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Mostow’s decomposition

Polar decomposition
Any invertible matrix A can be written uniquely as A = UP, U
unitary, P positive definite

Mostow’s decomposition
Every invertible matrix Z can be uniquely factorized as

Z = W eiK eS,

where W is a unitary matrix, S is a real symmetric matrix and K
is a real skew symmetric matrix.

eiK = P1,eS = P2

P1,P2 are positive definite
Moreover, P1 is circular (i.e. P1P1 = I)
So

Z = W P1 P2
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Perturbation bounds

X ,Y : normed spaces (or their open subsets) or Lie groups

f : X → Y

‖f (u)− f (v)‖ ≤ C‖u − v‖

Z = W P1 P2

Z 7→W , Z 7→ P1, Z 7→ P2
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Derivative

If f is differentiable at u ∈X , then for every v ∈X (v ∈ Lie
Algebra)

Df (u)(v) =
d
dt

∣∣∣∣
t=0

f (u + tv).

(
Df (u)(uv) =

d
dt

∣∣∣∣
t=0

f (uetv ).

)
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Mean value theorem

Let f : X → Y be a differentiable map. Let u, v ∈X and let L
be the line segment joining them. Then

‖f (u)− f (v)‖ ≤ ‖u − v‖ sup
w∈L
‖Df (w)‖.
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Taylor’s theorem

Let f : X → Y be a (p + 1)-times differentiable map. For
u ∈X and for small h,∥∥∥∥∥f (u + h)− f (u)−

p∑
k=1

1
k !

Dk f (u)(h, . . . ,h)

∥∥∥∥∥ = O(‖h‖p+1).

From here, first order perturbation bounds can be found.

‖f (u + h)− f (u)‖ ≤ ‖Df (u)‖ ‖h‖+ O(‖h‖2).
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Notations

M(n,C): space of n × n complex matrices

GL(n,C): set of invertible matrices

P(n,C): set of n × n positive definite matrices.

H(n,C): space of n × n Hermitian matrices

SH(n,C): space of n × n skew-Hermitian matrices

U(n,C): set of n × n unitary matrices.
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Notations

‖A‖: operator norm of A
If s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 are singular values of A, then
‖A‖ = s1.
|||A|||: unitarily invariant norm of A

|||A||| = |||UAV ||| for all U,V unitary

A: complex conjugate of A

|||A||| = |||A∗||| = ||| A |||

|||ABC||| ≤ ‖A‖ |||B||| ‖C‖

Let W be a subspace of (M(n,C), ||| · |||) and let
T : W →M(n,C) be a linear map. Then

|||T ||| = sup{|||T (X )||| : |||X ||| = 1}.
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Matrix Factorization

A,A1,A2: classes of matrices (open subsets of M(n,C) or
Lie groups)
Every A ∈ A has a unique factorization

A = A1A2

The decomposition gives a map % : A→ A1 × A2

%(A) = (%1(A), %2(A)) = (A1,A2)

To study variation of A1 , A2 with A, it is natural to study the
derivatives D%1(A),D%2(A).
The maps %1, %2 are complicated to describe.
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Bhatia and Mukherjea (1994)

Instead, consider the inverse map

τ : A1 × A2 → A

defined as

τ(A1,A2) = A1A2 = A

τ is a product map so computing the derivative is easy.

Inverse function theorem: Let A be an open subset of Rn

and let f : A→ Rn be a continuously differentiable map.
Let p ∈ A such that det Df (p) 6= 0. Then there is an open
set U containing p and an open set V containing f (p) such
that f : U → V has a differentiable inverse f−1 : V → U
and for y ∈ V ,

D(f−1)(y) =
[
Df (f−1(y))

]−1
.
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Inverse Function Theorem

Let f : N → M be a continuously differentiable map between
two manifolds of the same dimension, and p ∈ N. Suppose for
some charts (U, φ) around p ∈ N and (V , ψ) around f (p) in M,
f (U) ⊂ V .Then f is locally invertible at p if the Jacobian
determinant is nonzero.
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τ : A1 × A2 → A

Dτ(A1,A2) : TA1A1 + TA2A2 → TAA,

where TAA is the tangent space to A at the point A
When A is an open set, then TAA = M(n,C) for every
A ∈ A. All tangential vectors at A are of the form A + tB,
B ∈M(n,C).
When A is a Lie group, then TIA is the Lie algebra
corresponding to this Lie group. The tangent space at any
other point is A · TIA. The tangent vectors at A are written
as AetB, where B is from the Lie algebra.
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Polar decomposition

