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von Neumann Algebra

Let H be a separable Hilbert space. A unital ∗-subalgebra
M ⊆ B(H) is von Neumann algebra (shortly vNa) if M is WOT
closed (⇔ SOT closed ⇔ M ′′ = M).

Tomita-Takesaki modular Theory: Let φ be a f.n state on M and
L2(M, φ) be the GNS the Hilbert space.

Sφ : L2(M, φ) 7→ L2(M, φ) defined by Sφ(x̂) = x̂∗ will be a densely
defined closed operator.

Sφ = Jφ∆φ (the polar decomposition of Sφ) and

σφt (·) = ∆it
φ(·)∆−itφ .

1 Jφ and ∆φ are called modular conjugation and modular operator
resp.

2 JφMJφ = M ′ and ∀t ∈ R, σφt (M) = M.
3 {σφt }t∈R is called modular automorphism group

A vNa algebra M ⊆ B(H) is called factor if M ∩M ′ = C1.
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von Neumann Algebra

From Spectral theorem it is known that M is generated by
projections and depending on Murray-von Neumann equivalent of
projections, we say a factor M is of:

1 type I (i.e., of type In for some 1 ≤ n ≤ ∞) if M contains a minimal
projection.

2 type II (i.e., of type II1, II∞) if M contains non-zero finite
projections but no minimal projections.

3 type III contains no non-zero finite projections.

Further, let
S(M) = ∩{Spec(∆φ) : faithful normal semifinite weight φ}, then
any factor of type III belongs to one of the following three classes:

1 IIIλ, λ ∈ (0, 1), if S(M) = {0} ∪ {λn; n ∈ Z}
2 III0, if S(M) = {0, 1}
3 III1, if S(M) = [0,∞)
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Construction of the q-Fock space

Let HR be a real Hilbert space and let t 7→ Ut , t ∈ R, be a strongly
continuous orthogonal representation of R on a real Hilbert space
HR.

Let HC = HR ⊗R C be the complexification of HR. Write Ut = Ait ,
the analytic generator.

Define

〈ξ, η〉U = 〈 2

1 + A−1
ξ, η〉HC , ξ, η ∈ HC.

Let H = HC
‖·‖

and (HR, ‖·‖) 3 ξ
ı7→ ξ ∈ (H, ‖·‖U), is an isometric

embedding.
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Construction of the q-Fock space

Let −1 < q < 1. Then q-Fock space Fq(H) is the completion of
CΩ⊕

⊕∞
n=1H⊗n with respect to the inner product;

〈ξ1 ⊗ · · · ⊗ ξn,ζ1 ⊗ · · · ⊗ ζm〉q
= δm,n

∑
π∈Sn

qi(π)〈ξ1, ζπ(1)〉U · · · 〈ξn, ζπ(n)〉U ,

In particular, F0(H) is the usual Fock space F(H)
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q-deformed Araki-Woods von Neumann algebras

For every ξ ∈ H, the q-creation and q-annihilation operators on
Fq(H) are respectively defined by:

cq(ξ)Ω = ξ, cq(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn,

cq(ξ)∗Ω = 0,

cq(ξ)∗(ξ1 ⊗ · · · ⊗ ξn) =
n∑

i=1

qi−1〈ξ, ξi 〉Uξ1 ⊗ · · · ⊗ ξi−1 ⊗ ξi+1 ⊗ · · · ⊗ ξn,

q-commutation relation

cq(ξ)∗cq(η)− qcq(η)cq(ξ)∗ = 〈ξ, η〉, ∀ξ, η ∈ HC.
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q-deformed Araki-Woods von Neumann algebras

Write sq(ξ) = cq(ξ) + cq(ξ)∗.

Γq(HR,Ut) =: C∗{sq(ξ) : ξ ∈ HR}

Γq(HR,Ut)
′′

= vNa{sq(ξ) : ξ ∈ HR}

Γq(HR,Ut)
′′ is known as the q-deformed Araki-Woods von

Neumann algebra constructed by Hiai and ϕ := 〈Ω, ·Ω〉q called the
q-quasi free state, is a f.n state of Γq(HR,Ut)

′′ and Fq(H) is the
GNS Hilbert space of Γq(HR,Ut)

′′ associated to ϕ.
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q-deformed Araki-Woods von Neumann algebras

why does the program of q-deformed Araki-Woods von Neumann
algebras Γq(HR,Ut)

′′ study is so exciting?

Γq(HR,Ut)
′′ are one of the interesting deformation of Voiculescu’s

free Gaussian functor, i.e, when q = 0 and Ut = id , Γ0(HR, id t)
′′ is

the Voiculescu free Gaussian functor and it is isomorphic to
L(Fdim(HR)). It got three deformation.

Case 1: q 6= 0 and Ut = id.
It is called Bozeko and Speicher von Neumann algebras. For
dim(HR) ≥ 2, the q-Gaussian von Neumann algebras Γq(HR) are
non-injective, solid, strongly solid, non Γ factors with w∗-completely
contractive approximation property. Further, Γq(HR) ∼= L(Fdim(HR))
for values of q sufficiently close to zero.
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q-deformed Araki-Woods von Neumann algebras

Case 2: q = 0 and Ut 6= id.
This is the Shlyakhtenko functor. These von Neumann algebras are
type III counterparts of the free group factors. In short, they satisfy
the complete metric approximation property, lack Cartan
subalgebras, are strongly solid, and, they satisfy Connes’
bicentralizer problem when they are type III1.

