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Unilateral shift

Let S: ¢2 — /2 be a unilateral shift given by

5(20,31,...) = (0,30731,...).



Unilateral shift

Let S: ¢2 — /2 be a unilateral shift given by
5(20,81, .o ) = (O,ao, di, .. )

The (2 space and the Hardy space H? are unitary equivalent.

Definition
Let H>® = L°° N H? and let ¢ € H*>. Define My: H?> — H? by

(Myf)(z) = ¢(2)f(2), zeD.

Theorem (Brown, Halmos)

Operator S is unitary equivalent to the multiplication operator M, and
commutant of M, is equal to the space {My: ¢ € H>}.




Weighted shift

Let A = {A\;}72, C (0,+00) and let Sy be a bounded weighted shift
given by

5)\(30, di, .. .,) = (O,/\an, /\131, .. )

Definition
Let 8= {B(n)}3, C (0, +00) such that 3(0) = 1 and let H?(3) be a
weighted Hardy space i.e,

H?*(B3 {f(z Z Z <oo}




Weighted shift cd.

Definition
® For a formal power series
P(z) = 3,20 0(n)z2"
and a function
f(z) = Yol F(n)z" € H*(B)
we define its multiplication by

o oo

(1)) =D (Y b (n—K))z" = > (&+ F)(m)z".

n=0 k=0 n=0




Weighted shift cd.

Definition
® For a formal power series

0(2) = X320 d(n)z"

and a function

f(z) = X020 f(n)z" € H*(B)

we define its multiplication by

(1)) =D (Y b (n—K))z" = > (&+ F)(m)z".

n=0 k=0 n=0

o Let H=(B) = {¢(2) = 22, d(n)z": oHA(B) C H?(B)}.




Weighted shift

Definition
For ¢ € H*(8), f € H?*(3) we define multiplication operator by

(Myf)(2) = (6)(2)-

Theorem (Gellar, Kelley, Shields)

Weighted shift Sy is unitary equivalent with the multiplication operator
M, : H3(B) — H?(3), with

ﬂ(n) = )\0 L )\n—l-
For any ¢ € H*°(83) operator M, is bounded and

Mz} = {My: ¢ € H*(B)}.




Shift of arbitrary multiplicity

For a Hilbert space K let /2(K) = {{xa}320: D reg IXall% < oo} and let
Sk be a shift on 2(K) ie.,

SK(Xo,Xl, . ) = (O,X(),Xl7 .. )



Shift of arbitrary multiplicity

For a Hilbert space K let /2(K) = {{xa}320: D reg IXall% < oo} and let
Sk be a shift on 2(K) ie.,

SK(Xo,Xl, . ) = (O,X(),Xl7 .. )

Function space model of Sk:

[2(K) = {f: T — K measurable : [,[|f(z)|[?dm} < oo}.
Any f € L?(K) can be represented as
flz) =300 F(nz", F(n)eK.

n—=—oo

Define Hilbert Hardy space as
H2(K) = {f € L2(K): f(2) = 302, F(n)z"}.



Shift of arbitrary multiplicity

Function space model of Sk cd.:

Let F: T — B(K) be measureable and essentially bounded. Define
multiplication by F as the operator Mg: L2(K) — L?(K)

(Mef)(z) = F(z)f(z), zeT.

Theorem (Lax, Halmos, Helson, Lowdenslager)

Operator S is unitary equivalent to the multiplication operator M, and

{Mz}/ = {Mlez(K)Z MFHz(K) - Hz(K)}




Graphs and Directed trees

A pair G = (V, E) is called a directed graph if V is a nonempty set and
E is a subset of a set (V x V) \ {(v,v): v € V} (set V may be infinite).



Graphs and Directed trees

A_’ pair G = (V, E) is called a directed graph if V is a nonempty set and
E is a subset of a set (V x V)\ {(v,v): v € V} (set V may be infinite).
During the talk we will use the following notation:

® par(u) — the parent of a vertex u (unique if exists),

® Chi(u) — the set of children of a vertex u,

® root — a vertex which is not a child of any vertex,

® V/° — the set of vertices excluding roots,

® par"(u) — the n-th parent of a vertex u (unique if exists),

Chi<">(W) — the set of descendants of the n-th order of a set W.