A ∈ GL(n,C) can be written uniquely as A = UP, U unitary, P
positive definite

%1 : GL(n,C)→ U(n,C)

%2 : GL(n,C)→ P(n,C)

TAGL(n,C) = M(n,C),TUU(n,C) = U SH(n,C),TPP(n,C) = H(n,C)

For S ∈ SH(n,C),H ∈ H(n,C),

Dτ(U,P)(US,H) =
d
dt

∣∣∣∣
t=0

τ(UetS,P + tH)

=
d
dt

∣∣∣∣
t=0

UetS(P + tH)

= USP + UH.
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Polar decompostion

For all X ∈M(n,C), we want to find D%(A)(X ).
Suppose

D%(A)(UX ) = (US,H) for some S ∈ SH(n,C),H ∈ H(n,C)

UX = Dτ(U,P)(US,H) = USP + UH

X = SP + H

In this case, S and H can be found explicitly. But even if they
can’t be found, this gives adequate information to get bounds
on D%1(A) and D%2(A).

14 / 38



Observation

Tangent spaces at U and P give

M(n,C) = H(n,C) + SH(n,C).

If P1 and P2 are the corresponding projection operators , then

P1(A) =
A− A∗

2

P2(A) =
A + A∗

2
So

|||P1||| = |||P2||| = 1.
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Finding S and H

X = SP + H,X ∈M(n,C),S ∈ SH(n,C),H ∈ H(n,C)

X ∗ = −PS + H

Subtract

X − X ∗ = SP + PS

This is a special case of well known Sylvester’s equation.
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Sylvester equation

AX − XB = Y

If σ(A) and σ(B) are spectra of A and B such that
σ(A) ∩ σ(B) = φ, then Sylvester’s equation has a unique
solution X for every Y .

If σ(A) is contained in the open right half-plane and σ(B) is
contained in the open left half-plane, then

X =

∫ ∞
0

e−tAYetBdt .

(Note: If a− b 6= 0, then ax − xb = y has a unique solution
x = y

a−b . If Re (b − a) < 0, then
∫∞

0 et(b−a)dt is convergent and
has the value 1

a−b . In this case, the solution of ax − xb = y can
be expressed as x =

∫∞
0 et(b−a)ydt .)
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Bound on D%1(A)

2i Im X = X − X ∗ = SP + PS

S = 2i
∫ ∞

0
e−tP Im X e−tPdt

Thus

|||S||| ≤ 2
(∫ ∞

0
‖e−tP‖2dt

)
||| Im X |||

Easy to compute∫ ∞
0
‖e−tP‖2dt =

‖P−1‖
2

=
‖A−1‖

2

|||S||| ≤ ‖A−1‖ ||| Im X ||| ≤ ‖A−1‖ |||X |||
Hence

|||D%1(A)(UX )||| ≤ ‖A−1‖ |||X |||
For X = i I/|||I|||, this is an equality.
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Bound on D%2(A)

X = SP + H

|||H||| ≤ |||X |||+ |||SP|||
≤ |||X |||+ |||S||| ‖P‖
≤ |||X |||+ ‖A−1‖ |||X ||| ‖P‖
= [1 + cond(A)]|||X |||,

where cond(A) = ‖A‖ ‖A−1‖.
So

|||D%2(A)||| ≤ 1 + cond(A).
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Perturbation bounds

First order perturbation bounds can be found using Taylor’s
theorem.
Let Ã represent a perturbation of A (Ã is in a neighbourhood of
A). Let Ã = ŨP̃. Then Taylor’s theorem gives

|||Ũ − U||| ≤ ‖A−1‖ |||Ã− A|||+ O(|||Ã− A|||2).

This is usually represented as

|||Ũ − U||| . ‖A−1‖ |||Ã− A|||.

Similarly,

|||P̃ − P||| . [1 + cond(A)] |||Ã− A|||.
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Mostow’s decomposition

Z = W P1 P2

Recently, Bhatia (2013) gave another proof of Mostow’s
decomposition theorem, giving explicitly what these factors are.

