\Pi - \pi)(C^*(\mathcal{M})), \pi(C^*(\mathcal{M})))$ is unperforated if and only if $\Pi = \pi$.

Example

If $\mathfrak{B} \subset \mathfrak{A}$ is a unital C*-subalgebra that commutes with a self-adjoint subspace $\mathcal{S} \subset \mathfrak{A}$, then the pair $(\mathcal{S}, \mathfrak{B})$ is unperforated.

イロト イヨト イヨト イヨト

Definition

Let \mathfrak{A} be a unital C*-algebra. Let S and \mathcal{T} be self-adjoint subspaces of \mathfrak{A} . We say that the pair (S, \mathcal{T}) is unperforated if for every pair of self-adjoint elements $a \in S, b \in \mathcal{T}$ such that $a \leq b$, we can find another self-adjoint element $b' \in \mathcal{T}$ with the property that $\|b'\| \leq \|a\|$ and $a \leq b' \leq b$.

Theorem (C. 2018)

The pair $((\Pi - \pi)(C^*(\mathcal{M})), \pi(C^*(\mathcal{M})))$ is unperforated if and only if $\Pi = \pi$.

Example

If $\mathfrak{B} \subset \mathfrak{A}$ is a unital C*-subalgebra that commutes with a self-adjoint subspace $\mathcal{S} \subset \mathfrak{A}$, then the pair $(\mathcal{S}, \mathfrak{B})$ is unperforated.

- Even in finite-dimensional settings, unperforated pairs appear elusive in the absence of some form of commutativity.
- Let 𝔅 be a unital C*-algebra and let 𝔅 ⊂ 𝔅 be a unital C*-subalgebra with the weak expectation property. Then, the pair (𝔅, 𝔅) is "approximately" unperforated. (C. 2018)

A local version of the conjecture?

X be a compact metric space

 $\mathcal{M} \subset \mathcal{C}(X)$ unital subspace such that $\mathcal{C}^*(\mathcal{M}) = \mathcal{C}(X)$

 $\pi: \mathcal{C}(X) \to B(\mathfrak{H})$ unital *-representation

 $\Pi: \mathrm{C}(X) \to B(\mathfrak{H})$ unital completely contractive map such that

 $\pi(a) = \Pi(a), \quad a \in \mathcal{M}$

イロト イヨト イヨト イヨト

A local version of the conjecture?

X be a compact metric space $\mathcal{M} \subset C(X)$ unital subspace such that $C^*(\mathcal{M}) = C(X)$ $\pi : C(X) \to B(\mathfrak{H})$ unital *-representation $\Pi : C(X) \to B(\mathfrak{H})$ unital completely contractive map such that

 $\pi(a) = \Pi(a), \quad a \in \mathcal{M}$

Theorem (Arveson 2011)

Let $\xi \in X$ be a point in the Choquet boundary of \mathcal{M} . Then,

 $\lim_{\delta \to 0} \|(\pi(f) - \Pi(f))E_{\pi}(\xi, \delta)\| = 0, \quad f \in \mathcal{C}(X).$

(日) (四) (王) (王) (王) (王)

A local version of the conjecture?

X be a compact metric space $\mathcal{M} \subset C(X)$ unital subspace such that $C^*(\mathcal{M}) = C(X)$ $\pi : C(X) \to B(\mathfrak{H})$ unital *-representation $\Pi : C(X) \to B(\mathfrak{H})$ unital completely contractive map such that

 $\pi(a) = \Pi(a), \quad a \in \mathcal{M}$

Theorem (Arveson 2011)

Let $\xi \in X$ be a point in the Choquet boundary of \mathcal{M} . Then,

$$\lim_{\delta \to 0} \left\| (\pi(f) - \Pi(f)) E_{\pi}(\xi, \delta) \right\| = 0, \quad f \in \mathcal{C}(X).$$

Example

Let X be a compact metric space and $\mathcal{A} \subset C(X)$ be a uniform algebra. Let $\xi \in X$ be a peak point for \mathcal{A} , so that there is a function $\varphi \in \mathcal{A}$ with the property that

$$|\varphi(y)| < \varphi(\xi) = 1$$

for each $y \in X, y \neq \xi$. Then, $\lim_{n \to \infty} \|\varphi^n f\| = |f(\xi)|$ for every $f \in C(X)$.