Case 3: q 6= 0 and Ut 6= id.
This is the q-deformed functor due to Hiai for −1 < q < 1. Hiai’s
functor is the main topic of this paper. It is a combination of
Bo

.
zejko-Speicher’s functor and Shlyakhtenko’s functor.
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q-deformed Araki-Woods von Neumann algebras

Centralizer:

(Γ(HR,Ut)
′′)ϕ = {x ∈ Γ(HR,Ut)

′′ : σϕt (x) = x , ∀t ∈ R}

Bicentralizer:

Bψ = {y ∈ M : lim
n→∞

|ρ([y , xn])| = 0 ,∀ρ ∈ M∗,

∀(xn) with lim
n→∞

‖(xnψ − ψxn)‖ = 0}.
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q-deformed Araki-Woods von Neumann algebras

Let Mξ = vNa(sq(ξ)) for ξ ∈ HR. Write Mq,U = Γ(HR,Ut)
′′.

Theorem (with K. Mukherjee)

Let ξ ∈ HR with ‖ξ‖U = 1. Then;

1 ∃! ϕ-preserving f.n conditional expectation Eξ : Mq,U → Mξ if and only if
sq(ξ) ∈ Mϕ

q,U , equivalently Utξ = ξ for all t ∈ R.

2 If Utξ = ξ for all t ∈ R and dim(HR) ≥ 2. Then Mξ is a ϕ-strongly
mixing diffuse masa in Mq,U whose distribution obeys semicircular law and
left-right measure is Lebesgue absolutely continuous. In particular, Mξ is
singular masa in Mq,U .

Panchugopal Bikram NISER Bhubaneswar q-deformed Araki-Woods von Neumann algebra



q-deformed Araki-Woods von Neumann algebras

Let Mξ = vNa(sq(ξ)) for ξ ∈ HR. Write Mq,U = Γ(HR,Ut)
′′.

Theorem (with K. Mukherjee)

Let ξ ∈ HR with ‖ξ‖U = 1. Then;

1 ∃! ϕ-preserving f.n conditional expectation Eξ : Mq,U → Mξ if and only if
sq(ξ) ∈ Mϕ

q,U , equivalently Utξ = ξ for all t ∈ R.

2 If Utξ = ξ for all t ∈ R and dim(HR) ≥ 2. Then Mξ is a ϕ-strongly
mixing diffuse masa in Mq,U whose distribution obeys semicircular law and
left-right measure is Lebesgue absolutely continuous. In particular, Mξ is
singular masa in Mq,U .

Panchugopal Bikram NISER Bhubaneswar q-deformed Araki-Woods von Neumann algebra



q-deformed Araki-Woods von Neumann algebras

Let Mξ = vNa(sq(ξ)) for ξ ∈ HR. Write Mq,U = Γ(HR,Ut)
′′.

Theorem (with K. Mukherjee)

Let ξ ∈ HR with ‖ξ‖U = 1. Then;

1 ∃! ϕ-preserving f.n conditional expectation Eξ : Mq,U → Mξ if and only if
sq(ξ) ∈ Mϕ

q,U , equivalently Utξ = ξ for all t ∈ R.

2 If Utξ = ξ for all t ∈ R and dim(HR) ≥ 2. Then Mξ is a ϕ-strongly
mixing diffuse masa in Mq,U whose distribution obeys semicircular law and
left-right measure is Lebesgue absolutely continuous. In particular, Mξ is
singular masa in Mq,U .

Panchugopal Bikram NISER Bhubaneswar q-deformed Araki-Woods von Neumann algebra



Centralizer and factoriality

Let t 7→ Ut be a strongly orthogonal representation of R on the real
Hilbert space HR as before. Then one can decompose as;

(HR,Ut) =

 N1⊕
j=1

(R, id)

⊕( N2⊕
k=1

(HR(k),Ut(k))

)
⊕ (H̃R, Ũt),

where

HR(k) = R2, Ut(k) =

(
cos(t log λk) − sin(t log λk)
sin(t log λk) cos(t log λk)

)
, λk > 1,

and (H̃R, Ũt) corresponds to the weakly mixing component of the

orthogonal representation, thus H̃R is either 0 or infinite dimensional.
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Factoriality

The factoriality and classification problem of Mq,U was open since 2003
for finite dimentional real orthogonal representation.

Theorem (with K. Mukherjee)

Let t 7→ Ut be a strongly continuous orthogonal representation of R on a
real Hilbert space HR (dim(HR) ≥ 2). Then we have;

1 If weakly mixing part of (Ut) is non-trivial, then Mq,U is a factor and
it is III1 factor.

2 In-addition if ∃ ξ ∈ HR s.t Utξ = ξ, ∀t ∈ R and dimension of
almost periodic part is at-least 2, then it has trivial bicentralizer.

3 Suppose ∃ ξ ∈ HR s.t Utξ = ξ, ∀t ∈ R. Then Mq,U is a factor.
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Type Classification

Theorem (with K. Mukherjee)

Let (Ut) be real orthogonal representation on the real Hilbert space such
(Ut) is almost periodic and dim(HR) ≥ 2 with an invariant real vector.
Let G be the closed subgroup of R×+ generated by the spectrum of
A (Ut = Ait). Then

Γ(HR,Ut)
′′ is =


type III1 if G = R+

type IIIλ if G = λZ, 0 < λ < 1

type II1 if G = {1}

Of course, the type II1 case corresponds to trivial (Ut) and that case we
get Bozejko-Speicher II1 factor. Notice that S(Γ(HR,Ut)

′′) is the
spectrum of the modular operator since the centralizer of the free
quasi-free state is a factor
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