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Mostow’s decomposition

Polar decomposition
Any invertible matrix A can be written uniquely as A= UP, U
unitary, P positive definite

Mostow’s decomposition
Every invertible matrix Z can be uniquely factorized as

Z =W eKeS,

where W is a unitary matrix, S is a real symmetric matrix and K
is a real skew symmetric matrix.

e’K:P1,eS:P2

Py, P> are positive definite
Moreover, P is circular (i.e. PyP; = 1)
So

Z=WP P,



Perturbation bounds

2, % normed spaces (or their open subsets) or Lie groups
f: Z —-%

If(u) = f(V)Il < Cllu = vl

Z=WP; P,

Z— W, Z— Py, Z— P>



Derivative

If f is differentiable at u € 27, then for every v € 2 (v € Lie
Algebra)




Mean value theorem

Let f: 2 — % be a differentiable map. Let u,v € 2 and let L
be the line segment joining them. Then

1#(u) = )l < llu = vil sup|DI(w)].

we



Taylor’'s theorem

Letf: 2" — % be a (p + 1)-times differentiable map. For
u e Z and for small h,

f(u+ h) — f(u Z ] DXf( ., h)|| = O(|h|IPT .

From here, first order perturbation bounds can be found.

1f(u+ h) — ()| < D) 1Al + O(lIA?).



M(n, C): space of n x n complex matrices
GL(n,C): set of invertible matrices

P(n, C): set of n x n positive definite matrices.
H(n, C): space of n x n Hermitian matrices

SH(n, C): space of n x n skew-Hermitian matrices

U(n, C): set of n x n unitary matrices.



@ ||A||: operator norm of A
If sy > s > --- > s, > 0 are singular values of A, then
IA] = s1.

@ |||A]||: unitarily invariant norm of A

[||All] = ||| UAV]|| for all U, V unitary
@ A: complex conjugate of A
o —
A= [IIA%]I] = 11l A ]l
°

HIABCI| < [[A Bl IC]

@ Let # be a subspace of (M(n,C), ||| - |||) and let
T : # — M(n,C) be a linear map. Then

T = sup{[IIT X = 11X = 1}-



Matrix Factorization

@ A, A4, Ay: classes of matrices (open subsets of M(n, C) or
Lie groups)
@ Every A € A has a unique factorization

A=AA
@ The decomposition gives amap ¢ : A — Ay x Ay

0(A) = (01(A), 02(A)) = (A1, A2)

@ To study variation of Ay , A> with A, it is natural to study the
derivatives Dpq(A), Do2(A).

@ The maps p1, 0o are complicated to describe.



Bhatia and Mukherjea (1994)

@ Instead, consider the inverse map
T A1 X Ag — A
defined as

T(A1,A2) :A1A2:A

@ 7 is a product map so computing the derivative is easy.

@ Inverse function theorem: Let A be an open subset of R"
and let f : A — R" be a continuously differentiable map.
Let p € A such that det Df(p) # 0. Then there is an open
set U containing p and an open set V containing f(p) such
that f : U — V has a differentiable inverse ' : V — U
and for y € V,

D(")(y) = [ D ()]
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Inverse Function Theorem

Let f: N — M be a continuously differentiable map between
two manifolds of the same dimension, and p € N. Suppose for
some charts (U, ¢) around p € N and (V, ) around f(p) in M,
f(U) C V.Then fis locally invertible at p if the Jacobian
determinant is nonzero.
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T:A1XA2*>A

DT(A1,A2) : TA1A1 T TAzAg — T4A,

where T,A is the tangent space to A at the point A

@ When A is an open set, then TyA = M(n, C) for every
A € A. All tangential vectors at A are of the form A + (B,
B € M(n,C).

@ When A is a Lie group, then T,A is the Lie algebra
corresponding to this Lie group. The tangent space at any
other pointis A- T;A. The tangent vectors at A are written
as Ae'B, where B is from the Lie algebra.
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Polar decomposition

A € GL(n, C) can be written uniquely as A = UP, U unitary, P

positive definite

01 : GL(n,C) — U(n,C)

02 : GL(n,C) — P(n,C)

TaGL(n,C) = M(n,C), TyU(n,C) = USH(n,C), TeP(n,C) = H(n,C)

For S € SH(n,C), H € H(n, C),

Dr(U, P)(US,H) =

d tS

a t:OT(Ue ,P+tH)
95 UelS(P + tH)
dt]io

USP + UH.
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Polar decompostion

For all X € M(n, C), we want to find Do(A)(X).
Suppose

Do(A)(UX) = (US, H) for some S € SH(n,C),H € H(n,C)

UX = Dr(U, P)(US, H) = USP + UH

X=SP+H

In this case, S and H can be found explicitly. But even if they
can’t be found, this gives adequate information to get bounds
on DQ-] (A) and DQQ(A)
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Tangent spaces at U and P give

M(n,C) = H(n, C) + SH(n, C).

