Weighted composition operators in L²-spaces

Piotr Budzyński

University of Agriculture in Krakow

OTOA, Bangalore

P. Budzyński Weighted composition operators

◆□→ < □→ < □→ < □</p>

Zenon Jabłoński, Jagiellonian University II Bong Jung, Kyungpook National University Jan Stochel, Jagiellonian University

 P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, Unbounded weighted composition operators in L²-spaces, LNiM 2209 (2018).

- (X, \mathscr{A}, μ) is a σ -finite measure space
- $\phi \colon X \to X$ is \mathscr{A} -measurable, $w \colon X \to \mathbb{C}$ is \mathscr{A} -measurable

Define $\mathcal{C}_{\phi,w} \colon L^2(\mu) \supseteq \mathbb{D}(\mathcal{C}_{\phi,w}) \to L^2(\mu)$ by

$$\begin{split} \mathfrak{D}(\boldsymbol{C}_{\phi}) &= \{ f \in L^{2}(\mu) \colon \int |f \circ \phi|^{2} d\mu_{\boldsymbol{W}} < \infty \}, \\ \boldsymbol{C}_{\phi} f &= \boldsymbol{w} \left(f \circ \phi \right), \quad f \in \mathfrak{D}(\boldsymbol{C}_{\phi,\boldsymbol{W}}). \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○</p>

 $C_{\phi, {\rm W}}$ is well-defined if and only if $\mu_{\rm W} \circ \phi^{-1}$ is absolutely continuosu with respect to $\mu,$ where

-
$$\mu_{W} \circ \phi^{-1}(\Delta) := \mu_{W}(\phi^{-1}(\Delta)), \Delta \in \mathscr{A},$$

- $\mu_w(\Delta) = \int_{\Delta} |w|^2 d\mu$.

Subclasses

- multiplication operators in L²-spaces,
- composition and partial composition operators in L²-spaces,
- unilateral/bilateral weighted shifts,
- adjoints of unilateral/bilateral weighted shifts,
- weighted shifts on directed trees.

 $C_{\phi, {\rm W}}$ is well-defined if and only if $\mu_{\rm W} \circ \phi^{-1}$ is absolutely continuosu with respect to $\mu,$ where

-
$$\mu_{W} \circ \phi^{-1}(\Delta) := \mu_{W}(\phi^{-1}(\Delta)), \Delta \in \mathscr{A},$$

-
$$\mu_w(\Delta) = \int_\Delta |w|^2 d\mu$$
.

Subclasses

- multiplication operators in L²-spaces,
- composition and partial composition operators in L²-spaces,
- unilateral/bilateral weighted shifts,
- adjoints of unilateral/bilateral weighted shifts,
- weighted shifts on directed trees.

(ロ) (同) (E) (E) (E) (C)

Example

consider the following

- $X = \mathbb{Z}_+, \mathcal{A} = 2^X$
- $\mu(n) = 1$ for $n \in \mathbb{N}$ and $\mu(0) = 0$
- $\phi \colon X \to X$ given by

$$\phi(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{N} \\ 0 & \text{if } n = 0 \end{cases}$$

-
$$w \colon X \to \mathbb{C}$$
 given by

$$w(n) = \begin{cases} 0 & \text{if } n \in \{0, 1\} \\ 1 & \text{if } n \ge 2 \end{cases}$$

then

- C_{\u03c6,w} is isometric
- C_{ϕ} is not well-defined

Remark

The following restrictive assumptions have been made in a literature:

- (X, \mathscr{A}, μ) is complete
- C_{ϕ} is well-defined
- C_{ϕ} is densely defined
- $w \geqslant 0$ a.e. $[\mu]$

Remark

- in general, $C_{\phi,w} \neq M_w C_{\phi}$ even if C_{ϕ} is well-defined.