Graphs and Directed trees

Definition
A directed graph 7 is called a directed tree if the following conditions
are satisfied:

® there are no circuits in .7,

® 7 is connected,

® every vertex which is not a root has a parent.




Graphs and Directed trees

Definition
A directed graph 7 is called a directed tree if the following conditions
are satisfied:

® there are no circuits in .7,

® 7 is connected,

® every vertex which is not a root has a parent.

SN




(?(V) space

Let 7 = (V, E) be a directed tree. We consider the Hilbert space £2(V),
which consists of functions 7: V — C such that

Z If(u)]? < oo.

ueV



(?(V) space

Let 7 = (V, E) be a directed tree. We consider the Hilbert space £2(V),
which consists of functions 7: V — C such that

Z If(u)]? < oo.

ueV

The ¢2(V) space is equipped with the classical scalar product:

(f.g) = f(u)g(u).
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(?(V) space

Let 7 = (V, E) be a directed tree. We consider the Hilbert space £2(V),
which consists of functions 7: V — C such that

Z |f(u)]? < oo.

ueV

The ¢2(V) space is equipped with the classical scalar product:

(f.g) = f(u)g(u).

ueV

For every vertex u we define the function e, € ¢2(V) by formula

1 fu=v
eu(v)::{ 0 ifu#v



Weighted shift on a directed tree

[JJS] Z. J. Jabtonski, I. B. Jung, J. Stochel, Weighted shifts on directed trees,
Mem. Amer. Math. Soc. 216, no. 1017, viii+107pp (2012).



Weighted shift on a directed tree

[JJS] Z. J. Jabtonski, I. B. Jung, J. Stochel, Weighted shifts on directed trees,
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Weighted shift on a directed tree

[JJS] Z. J. Jabtonski, I. B. Jung, J. Stochel, Weighted shifts on directed trees,
Mem. Amer. Math. Soc. 216, no. 1017, viii+107pp (2012).

Let 7 = (V,E) be a directed tree and let A: V° 3 v — )\, € C.
Assume that sup,cy 2, cchiu) [Av[® < 00.

For a function f € £2(V) we define

A f(par(v)) ifve Ve,
(Saf)(v) := { (PO ) if v |€s a root.



Weighted shift on a directed tree

[JJS] Z. J. Jabtonski, I. B. Jung, J. Stochel, Weighted shifts on directed trees,
Mem. Amer. Math. Soc. 216, no. 1017, viii+107pp (2012).

Let 7 = (V,E) be a directed tree and let A: V° 3 v — )\, € C.
Assume that sup,cy 3-,cchi(u) A2 < o0.

For a function f € £2(V) we define

A f(par(v)) ifve Ve,
(Saf)(v) := { (PO ) if v |€5 a root.

Sa € B(£2(V)), is called a weighted shift on a directed tree.



Weighted shift on a directed tree

[JJS] Z. J. Jabtonski, I. B. Jung, J. Stochel, Weighted shifts on directed trees,
Mem. Amer. Math. Soc. 216, no. 1017, viii+107pp (2012).

Let 7 = (V,E) be a directed tree and let A: V° 3 v — )\, € C.
Assume that sup,cy 3-,cchi(u) A2 < o0.

For a function f € £2(V) we define

A f(par(v)) ifve Ve,
(Saf)(v) := { (PO ) if v |€5 a root.

Sa € B(£2(V)), is called a weighted shift on a directed tree.