Characteristic sequences

Definition

Let \mathfrak{A} be a unital C^{*}-algebra and let ψ be a state on \mathfrak{A} . A sequence $(\Delta_n)_n$ in \mathfrak{A} is said to be a *characteristic sequence* for ψ if the following conditions are satisfied:

- (a) $\|\Delta_n\| = 1$ for every $n \in \mathbb{N}$,
- (b) $\lim_{n\to\infty} \psi(\Delta_n) = 1$, and
- (c) $\limsup_{n\to\infty} \|\Delta_n^* a \Delta_n\| \le |\psi(a)|$ for every $a \in \mathfrak{A}$.

・ロト ・日下・ ・ヨト・・

Characteristic sequences

Definition

Let \mathfrak{A} be a unital C^{*}-algebra and let ψ be a state on \mathfrak{A} . A sequence $(\Delta_n)_n$ in \mathfrak{A} is said to be a *characteristic sequence* for ψ if the following conditions are satisfied:

- (a) $\|\Delta_n\| = 1$ for every $n \in \mathbb{N}$,
- (b) $\lim_{n\to\infty} \psi(\Delta_n) = 1$, and
- (c) $\limsup_{n\to\infty} \|\Delta_n^* a \Delta_n\| \le |\psi(a)|$ for every $a \in \mathfrak{A}$.

Intuitively, states that admit a characteristic sequence are "approximate peak points for \mathfrak{A} " within the state space.

(日) (四) (三) (三) (三)

Characteristic sequences

Definition

Let \mathfrak{A} be a unital C^{*}-algebra and let ψ be a state on \mathfrak{A} . A sequence $(\Delta_n)_n$ in \mathfrak{A} is said to be a *characteristic sequence* for ψ if the following conditions are satisfied:

- (a) $\|\Delta_n\| = 1$ for every $n \in \mathbb{N}$,
- (b) $\lim_{n\to\infty} \psi(\Delta_n) = 1$, and
- (c) $\limsup_{n\to\infty} \|\Delta_n^* a \Delta_n\| \le |\psi(a)|$ for every $a \in \mathfrak{A}$.

Intuitively, states that admit a characteristic sequence are "approximate peak points for \mathfrak{A} " within the state space.

Example

Let \mathcal{A}_d denote the norm closure of the polynomial multipliers on the Drury-Arveson space. Let $\mathfrak{T}_d = C^*(\mathcal{A}_d)$ denote the Toeplitz algebra. Every pure state on \mathfrak{T}_d admits a characteristic sequence in $\mathfrak{K} + \mathcal{A}_d$.

(ロ) (四) (三) (三)

Local hyperrigidity in general

 \mathcal{M} concretely represented unital operator space $\pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital *-representation $\Pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital completely contractive map such that

$$\pi(a) = \Pi(a), \quad a \in \mathcal{M}$$

Theorem (C. 2018)

Let ψ be a state on $C^*(\mathcal{M})$ which admits a characteristic sequence $(\Delta_n)_n$ in \mathcal{M} . Then, we have

$$\lim_{n \to \infty} \|\pi(\Delta_n)^* (\Pi(t) - \pi(t))\pi(\Delta_n)\| = 0$$

for every $t \in C^*(\mathcal{M})$.

イロト イヨト イヨト イヨ

Local hyperrigidity in general

 \mathcal{M} concretely represented unital operator space $\pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital *-representation $\Pi: \mathrm{C}^*(\mathcal{M}) \to B(\mathfrak{H})$ unital completely contractive map such that

$$\pi(a) = \Pi(a), \quad a \in \mathcal{M}$$

Theorem (C. 2018)

Let ψ be a state on $C^*(\mathcal{M})$ which admits a characteristic sequence $(\Delta_n)_n$ in \mathcal{M} . Then, we have

$$\lim_{n \to \infty} \|\pi(\Delta_n)^* (\Pi(t) - \pi(t))\pi(\Delta_n)\| = 0$$

for every $t \in C^*(\mathcal{M})$.

Note that although the conclusion is merely "local", so is the assumption!

(ロ) (日) (日) (日) (日)

Thank you!

・ロト ・回ト ・ヨト ・ヨト