Radon-Nikodym derivative

-
$$\mu_W \circ \phi^{-1} \ll \mu$$

$$h_{\phi,w} = \frac{d\mu_w \circ \phi^{-1}}{d\mu}$$

For every $f \colon X \to \overline{\mathbb{R}}_+$ or $f \colon X \to \mathbb{C}$ such that $f \circ \phi \in L^2(\mu_w)$ we have

$$\int_X f \circ \phi \, d\mu_W = \int_X f \, h_{\phi, W} \, d\mu$$

-
$$h_{\phi} := h_{\phi,1}$$
, where $\mathbf{1} := \chi_X$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Assume that $C_{\phi,w}$ is well-defined. Then:

- (i) $\mathcal{D}(C_{\phi,w}) = L^2((1 + h_{\phi,w})d\mu).$
- (ii) C_{φ,w} is densely defined in L²(μ) if and only if h_{φ,w} < ∞ a.e. [μ] if and only if μ_w ∘ φ⁻¹ is σ-finite.

(iii)
$$\overline{\mathcal{D}(\mathcal{C}_{\phi,\mathbf{W}})} = \chi_{\{h_{\phi,\mathbf{W}}<\infty\}} L^2(\mu).$$

- (iv) $C_{\phi,w}$ is closed.
- (v) $C_{\phi,w} \in \mathbf{B}(L^2(\mu))$ if and only if $h_{\phi,w} \in L^{\infty}(\mu)$; if $C_{\phi,w} \in \mathbf{B}(L^2(\mu))$, then $\|C_{\phi,w}\|^2 = \|h_{\phi,w}\|_{L^{\infty}(\mu)}$.

(v)
$$\mathcal{N}(C_{\phi,w}) = \chi_{\{h_{\phi,w}=0\}} L^2(\mu).$$

(ロ) (同) (E) (E) (E) (C)

- (i) if C_{ϕ} is well-defined, then $C_{\phi,w}$ is well-defined and $M_w C_{\phi} \subseteq C_{\phi,w}$.
- (ii) if $w \neq 0$ a.e. [μ] and $C_{\phi,w}$ is well-defined, then C_{ϕ} is well-defined.
- (iii) if $C_{\phi,w}$ is well-defined and has dense range, then C_{ϕ} is well-defined.

Theorem

Assume that C_{ϕ} is well-defined. Then $C_{\phi,w}$ is well-defined and tfae:

- (i) $M_w C_\phi = C_{\phi,w}$.
- (ii) there exists $c \in \mathbb{R}_+$ such that $h_{\phi} \leq c(1 + h_{\phi,w})$ a.e. $[\mu]$.

Proposition

- (i) if $C_{\phi} \in \mathbf{B}(L^{2}(\mu))$, then $C_{\phi,w}$ is well-defined and $M_{w}C_{\phi} = C_{\phi,w}$.
- (ii) if μ -ess inf |w| > 0 and $C_{\phi,w}$ is well-defined, then C_{ϕ} is well-defined and $M_w C_{\phi} = C_{\phi,w}$.
- (iii) if $M_{w} \in \mathbf{B}(L^{2}(\mu))$ and C_{ϕ} is well-defined, then $C_{\phi,w}$ is well-defined and $h_{\phi,w} \leq ||M_{w}||^{2}h_{\phi}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- (i) if C_{ϕ} is well-defined, then $C_{\phi,w}$ is well-defined and $M_w C_{\phi} \subseteq C_{\phi,w}$.
- (ii) if $w \neq 0$ a.e. [μ] and $C_{\phi,w}$ is well-defined, then C_{ϕ} is well-defined.
- (iii) if $C_{\phi,w}$ is well-defined and has dense range, then C_{ϕ} is well-defined.

Theorem

Assume that C_{ϕ} is well-defined. Then $C_{\phi,w}$ is well-defined and trae:

- (i) $M_w C_\phi = C_{\phi,w}$.
- (ii) there exists $c \in \mathbb{R}_+$ such that $h_{\phi} \leq c(1 + h_{\phi,w})$ a.e. $[\mu]$.