Sales) = Z Ave,.

veChi(u)



Weighted shift on a directed tree

Classical unilateral weighted shift



Weighted shift on a directed tree

Classical unilateral weighted shift

A A2 A3 A




Weighted shift on a directed tree

Classical unilateral weighted shift

A A2 A3 A
0 1 2 8

Classical bilateral weighted shift



Weighted shift on a directed tree
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Weighted shift on a directed tree

Classical unilateral weighted shift

A A2 A3 A

Classical bilateral weighted shift




1 1
1 1) (1,2) [C ) P N

(0,0

(2,1) (2,2) (23)= = == — — = N
[e3

Example

Let % = (Vs,E), a € (0,1)

Vo ={(0,0)} U{(i,j): i € {1,2}, j € N},
E» = {((0,0),(/',1)): i {1,2}} U {((i,j),(i,j+1)): ie{1,2}, jeNl
Let Sx be a weighted shift on .75 with weights

Y 1 fori=1landj€N,
() =) a@ fori=2andjeN.




Problem

Describe commutant of Sy, i.e {Sx} =7



Left-invertible analytic operator

We say that T: H — H is left-invertible if there exists an operator
L € B(H) such that LT = Iy.



Left-invertible analytic operator

We say that T: H — H is left-invertible if there exists an operator
L € B(H) such that LT = Iy.

T € B(H) is left-invertible iff there exists a constant ¢ > 0 such that

| Tx|| > c||x]|| for all x € H.



Left-invertible analytic operator

We say that T: H — H is left-invertible if there exists an operator
L € B(H) such that LT = Iy.

T € B(H) is left-invertible iff there exists a constant ¢ > 0 such that

| Tx|| > c||x]|| for all x € H.

Let T € B(H). Operator T is said to be analytic if

ﬂT” ) = {0}.



Examples of left-invertible analytic operators

® Unilateral shift
® Weighted shifts on leafless and rooted directed trees which satisfy

; 2
oy 2, M0

veChi(u)

( A directed tree 7 = (V, E) is rooted iff it has a root;
is leafless iff Chi(v) # 0 for all v € V.)

® Shifts on generalized Dirichlet spaces

® Shifts on weighted Bergmann space with logarithmically
subharmonic weights on the unit disc in the complex plane



Model of left-invertible analytic operator

For T € B(H) which is left-invertible and analytic we define operators
T :=T(T*T) and L:=(T')".

Then
LT = Iy.



Model of left-invertible analytic operator

For T € B(H) which is left-invertible and analytic we define operators
T :=T(T*T) and L:=(T')".

Then
LT = Iy.

Shimourin’s Model
Denote by A(N(T*)) the set of all N(T*)-valued analytic functions on

1
D,, where r := A0




Model of left-invertible analytic operator

For T € B(H) which is left-invertible and analytic we define operators
T :=T(T*T) Yand L:=(T)".
Then
LT = Iy.

Shimourin’s Model
Denote by A(N(T*)) the set of all N(T*)-valued analytic functions on

1
D,, where r := A0

f € AON(T™)) if there is a sequence f = {f(n)}22, € N(T*) such that

f(z)= Z f(n)z", for every z € ID,.

n=0



Model of left-invertible analytic operator

Let us define a transformation U: 3 — A(N(T™*)) by the formula

oo

(Uf)(z) = Z(PN(T*)Lnf)Zn, zeD,.

n=0

is well-defined and analytic in D, for every f € X.

e Transformation U is injective.

® \We define a new scalar product on the set U(H) such that U is an
isometry.

® Let H denote the set U(H). It is a Hilbert space of N(T*)-valued
analytic functions.



Model of left-invertible analytic operator

® T is unitary equivalent to the operator 7 of multiplication by z on

H.
® [ is unitary equivalent to the operator £ € B(#H) given by the

formula
£(h(z) = OO,



Model of left-invertible analytic operator

® T is unitary equivalent to the operator 7 of multiplication by z on

H.
® [ is unitary equivalent to the operator £ € B(#H) given by the

formula
f(z)— f(0
£(h(z) = OO,

Ty
L

U*l lu*
L

S{Hj{
T



Model of left-invertible analytic operator

® T is unitary equivalent to the operator 7 of multiplication by z on

H.
® [ is unitary equivalent to the operator £ € B(#H) given by the

formula
£(h(z) = OO,

T

H <4T> H
H== ~ H

Every f € H can be represented as follows

= i f(n)z",
n=0

where f(n) := Px(r+)L"U*F for n € No.