If 22, and 42, are the corresponding projection operators , then

A— A*
P1(A) = 5

A+ A*
Po(A) = 5

So

12l = (1| Zell] = 1.
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Finding S and H

X =8P+ H,XeM(n,C),S e SH(n,C),H € H(n,C)

X" =—-PS+H
Subtract

X—-X*"=SP+ PS

This is a special case of well known Sylvester’s equation.
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Sylvester equation

AX-XB=Y

If o(A) and o(B) are spectra of A and B such that
o(A) No(B) = ¢, then Sylvester’s equation has a unique
solution X for every Y.

If o(A) is contained in the open right half-plane and o(B) is
contained in the open left half-plane, then

X — / e AyeBat,
0

(Note: If a— b £ 0, then ax — xb = y has a unique solution
x = Y5 IfRe (b— a) < 0, then [;° e!(b=3dt is convergent and
has the value ﬁ. In this case, the solution of ax — xb = y can

be expressed as x = [;* e!(P~3yat.)
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Bound on Dp1(A)

2ilmX =X - X*=SP+ PS

S— 2// e Im X e~ Pt
0

Thus .
IISH|§2(/O He—fP|yzdt>|||mX|||

Easy to compute

ey 1P AT
| nePipar = A - 1

ISI1< AT m X< A7 X

Hence
11D (A)(UX)II < IIA~ 111X

For X =i 1/]||1]|], this is an equality.
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Bound on Dg»(A)

X=8SP+H
AT < TIXTIE+ TSP
< [IX{IE+ TSIl
< XU+ AT X 1P

[1 -+ cond(A)][[|X]]],

where cond(A) = || A ||A~1].
So

|[[Do2(A)|]] < 1+ cond(A).
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Perturbation bounds

First order perturbation bounds can be found using Taylor’'s

theorem. )
Let A represent a perturbation of A (Ais in a neighbourhood of
A). Let A= UP. Then Taylor’s theorem gives

110 = Ul < A7) [1|1A = Alll + O([|A = AllI?).
This is usually represented as
11T = Ul S TATITA = Alll-
Similarly,

1P = Pll| < [1 +cond(A)] [[|A— Alll
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Mostow’s decomposition

Z=WP P,

Recently, Bhatia (2013) gave another proof of Mostow’s
decomposition theorem, giving explicitly what these factors are.

Related to geometric mean of two positive definite matrices.
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Geometric mean

For A, B € P(n, C) their geometric mean is defined as
1/2
A#B = A'/2 (A*‘/ZBA*VZ) Al/2

@ It is the unique positive solution of the Riccati equation

XA 'X =B

LA X
A#B:max{X.X:X,[X B] 20}
A#B = AA'B)"/2 = (AB~)'/2B,

where (A~'B)'/2 and (AB~")'/? are the unique square
roots of A~'B and AB~', respectively, with positive
eigenvalues.
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Mostow’s decomposition

A=27
A#A is positive definite

(A#A)'/?2 = P, = 5, S real symmetric

Py = (e—SAe—S)1/2

P; is positive definite and circular

P; = e K real skew symmetric

W = Ze Se K

Then W is unitary
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Derivative of geometric mean (—, Mishra (2017))

Let G: P(n,C) x P(n,C) — P(n,C) be the map defined as
1/2
G(A,B) = A#B = A'/? (A*VZBA*VZ) 2 g2,

Since A — A'/2 is a differentiable function on P(n,C), Gis a
differentiable map.

d

dt G(A+tX, B+tY) forall X, Y € H(n,C).

DG(A, B)(X, Y) =
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Derivative of geometric mean

X,Y e H(n,C)

For sufficiently small ¢
GA+tX,B+tY)A+tX) 'GA+tX,B+tY)=B+1tY.
Differentiating with respect to t at 0, we get

(DG(A, B)(X,Y)) A 'G(A,B) — G(A,B)(A ' XA G(A, B)
+G(A, B)A~ 1 (DG(A,B)(X,Y)) =Y.

(using DA~1(X) = —A"TXA)
Put D = DG(A, B)(X, Y)and C = A~'G(A, B) = (A B)'/2.
C'D+DC=Y+C"XC.
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Derivative of geometric mean

For X, Y € H(n,C)

DG(A, B)(X,Y) = e C° (Y + C*XC)e adt
0

_ /OO e—t(BA*1)1/2(Y_'_ (BA—1)1/2x(A—1 B)1/2)e—t(A*1B)‘/2dt
0

IIDG(A, B)I[| = sup{[[|DG(A, B)(X; Y)II| : [[[(X, Y)II| = 1},
where [[|(X, Y)I[| = max{[||X][[, [[| YII}

</ He—t(A1B)1/2”2dt> (1 + H(A—1B)1/2H2> ;
0

IA
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Mostow’s decomposition

Z = WP, P,
QQZZ’—>P2:

Py = (Z*Z#Z°2)"/?