Proposition

- (i) if $C_{\phi} \in \mathbf{B}(L^{2}(\mu))$, then $C_{\phi,w}$ is well-defined and $M_{w}C_{\phi} = C_{\phi,w}$.
- (ii) if μ -ess inf |w| > 0 and $C_{\phi,w}$ is well-defined, then C_{ϕ} is well-defined and $M_w C_{\phi} = C_{\phi,w}$.
- (iii) if $M_{w} \in \mathbf{B}(L^{2}(\mu))$ and C_{ϕ} is well-defined, then $C_{\phi,w}$ is well-defined and $h_{\phi,w} \leq ||M_{w}||^{2}h_{\phi}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- (i) if C_{ϕ} is well-defined, then $C_{\phi,w}$ is well-defined and $M_w C_{\phi} \subseteq C_{\phi,w}$.
- (ii) if $w \neq 0$ a.e. [μ] and $C_{\phi,w}$ is well-defined, then C_{ϕ} is well-defined.
- (iii) if $C_{\phi,w}$ is well-defined and has dense range, then C_{ϕ} is well-defined.

Theorem

Assume that C_{ϕ} is well-defined. Then $C_{\phi,w}$ is well-defined and trae:

- (i) $M_w C_\phi = C_{\phi,w}$.
- (ii) there exists $c \in \mathbb{R}_+$ such that $h_{\phi} \leq c(1 + h_{\phi,w})$ a.e. $[\mu]$.

Proposition

- (i) if $C_{\phi} \in \mathbf{B}(L^{2}(\mu))$, then $C_{\phi,w}$ is well-defined and $M_{w}C_{\phi} = C_{\phi,w}$.
- (ii) if μ -ess inf |w| > 0 and $C_{\phi,w}$ is well-defined, then C_{ϕ} is well-defined and $M_w C_{\phi} = C_{\phi,w}$.
- (iii) if *M_w* ∈ B(*L*²(μ)) and *C_φ* is well-defined, then *C_{φ,w}* is well-defined and *h_{φ,w}* ≤ ||*M_w*||²*h_φ*.

(ロ) (同) (E) (E) (E) (C)

Assume that C_{ϕ} is well-defined. Then $C_{\phi,w}$ is well-defined and tfae:

- (i) $M_w C_\phi$ is a closed operator.
- (ii) there exists $c \in \mathbb{R}_+$ such that $h_{\phi} \leq c(1 + h_{\phi,w})$ a.e. $[\mu]$ on $\{h_{\phi} < \infty\}$.

Proposition

Assume that C_{ϕ} is densely defined. Then $C_{\phi,w}$ is well-defined and tfae:

(i) $M_w C_{\phi}$ is a closed operator.

(ii)
$$M_w C_\phi = C_{\phi,w}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Assume that C_{ϕ} is well-defined. Then $C_{\phi,w}$ is well-defined and tfae:

- (i) $M_w C_\phi$ is a closed operator.
- (ii) there exists $c \in \mathbb{R}_+$ such that $h_{\phi} \leq c(1 + h_{\phi,w})$ a.e. $[\mu]$ on $\{h_{\phi} < \infty\}$.

Proposition

Assume that C_{ϕ} is densely defined. Then $C_{\phi,w}$ is well-defined and tfae:

(i) $M_w C_{\phi}$ is a closed operator.

(ii)
$$M_w C_\phi = C_{\phi,w}$$
.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conditional expectation

- $h_{\phi,w} < \infty$ a.e. $[\mu]$

If $f: X \to \mathbb{R}_+$ is \mathscr{A} -measurable, then $\mathsf{E}_{\phi, w}(f)$ is the unique $\phi^{-1}(\mathscr{A})$ -measurable function on X such that

$$\int_{\phi^{-1}(\varDelta)} f d\mu = \int_{\phi^{-1}(\varDelta)} \mathsf{E}_{\phi, \mathsf{W}}(f) d\mu, \quad \varDelta \in \mathscr{A}.$$

We call $E_{\phi,w}(f)$ the conditional expectation of *f* with respect to $\phi^{-1}(\mathscr{A})$.