Cauchy-type multiplication
We define x: B(N(T*))Ne x N(T*)Ne — N(T*)Ne given by

Z(p )f(n—k), ¢ eBN(T), feN(T).



Cauchy-type multiplication
We define x: B(N(T*))Ne x N(T*)Ne — N(T*)Ne given by

Z(p Y(n—k), ¢eBWN(T*)Y, feN(T)N

The multiplication operator My : H 2 D(My) — H is defined as follows.



Cauchy-type multiplication

We define x: B(N(T*))Ne x N(T*)Ne — N(T*)Ne given by

(@*F)(n) =D @(kF(n— k), ¢eBON(T))®, FeN(T)®.
k=0

The multiplication operator My: H 2 D(My) — H is defined as follows.
The domain is a set

D(Mg) = {f € H: thereis g € H such that @ﬂ:g}.



Cauchy-type multiplication

We define x: B(N(T*))Ne x N(T*)Ne — N(T*)Ne given by

(@*F)(n) =D @(kF(n— k), ¢eBON(T))®, FeN(T)®.
k=0

The multiplication operator My: H 2 D(My) — H is defined as follows.
The domain is a set

D(Mg) = {f € H: thereis g € H such that w?:g}.

For every f € D(M,;) there exists exactly one g € H satisfying equality
@+ f = g. In this situation, we set

M@fzg, fED(M@)

We call ¢: Ng — B(N(T*)) the symbol of M.



Generalized multipliers

Lemma
For every f € D(M) and n € Ng, we have the equality

Maf(n) =Y p(k)F(n - k).
k=0




Generalized multipliers

Lemma
For every f € D(M) and n € Ng, we have the equality

Zs@ )F(n— k)

If D(Ms) = H, then M; € B(H). If so, we call
® $ a generalized multiplier of T,
® My a generalized multiplication operator by @,
® GM(T) the set of all generalized multipliers of the operator T,

® M(T) is the linear subspace of GM(T) consisting of all generalized
multipliers whose all coefficients are scalar multiples of In7+).



Cauchy-type multiplication on GM(T)

GM(T) is a linear subspace of B(N(T*))"e and the function
|- |I: GM(T) — [0,00) given by the formula

12l = [IMgll, ¢ € GM(T)

is a norm on GM(T).



Cauchy-type multiplication on GM(T)

GM(T) is a linear subspace of B(N(T*))"e and the function
|- |I: GM(T) — [0,00) given by the formula

12l = [IMgll, ¢ € GM(T)

is a norm on GM(T).

We endow space GM(T) with the Cauchy-type multiplication
x: BON(T*))No x BON(T*))Ne — B(N(T*))Ne
given by

k
(@) (k) =D @)k —j), $,1b € BON(T™)).

Jj=0



Banach algebra structure

Theorem
Let T € B(H) be left-invertible and analytic. Then
(i) For every n € Ny, the sequence x () In(7+) is a generalized
multiplier and 7" = /NP
(i) If € GM(T), then My commutes with 7.
(i) For all @, e GM(T), the function @ x ¥ belongs to GM(T) and

MpMg =M, ;.

(iv) The spaces GM(T), M(T) endowed with the Cauchy-type
multiplication are the Banach algebras with a unit x oy (7).
M(T) is commutative.




Banach algebra structure

Theorem
Let T € B(H) be left-invertible and analytic. Then
(i) For every n € Ny, the sequence x () In(7+) is a generalized
multiplier and 7" = /NP
(i) If € GM(T), then My commutes with 7.
(i) For all @, e GM(T), the function @ x ¥ belongs to GM(T) and

MpMg =M, ;.

(iv) The spaces GM(T), M(T) endowed with the Cauchy-type
multiplication are the Banach algebras with a unit x oy (7).
M(T) is commutative.