Related to geometric mean of two positive definite matrices.
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Geometric mean

For A,B ∈ P(n,C) their geometric mean is defined as

A#B = A1/2
(

A−1/2BA−1/2
)1/2

A1/2

It is the unique positive solution of the Riccati equation

XA−1X = B

A#B = max
{

X : X = X ∗,
[

A X
X B

]
≥ O

}

A#B = A(A−1B)1/2 = (AB−1)1/2B,

where (A−1B)1/2 and (AB−1)1/2 are the unique square
roots of A−1B and AB−1, respectively, with positive
eigenvalues.
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Mostow’s decomposition

A = Z ∗Z

A#A is positive definite

(A#A)1/2 = P2 = eS,S real symmetric

P1 = (e−SAe−S)1/2

P1 is positive definite and circular

P1 = eiK ,K real skew symmetric

W = Ze−Se−iK

Then W is unitary
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Derivative of geometric mean (–, Mishra (2017))

Let G : P(n,C)× P(n,C)→ P(n,C) be the map defined as

G(A,B) = A#B = A1/2
(

A−1/2BA−1/2
)1/2

A1/2.

Since A 7→ A1/2 is a differentiable function on P(n,C), G is a
differentiable map.

DG(A,B)(X ,Y ) =
d
dt

∣∣∣∣
t=0

G(A+tX ,B+tY ) for all X ,Y ∈ H(n,C).
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Derivative of geometric mean

X ,Y ∈ H(n,C)

For sufficiently small t

G(A + tX ,B + tY )(A + tX )−1G(A + tX ,B + tY ) = B + tY .

Differentiating with respect to t at 0, we get

(DG(A,B)(X ,Y ))A−1G(A,B)−G(A,B)(A−1XA−1)G(A,B)

+G(A,B)A−1 (DG(A,B)(X ,Y )) = Y .

(using DA−1(X ) = −A−1XA−1)

Put D = DG(A,B)(X ,Y ) and C = A−1G(A,B) = (A−1B)1/2.

C∗D + DC = Y + C∗XC.
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Derivative of geometric mean

For X ,Y ∈ H(n,C)

DG(A,B)(X ,Y ) =

∫ ∞
0

e−tC∗
(Y + C∗XC)e−tCdt

=

∫ ∞
0

e−t(BA−1)1/2
(Y + (BA−1)1/2X (A−1B)1/2)e−t(A−1B)1/2

dt

|||DG(A,B)||| = sup{|||DG(A,B)(X ,Y )||| : |||(X ,Y )||| = 1},
where |||(X ,Y )||| = max{|||X |||, |||Y |||}

≤
(∫ ∞

0
‖e−t(A−1B)1/2‖2dt

)(
1 + ‖(A−1B)1/2‖2

)
.
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Mostow’s decomposition

Z = WP1P2

%2 : Z 7→ P2:

P2 = (Z ∗Z#Z ∗Z )1/2

Then
%2 = f ◦G ◦ g ◦ h,

where f : t 7→ t1/2,g : A 7→ (A,A),h : Z 7→ Z ∗Z .

Chain rule:

D%2(Z ) = Df (Z ∗Z#Z ∗Z ) ◦ DG(Z ∗Z ,Z ∗Z ) ◦ Dg(Z ∗Z ) ◦ Dh(Z )

|||Df (A)||| ≤ 1
2
‖A−1‖1/2

‖A#B‖ ≤ ‖A‖1/2‖B‖1/2
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Bound for |||D%2(Z )|||

|||D%2(Z )(A)||| ≤ 1
2
‖Z−1‖ |||DG(Z ∗Z ,Z ∗Z )(Z ∗A+AZ ,Z ∗A + AZ )|||

Let C = (Z ∗Z )−1 (Z ∗Z#Z ∗Z
)
=
(
(Z ∗Z )−1Z ∗Z

)1/2
. Then

‖C‖ ≤ cond(Z )2.

|||D%2(Z )(A)||| ≤ 1
2
‖Z−1‖β(Z )

(
1 + ‖C‖2

)
|||Z ∗A + AZ |||,

where β(Z ) =
∫∞

0 ‖e
−t((Z∗Z )−1Z∗Z)

1/2

‖2dt

|||D%2(Z )(A)||| ≤ β(Z ) cond(Z )
(

1 + cond(Z )4
)
|||A|||
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Mostow’s decomposition

%1 : Z 7→ P1, %0 : Z 7→W :
Pcirc : the set of circular positive definite matrices.