- $\mathsf{E}_{\phi,w}(f)$ makes sense whenever $f \colon X \to \overline{\mathbb{R}}_+$ or $f \in L^p(\mu), p \in [1,\infty]$
- the mapping $L^2(\mu_w) \ni f \mapsto \mathsf{E}_{\phi,w}(f) \in L^2(\mu_w)$ defines an orthogonal projection

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Assume that C_{ϕ} is densely defined. Then $C_{\phi,w}$ is well-defined and

$$h_{\phi,w} = h_{\phi} \operatorname{\mathsf{E}}_{\phi} (|w|^2) \circ \phi^{-1}$$
 a.e. $[\mu]$.

Proposition

Assume that $w \neq 0$ a.e. $[\mu]$ and $C_{\phi,w}$ is densely defined. Then C_{ϕ} is well-defined and

$$h_{\phi} = h_{\phi,w} \,\mathsf{E}_{\phi,w} (rac{1}{|w|^2}) \circ \phi^{-1}$$
 a.e. $[\mu].$

Proposition

Assume that $w \neq 0$ a.e. $[\mu]$ and $C_{\phi,w}$ and C_{ϕ} is densely defined. Then the following are hold:

(i)
$$\{h_{\phi,w} > 0\} = \{h_{\phi} > 0\}$$
 a.e. $[\mu]$,
(ii) $\mathsf{E}_{\phi}(|w|^2) \circ \phi^{-1} \mathsf{E}_{\phi,w}(\frac{1}{|w|^2}) \circ \phi^{-1} = \chi_{\{h>0\}}$ a.e. $[\mu]$,
(iii) $\mathsf{E}_{\phi}(|w|^2) \mathsf{E}_{\phi,w}(\frac{1}{|w|^2}) = 1$ a.e. $[\mu]$

Assume that C_{ϕ} is densely defined. Then $C_{\phi,w}$ is well-defined and

$$h_{\phi, w} = h_{\phi} \operatorname{\mathsf{E}}_{\phi} \left(|w|^2 \right) \circ \phi^{-1}$$
 a.e. $[\mu]$.

Proposition

Assume that $w \neq 0$ a.e. $[\mu]$ and $C_{\phi,w}$ is densely defined. Then C_{ϕ} is well-defined and

$$h_{\phi} = h_{\phi, w} \mathsf{E}_{\phi, w} (\frac{1}{|w|^2}) \circ \phi^{-1}$$
 a.e. $[\mu]$.

Proposition

Assume that $w \neq 0$ a.e. $[\mu]$ and $C_{\phi,w}$ and C_{ϕ} is densely defined. Then the following are hold:

(i)
$$\{h_{\phi,w} > 0\} = \{h_{\phi} > 0\}$$
 a.e. $[\mu]$,
(ii) $\mathsf{E}_{\phi}(|w|^2) \circ \phi^{-1} \mathsf{E}_{\phi,w}(\frac{1}{|w|^2}) \circ \phi^{-1} = \chi_{\{h>0\}}$ a.e. $[\mu]$,
(iii) $\mathsf{E}_{\phi}(|w|^2) \mathsf{E}_{\phi,w}(\frac{1}{|w|^2}) = 1$ a.e. $[\mu]$

Assume that C_{ϕ} is densely defined. Then $C_{\phi,w}$ is well-defined and

$$h_{\phi,w} = h_{\phi} \operatorname{\mathsf{E}}_{\phi} \left(|w|^2 \right) \circ \phi^{-1}$$
 a.e. $[\mu]$.