Remark

¢: Ng = C ly(r+y € B(N(T*)) and supp ¢ is finite then $ € M(T),
@: Ng — B(N(T*)) and supp ¢ is finite = @ € GM(T),




Examples of General multipliers

1 1
1,1) (1,2) (13)= = == — — =

©9)

21) (2,2) (23)— == — — — —

Let % = (\/27 EQ), o€ (0, 1)
Sx € B(?(V,)) left-invertible and analytic,
{600,04611 — 621} is a basis of N(S;),



Examples of General multipliers

1 1
1) @.2) 13- ———— - S

(0,0)

@1) @2 ——(@23)- - - - - - = 5

Let % = (\/27 EQ), o€ (0, 1)
Sx € B(?(V,)) left-invertible and analytic,
{600,04611 — 621} is a basis of N(S;),

Example

R o Ay ifn=0
¢: No — B(N(SY)), <p(n):{ 0 ;f2>0 . where

Ay = ( Z ; ) ,  with respect to the basis {eg, ver; — 21}

pegGM(Sy)ifandonlyif b=c=0and a=d.




Examples of General multipliers

1 1
(1,1) (1,2) (03)= = == — — = N

a

(2.1) (2,2) (23)= — — = — — = N
a a

Example

A if k<2

0 ifk>2 , Where

P No — B(N(S3)) be defined as (k) = {

a ¢ _ _
Ay = ( bk dk ) ,  with respect to the basis {ego, ve11 — €21}
K dk

~

Then 1) is a generalized multiplier if and only if

0 — d
Aoz(df’_oal do),—mdAl:(%l (a0 dlo)a>'




Commutant

Definition
For a given operator A € B(H) let $a: Ng — B(N(T*)) be the following
sequence

~

@a(m) = Pr(r+)L" Aln(T+),  m € No.




Commutant

Definition
For a given operator A € B(H) let $a: Ng — B(N(T*)) be the following
sequence

~

goA(m) = PN(T*)LmA|N(T*), m € Ng.

Theorem

Let T € B(H) be left-invertible and analytic. Assume that A € B()
commutes with T. Then ¢4 € GM(T) and A= U*M;,U.




Balanced weighted shifts

A directed tree .7 = (V,E)
is leafless iff Chi(v) #£ 0 for all v € V;
is rooted iff it has a root;
then define |v| is a generation of v € V iff v € Chi'l"P (root) ;

Definition
Let 7 = (V, E) be a countably infinite rooted and leafless directed tree,

A={\}veve C(0,00) and let Sy be a bounded weighted shift on .7
with weights X. If

IISxeul] = ||Sxev|| for every u, v € V such that |u| = |v|,

then we say that S is balanced.




Separated basis

Let us define the k-th generation of vertices as the set
Vi :={v € V: |v| =k}, for some k € No.
Functions acting on k-th generation of vertices forms the set

C(Vi)={felP(V): f(u)=0if |u| # k}, k€eNo.

Lemma

Let 7 = (V, E) be a countably infinite rooted and leafless directed tree,
and A = {)\, }yeve € (0,00). Let Sy € B(£2(V)) be left-invertible. Then
there exists an orthonormal basis {e;};e, of N(S5) such that for every

J € J vector ¢ belongs to the space £2(Vy;) for some k; € No.




H® space

Definition
For given 3 € (0, +00)Me we set

H>®(B) := {a€ CYo: ax b e £3(B) for every b € £*(B)},
where for any sequence 3 = {3,152, C (0, +00) the space ¢(3) is the

weighted (2 space

{{an}iio € Clo: i lan|?Bn < oo}.

n=0




Commutant of balanced weighted shift

Theorem

Let 7 = (V, E) be a countably infinite rooted and leafless directed tree,
and A = {\, }yeve C (0,00). Assume that Sy € B(¢?(V)) is balanced
and left-invertible. Assume also that dimN(S5) < oo and {ej};c; is a
separated basis of N(55). Then

GM(Sx) = {@3 No — B(N(Si))‘

{(2(n)ef, e}y € H=({1|S et [2i20), if € I}
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Thank you for your attention!
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