P1 ∈ Pcirc

%(Z ) = (%0(Z ), %1(Z ), %2(Z ))

We are interested in D%1(Z ) and D%0(Z ).
Tangent spaces?
At W , it is W SH(n,C).
At P1?
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Tangent space at I

Consider any smooth curve γ(t) in Pcirc , with γ(0) = I. We have

γ(t)γ(t) = I

and
γ(t)∗ = γ(t).

Differentiating at t = 0 gives that γ′(0) + γ′(0) = 0 so that

γ′(0) is a purely imaginary matrix.

Also, γ′(0) is Hermitian.
So

TIPcirc = iSH(n,R),

where SH(n,R): space of n × n real skew symmetric matrices.
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Tangent space at P1

To calculate TP1Pcirc , consider γ(t) in Pcirc , with γ(0) = P1. So

γ′(0)P1 + P1γ
′(0) = 0.

For every J ∈ SH(n,R), the matrix P1/2
1 iJP1/2

1 satisfies the
above equation. A count on dimensions shows that the tangent
space at any point P1 is given by iP1/2

1 SH(n,R)P1/2
1 .
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D%(Z ) : M(n,C)→W SH(n,C)⊕ i P1/2
1 SH(n,R)P1/2

1 ⊕H(n,R)

Suppose

D%(Z )(A) = (WX0, i P1/2
1 Y1P1/2

1 ,Y2),

where X0 ∈ SH(n,C), Y1 ∈ SH(n,R) and Y2 ∈ H(n,R).
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D%0(Z ),D%1(Z )

D%(Z )(A) = (WX0, iP
1/2
1 Y1P1/2

1 ,Y2),

Dτ(W ,P1,P2)(WX0, iP1/2Y1P1/2,Y2) = A.

By definition,

Dτ(W ,P1,P2)(WX0, iP1/2Y1P1/2,Y2)

=
d
dt

∣∣∣∣
t=0

τ(WetX0 ,P1/2
1 eitY1P1/2

1 ,P2 + tY2)

=
d
dt

∣∣∣∣
t=0

WetX0P1/2
1 eitY1P1/2

1 (P2 + tY2)

= WX0P1P2 + WP1/2
1 (iY1)P

1/2
1 P2 + WP1Y2.
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D%0(Z ),D%1(Z )

WX0P1P2 + WP1/2
1 (iY1)P

1/2
1 P2 + WP1Y2 = A,

where

X ∗0 = −X0, Y1 = Y1, Y t
1 = −Y1, Y2 = Y2, Y t

2 = Y2

i.e.

X0 + P1/2
1 (iY1)P

−1/2
1 = (W ∗A− P1Y2)(P1P2)

−1

Taking adjoint,

−X0 + P−1/2
1 (iY1)P

1/2
1 = (P1P2)

−1(A∗W − Y2P1)

Add.

(P1/2
1 (iY1)P

1/2
1 )P−1

1 + P−1
1 (P1/2

1 (iY1)P
1/2
1 )

= Re
(
(W ∗A− P1Y2)(P1P2)

−1
)
.
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|||D%1(Z )(A)|||

P1/2
1 (iY1)P

1/2
1 =

∫ ∞
0

e−tP−1
1 Re

(
(W ∗A− P1Y2)(P1P2)

−1
)

e−tP−1
1 dt .

We get

|||D%1(Z )(A)||| = |||P1/2
1 (iY1)P

1/2
1 |||

≤
(∫ ∞

0
‖e−tP−1

1 ‖2dt
)
|||Re

(
(W ∗A− P1Y2)(P1P2)

−1
)
|||

≤ ‖P1‖
2
|||(W ∗A− P1Y2)(P1P2)

−1|||

≤
cond(P1) ‖P−1

2 ‖
2

(1 + ‖P1‖|||Y2|||) |||A|||.
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|||D%0(Z )(A)|||

Similarly, we obtain

X0P1 + P1X0 = 2i Im
(
(W ∗A− P1Y2)P−1

2

)
,

which gives
D%0(Z )(A) = X0

=

∫ ∞
0

e−tP1 Im
(
(W ∗A− P1Y2)P−1

2

)
e−tP1dt .

So

|||D%0(Z )(A)||| = |||X0|||

≤
(∫ ∞

0
‖e−tP1‖2dt

)
|||(W ∗A− P1Y2)P−1

2 |||

≤
‖P−1

1 ‖ ‖P
−1
2 ‖

2
(1 + ‖P1‖|||Y2|||) |||A|||.
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THANK YOU!
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