Proposition

Assume that $w \neq 0$ a.e. $[\mu]$ and $C_{\phi,w}$ is densely defined. Then C_{ϕ} is well-defined and

$$h_{\phi} = h_{\phi, w} \,\mathsf{E}_{\phi, w} ig(rac{1}{|w|^2} ig) \circ \phi^{-1}$$
 a.e. $[\mu].$

Proposition

Assume that $w \neq 0$ a.e. $[\mu]$ and $C_{\phi,w}$ and C_{ϕ} is densely defined. Then the following are hold:

(i)
$$\{h_{\phi,w} > 0\} = \{h_{\phi} > 0\}$$
 a.e. $[\mu]$,
(ii) $\mathsf{E}_{\phi}(|w|^2) \circ \phi^{-1} \mathsf{E}_{\phi,w}(\frac{1}{|w|^2}) \circ \phi^{-1} = \chi_{\{h>0\}}$ a.e. $[\mu]$,
(iii) $\mathsf{E}_{\phi}(|w|^2) \mathsf{E}_{\phi,w}(\frac{1}{|w|^2}) = 1$ a.e. $[\mu]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Assume that $C_{\phi,w}$ is densely defined. Then the following equalities hold:

$$\begin{split} \mathfrak{D}(\boldsymbol{C}^*_{\phi,\boldsymbol{W}}) &= \big\{ f \in L^2(\mu) \colon h_{\phi,\boldsymbol{W}} \cdot \mathsf{E}_{\phi,\boldsymbol{W}}(f_{\boldsymbol{W}}) \circ \phi^{-1} \in L^2(\mu) \big\}, \\ \boldsymbol{C}^*_{\phi,\boldsymbol{W}} f &= h_{\phi,\boldsymbol{W}} \cdot \mathsf{E}_{\phi,\boldsymbol{W}}(f_{\boldsymbol{W}}) \circ \phi^{-1}, \quad f \in \mathfrak{D}(\boldsymbol{C}^*_{\phi,\boldsymbol{W}}), \end{split}$$

where

$$f_{w} = \chi_{\{w \neq 0\}} \frac{f}{w}$$

Moreover, we have

(i)
$$\mathcal{N}(C^*_{\phi,w}) = \{ f \in L^2(\mu) : \mathsf{E}_{\phi,w}(f_w) = 0 \text{ a.e. } [\mu_w] \},$$

(ii) $\chi_{w=0}L^2(\mu) \subseteq \mathcal{N}(C^*_{\phi,w}),$
(iii) $\mathcal{D}(C^*_{\phi,w}) = \chi_{w\neq0}\mathcal{D}(C^*_{\phi,w}) \oplus \chi_{w=0}L^2(\mu) \text{ and } C^*_{\phi,w}f = C^*_{\phi,w}(\chi_{w\neq0}f).$

- A = U|A| - the polar decomposition of A

- U - a partial isometry satisfying $\mathcal{N}(A) = \mathcal{N}(U)$

$$-|A| = \sqrt{A^*A}$$

Theorem

Suppose $C_{\phi,w}$ is densely defined and $C_{\phi,w} = U|C_{\phi,w}|$ is its polar decomposition. Then

(i)
$$|C_{\phi,w}| = M_{\sqrt{h_{\phi,w}}},$$

(ii) $U = C_{\phi, \widetilde{w}}$, where $\widetilde{w} \colon X \to \mathbb{C}$ is an \mathscr{A} -measurable function such that

$$\widetilde{w} = w \cdot \frac{1}{(h_{\phi,w} \circ \phi)^{1/2}}$$
 a.e. $[\mu]$.