Then
o2 =foGogoh,

where f:t— 2. g: A (AA),h: Z— Z*Z.
Chain rule:
Dos(Z) = DI(Z*Z#Z*Z) o DG(Z*Z,Z*Z) o Dg(Z*Z) o Dh(Z)
o
DA < 21~
o [|A#B] < [1A]'/2]B]"/2
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Bound for |||Do2(2)]]

1 _ -
11De2(2)(A)ll| < 51127 IDG(Z*Z, 27 2)(2 A+AZ, Z A+ AZ)|
Let C = (2°2)' (2*Z#Z°2) = ((2°2)-'Z°2)"". Then
|IC|| < cond(Z)2.
1

1De(Z)(ANIl < 51Z718(2) (1 + ICIR) [11Z* A+ AZ|,
where 3(Z) = [ |le” (&2 722 2)" |24

1Dea(Z)(A)l| < A(Z) cond(Z) (1+ cond(2)*) I1A]]
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Mostow’s decomposition

01:Z+— Py,00:2Z+— W:
Pgirc: the set of circular positive definite matrices.

Pi € Peire

o(Z) = (00(Z); 01(2), 02(2))

We are interested in Do¢(Z) and Dgy(2).
Tangent spaces?

At W, itis W SH(n, C).

At P?
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Tangent space at /

Consider any smooth curve ~(t) in Pg, with v(0) = /. We have

V() (t) =1

and
(1) = ().
Differentiating at t = 0 gives that 7/(0) + +/(0) = 0 so that

+/(0) is a purely imaginary matrix.

Also, 7/(0) is Hermitian.
So
TiPgirc = iSH(n, R)v

where SH(n,R): space of n x nreal skew symmetric matrices.
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Tangent space at P;

To calculate Tp, Pgirc, consider v(t) in Pg, with v(0) = Py. So

v(0)Py + P1+'(0) = 0.

For every J € SH(n, R), the matrix P11 /2iJP11 /2 satisfies the
above equation. A count on dimensions shows that the tangent
space at any point Py is given by iP:/ZS]HI(n, R)PJ/Z.
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Do(Z) : M(n,C) — W SH(n,C) @ i P}/*SH(n,R)P,’? @ H(n, R)
Suppose
Do(Z)(A) = (WXo, i P2 Y1 P2, Yp),

where Xy € SH(n,C), Y7 € SH(n,R) and Y € H(n,R).
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Doo(Z), Do1(Z)

Do(Z)(A) = (WXo, P2 Y1 P}/2. Yy),

Dr(W, Py, Po)(WXy, iP'/2Y1 P12 Y,) = A.
By definition,

Dr(W, Py, Po)(WXo, iP'/2 Y, P12, Yy)

d .
= 2| T(We™, P2e™ P2 Py 1 tYy)
ti=o

ad .
— | We™op]/2e™i P2 (P, 1 tYy)
dtfio

— WXoPi Pz + WP,/2(iY1)P} /2Py + WPy Yz.
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Doo(Z), Do1(Z)

WXoPi Po + WP, /2(iY1)P{/* Py + WP, Yz = A
where

Xg=—Xo, Yi=Y1, Y{==Y1, Ya=Yo, ;= Vs

Xo + PI/2(iY1) Py V2 = (W*A— Py Yo)(PyPa) ™
Taking adjoint,

—Xo + P, R(iY1)P}/% = (PyPy) " (AW — Y, Py)
Add.
(P2(v)PY)PTT + Py (PY2(v)PY)
= Re ((W*A — Py Y2)(Ps Pz)_1) :
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11Do1(2)(A)lll

PI2(iyy)PI2 = / e " 'Re (WA PrY2)(PiP) ") e at
0

We get

I1Dar(2)A)II = I1P;/2(iY4) P3|
<([ e 12t ) 1IRe (WA~ P Ya)(PiP2)
0

P
< PPhjiowa— pyva)epa) i

cond(Py) ||P; |
= 2

(1 + (1P Y2I1T) [TIATI-
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[11Dao(£)(A)lll

Similarly, we obtain

XoPy + P1 Xo = 2/ Im ((W*A— P YZ)P2_1)’

which gives
Doo(Z)(A) = Xo

:/ e~ Im ((W*A—P1 Y2)P2—1) e~ Prat.

0
So
I1Deo(2)(AYIl =1%ol
< ([ neiet) fiwa- Py o)yl
0
IPE 1P

< 5 (1 + (1P [T Y2111 TTAT]-
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