(iii)
$$U^* f = h_{\phi, w}^{1/2} \mathsf{E}_{\phi, w}(f_w) \circ \phi^{-1}$$
, for $f \in L^2(\mu)$
(iv) $\mathcal{D}(|C^*_{\phi, w}|) = \{f \in L^2(\mu) : (h_{\phi, w} \circ \phi)^{1/2} \mathsf{E}_{\phi, w}(f_w) \in L^2(\mu)\},$
(v) $|C^*_{\phi, w}|f = (h_{\phi, w} \circ \phi)^{1/2} \mathsf{E}_{\phi, w}(f_w)$ for $f \in \mathcal{D}(|C^*_{\phi, w}|).$

- A is quasinormal iff $U|A| \subseteq |A|U$ (equivalently, $A^*AA = AA^*A$)

Theorem

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is quasinormal,
- (ii) $h_{\phi,w} \circ \phi = h_{\phi,w}$ a.e. $[\mu_w]$.

Theorem

Suppose C_{ϕ} is densely defined. Then the following are equivalent:

- (i) C_{ϕ} is quasinormal,
- (ii) $h_{\phi} \circ \phi = h$ a.e. $[\mu]$,
- (iii) for every $n \in \mathbb{N}$, $h_{\phi^n} = h_{\phi}^n$ a.e. $[\mu]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

- A is quasinormal iff $U|A| \subseteq |A|U$ (equivalently, $A^*AA = AA^*A$)

Theorem

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is quasinormal,
- (ii) $h_{\phi,w} \circ \phi = h_{\phi,w}$ a.e. $[\mu_w]$.

Theorem

Suppose C_{ϕ} is densely defined. Then the following are equivalent:

- (i) C_{ϕ} is quasinormal,
- (ii) $h_{\phi} \circ \phi = h$ a.e. $[\mu]$,
- (iii) for every $n \in \mathbb{N}, \, h_{\phi^n} = h_{\phi}^n$ a.e. $[\mu]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- A is hyponormal iff $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for $f \in \mathcal{D}(A)$

Theorem

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is hyponormal,
- $(\text{ii)} \quad h_{\phi,w} > 0 \text{ a.e. } [\mu_w] \text{ and } \mathsf{E}_{\phi,w} \big(\frac{h_{\phi,w} \circ \phi}{h_{\phi,w}} \big) \leqslant 1 \text{ a.e. } [\mu_w],$
- (ii) $h_{\phi,w} > 0$ a.e. $[\mu_w]$ and $\mathsf{E}_{\phi,w} \left(\frac{1}{h_{\phi,w}}\right) \leqslant \frac{1}{h_{\phi,w} \circ \phi}$ a.e. $[\mu_w]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- A is cohyponormal iff $\mathcal{D}(A^*) \subseteq \mathcal{D}(A)$ and $||Af|| \leq ||A^*f||$ for $f \in \mathcal{D}(A^*)$

Theorem

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is cohyponormal,
- (ii) the following conditions hold:

(ii-a)
$$h_{\phi,w} = 0$$
 on $\{w = 0\}$ a.e. $[\mu]$,
(ii-b) $\mathsf{E}_{\phi,w}(\theta^2|g|^2) \leq |\mathsf{E}_{\phi,w}(g)|^2$ a.e. $[\mu_w]$, for every $g \in L^2(\mu_w)$, where $\theta^2 = \frac{h_{\phi,w}}{h_{\phi,w} \circ \phi}$ a.e. $[\mu_w]$.

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is cohyponormal,
- (ii) the following conditions hold:

$$\begin{array}{ll} (\text{ii-a}) & h_{\phi,w} = 0 \text{ on } \{w = 0\} \text{ a.e. } [\mu], \\ (\text{ii-b}) & \chi_{\{h_{\phi,w} > 0\}} L^2(\mu) \subseteq \mathcal{R}(\mathsf{E}_{\phi,w}), \\ (\text{ii-c}) & h_{\phi,w} \leqslant h_{\phi,w} \circ \phi \text{ a.e. } [\mu_w]. \end{array}$$

Moreover, if $C_{\phi,w}$ is cohyponormal, then

(iii)
$$E_{\phi,w}(h_{\phi,w}) = h_{\phi,w}$$
 a.e. $[\mu_w]$,

(iv) $M_{\theta} \in \mathbf{B}(L^{2}(\mu)), M_{\theta}$ is a contraction, $\mathcal{R}(\mathsf{E}_{\phi,w})$ reduces M_{θ} and

$$M_{\theta} = M_{\theta}|_{\mathcal{R}(\mathsf{E}_{\phi,w})} \oplus 0|_{\mathcal{N}(\mathsf{E}_{\phi,w})}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < つ < ○</p>

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is normal,
- (ii) the following conditions hold:

(ii-a) $h_{\phi,w} = 0$ on $\{w = 0\}$ a.e. $[\mu]$, (ii-b) $L^2(\mu_w) = \mathcal{R}(\mathsf{E}_{\phi,w})$, (ii-c) $h_{\phi,w} = h_{\phi,w} \circ \phi$ a.e. $[\mu_w]$.

Moreover, if $C_{\phi,w}$ is normal, then $\{h_{\phi,w} > 0\} = \{w \neq 0\}$ a.e. $[\mu]$.

- A is formally normal iff $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||Af|| = ||A^*f||$ for $f \in \mathcal{D}(A)$

Proposition

Suppose $C_{\phi,w}$ is formally normal. Then $C_{\phi,w}$ is normal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Suppose $C_{\phi, w}$ is densely defined. Then the following are equivalent:

- (i) $C_{\phi,w}$ is normal,
- (ii) the following conditions hold:

Moreover, if $C_{\phi,w}$ is normal, then $\{h_{\phi,w} > 0\} = \{w \neq 0\}$ a.e. $[\mu]$.

- A is formally normal iff $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||Af|| = ||A^*f||$ for $f \in \mathcal{D}(A)$

Proposition

Suppose $C_{\phi,w}$ is formally normal. Then $C_{\phi,w}$ is normal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- A is symmetric iff $A \subseteq A^*$
- A is selfadjoint iff $A = A^*$

Suppose $C_{\phi, w}$ is densely defined. If $C_{\phi, w}$ is symmetric or positive, then $C_{\phi, w}$ is selfadjoint.

Theorem

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:.

- (i) $C_{\phi,w}$ is selfadjoint,
- (ii) the following conditions hold:
 - (ii-a) $h_{\phi,w} = (w \circ \phi)w$ a.e. $[\mu]$,
 - (ii-b) C_{ϕ^2} is well-defined in $L^2(\mu_w)$ and $C_{\phi^2} = I_{L^2(\mu_w)}$.

- A is symmetric iff $A \subseteq A^*$
- A is selfadjoint iff $A = A^*$

Suppose $C_{\phi, w}$ is densely defined. If $C_{\phi, w}$ is symmetric or positive, then $C_{\phi, w}$ is selfadjoint.

Theorem

Suppose $C_{\phi,w}$ is densely defined. Then the following are equivalent:.

- (i) $C_{\phi,w}$ is selfadjoint,
- (ii) the following conditions hold:

(ii-a)
$$h_{\phi,w} = (w \circ \phi)w$$
 a.e. $[\mu]$,

(ii-b) C_{ϕ^2} is well-defined in $L^2(\mu_w)$ and $C_{\phi^2} = I_{L^2(\mu_w)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

The the following are equivalent:.

- (i) $C_{\phi,w}$ is well-defined, selfadjoint, and positive,
- (ii) the following conditions hold:
 - (ii-a) $w \ge 0$ a.e. $[\mu]$, (ii-b) C_{ϕ} is well-defined in $L^{2}(\mu_{w})$ and $C_{\phi} = I_{L^{2}(\mu_{w})}$.
- (iii) C_{ϕ} is well-defined, $C_{\phi,w} = M_w$, and $w \ge 0$ a.e. $[\mu]$.

(ロ) (同) (E) (E) (E) (C)

THANK YOU

P. Budzyński Weighted composition operators

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで