Monojit Bhattacharjee

Characteristic Functions of Hypercontractions

Monojit Bhattacharjee

Indian Institute of Technology Bombay

OTOA-2018 ISI,Bangalore,December 17, 2018

(A joint work with Bata Krishna Das and Jaydeb Sarkar)

Invariant Subspaces of $H^2(E)$

Let *E* be a separable Hilbert space of infinite dimension and $H^2(E)$ be the *E*-valued Hardy space, that is,

$$H^{2}(E) := \{f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \mid \sum_{n=0}^{\infty} \|a_{n}\|_{E}^{2} < \infty, z \in \mathbb{D}\}.$$

Invariant Subspaces of $H^2(E)$

Let *E* be a separable Hilbert space of infinite dimension and $H^2(E)$ be the *E*-valued Hardy space, that is,

$$H^{2}(E) := \{f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \mid \sum_{n=0}^{\infty} \|a_{n}\|_{E}^{2} < \infty, z \in \mathbb{D}\}.$$

Definition 1

A closed subspace $M \subseteq H^2(E)$ is said to be invariant if $M_z M \subseteq M$, where M_z denotes the multiplication operator on $H^2(E)$.

Invariant Subspaces of $H^2(E)$

Let *E* be a separable Hilbert space of infinite dimension and $H^2(E)$ be the *E*-valued Hardy space, that is,

$$H^{2}(E) := \{f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \mid \sum_{n=0}^{\infty} \|a_{n}\|_{E}^{2} < \infty, z \in \mathbb{D}\}.$$

Definition 1

A closed subspace $M \subseteq H^2(E)$ is said to be invariant if $M_z M \subseteq M$, where M_z denotes the multiplication operator on $H^2(E)$.

Theorem 2 (Beurling-Lax-Halmos)

A closed subspace $M \subseteq H^2(E)$ is invariant under M_z if and only if there exists a separable Hilbert space E_* and an inner multiplier Θ such that $M = \Theta H^2(E_*)$.

Sz.-Nagy-Foias model

Definition 3

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be in C_0 class if $||T^{*n}h|| \to 0$ as $n \to \infty$ for all $h \in \mathcal{H}$, that is, if $T^{*n} \to 0$ as $n \to \infty$ in the strong operator topology.

Sz.-Nagy-Foias model

Definition 3

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be in C_0 class if $||T^{*n}h|| \to 0$ as $n \to \infty$ for all $h \in \mathcal{H}$, that is, if $T^{*n} \to 0$ as $n \to \infty$ in the strong operator topology.

The Sz.-Nagy and Foias analytic model: It says that if T is a contraction on a separable Hilbert space, and in C_{.0} class, then there exists a coefficient Hilbert space E_{*} and an M^{*}_z-invariant closed subspace Q of E_{*}-valued Hardy space H²(E_{*}) such that

$$T\cong P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}.$$

Sz.-Nagy-Foias model

Definition 3

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be in C_0 class if $||T^{*n}h|| \to 0$ as $n \to \infty$ for all $h \in \mathcal{H}$, that is, if $T^{*n} \to 0$ as $n \to \infty$ in the strong operator topology.

The Sz.-Nagy and Foias analytic model: It says that if T is a contraction on a separable Hilbert space, and in C_{.0} class, then there exists a coefficient Hilbert space E_{*} and an M^{*}_z-invariant closed subspace Q of E_{*}-valued Hardy space H²(E_{*}) such that

$$T\cong P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}.$$

Moreover, using Beurling-Lax-Halmos theorem, we have a Hilbert space \mathcal{E} and a $\mathcal{B}(\mathcal{E}, \mathcal{E}_*)$ -valued inner multiplier $\Theta \in H^{\infty}_{\mathcal{B}(\mathcal{E}, \mathcal{E}_*)}(\mathbb{D})$, such that

$$\mathcal{Q}^{\perp} = \Theta H^2(\mathcal{E}).$$

Characteristic Function for contraction

For a contraction $T \in \mathcal{B}(\mathcal{H})$, consider the following contractive analytic function from \mathcal{D}_T to \mathcal{D}_{T^*} ,

$$\Theta_{\mathcal{T}}(z) = [-\mathcal{T} + z D_{\mathcal{T}^*} (1 - z \mathcal{T}^*)^{-1} D_{\mathcal{T}}]|_{\mathcal{D}_{\mathcal{T}}} \quad \text{for } z \in \mathbb{D}$$

where $D_T = (I - T^*T)^{\frac{1}{2}}$, $D_{T^*} = (I - TT^*)^{\frac{1}{2}}$, $\mathcal{D}_T = \overline{\operatorname{ran}}D_T$ and $\mathcal{D}_{T^*} = \overline{\operatorname{ran}}D_{T^*}$. It is known as the Characteristic Function for a contraction T. It helps to modify the Sz.-Nagy-Foias model more explicitly.

Characteristic Function for contraction

For a contraction $T \in \mathcal{B}(\mathcal{H})$, consider the following contractive analytic function from \mathcal{D}_T to \mathcal{D}_{T^*} ,

$$\Theta_T(z) = [-T + z D_{T^*} (1 - z T^*)^{-1} D_T]|_{\mathcal{D}_T}$$
 for $z \in \mathbb{D}_2$

where $D_T = (I - T^*T)^{\frac{1}{2}}$, $D_{T^*} = (I - TT^*)^{\frac{1}{2}}$, $\mathcal{D}_T = \overline{\operatorname{ran}}D_T$ and $\mathcal{D}_{T^*} = \overline{\operatorname{ran}}D_{T^*}$. It is known as the Characteristic Function for a contraction T. It helps to modify the Sz.-Nagy-Foias model more explicitly.

Modified Sz.-Nagy-Foias model: If T is a C_{.0}-contraction on a seperable Hilbert space H, then there exist a co-invariant subspace Q of H²(D_{T*}) such that

$$T\cong P_{\mathcal{Q}}M_{z}|_{\mathcal{Q}}.$$

And also the co-invariant subspace Q can be expressed in terms of the characteristic function of T, that is,

$$\mathcal{Q}^{\perp} = \Theta_T H^2(\mathcal{D}_T).$$

In this talk, we will address the following questions in multivariable setting in the space of (weighted-) Bergman space over the Euclidean Ball in \mathbb{C}^n . In this talk, we will address the following questions in multivariable setting in the space of (weighted-) Bergman space over the Euclidean Ball in \mathbb{C}^n . More precisely,

 Given a (weighted-) Bergman shift invariant subspace *M*, can there be an analogous representation (like in the vector-valued Hardy space) in terms of multipliers from the Drury-Arveson space? In this talk, we will address the following questions in multivariable setting in the space of (weighted-) Bergman space over the Euclidean Ball in \mathbb{C}^n . More precisely,

- Given a (weighted-) Bergman shift invariant subspace *M*, can there be an analogous representation (like in the vector-valued Hardy space) in terms of multipliers from the Drury-Arveson space?
- (2) Is there is any explicit description of that multiplier (analogous to the characteristic function for contraction)?

For an *n*-tuple of commuting bounded linear operators $T = (T_1, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n$, we say T is a row contraction if the operator

$$\mathcal{H}^n \to \mathcal{H}, \ (h_1, \ldots, h_n) \mapsto \sum_{i=1}^n T_i h_i$$

is a contraction. That is, the operator viewed as a row operator $T : \mathcal{H}^n \to \mathcal{H}$ is a contraction. Consider the associated completely positive map

$$\sigma_{\mathcal{T}}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}), X \mapsto \sum_{i=1}^{n} T_{i}XT_{i}^{*}.$$

Using the map σ_T , for each $k \in \mathbb{N}$, we are going to define the defect operators of different orders of T.

Let us consider the operator

$$\Delta_{\mathcal{T}}^{(k)} = (1 - \sigma_{\mathcal{T}})^k (1_{\mathcal{H}}) = \sum_{j=0}^k (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} \sum_{|\alpha|=j} \gamma_{\alpha} \mathcal{T}^{\alpha} \mathcal{T}^{*\alpha} \quad (k \in \mathbb{N}),$$

where $\gamma_{\alpha} = \frac{|\alpha|!}{\alpha!}$ for $\alpha \in \mathbb{N}^n$.

Let us consider the operator

$$\Delta_{\mathcal{T}}^{(k)} = (1 - \sigma_{\mathcal{T}})^k (1_{\mathcal{H}}) = \sum_{j=0}^k (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} \sum_{|\alpha|=j} \gamma_{\alpha} \mathcal{T}^{\alpha} \mathcal{T}^{*\alpha} \quad (k \in \mathbb{N}),$$

where $\gamma_{\alpha} = \frac{|\alpha|!}{\alpha!}$ for $\alpha \in \mathbb{N}^n$.

Definition 4

An *n*-tuple of commuting bounded linear operators T is said to be a *m*-hypercontraction if $\Delta_T^{(1)} \ge 0$ and $\Delta_T^{(m)} \ge 0$.

For a *m*-hypercontraction, the defect operator of order *m* is $D_{m,T^*} = (\Delta_T^{(m)})^{\frac{1}{2}}$ and the defect space is $\mathcal{D}_{m,T^*} = \overline{\operatorname{ran}}(\Delta_T^{(m)})^{\frac{1}{2}}$.

Let us consider the operator

$$\Delta_{\mathcal{T}}^{(k)} = (1 - \sigma_{\mathcal{T}})^k (1_{\mathcal{H}}) = \sum_{j=0}^k (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} \sum_{|\alpha|=j} \gamma_{\alpha} \mathcal{T}^{\alpha} \mathcal{T}^{*\alpha} \quad (k \in \mathbb{N}),$$

where $\gamma_{\alpha} = \frac{|\alpha|!}{\alpha!}$ for $\alpha \in \mathbb{N}^n$.

Definition 4

An *n*-tuple of commuting bounded linear operators T is said to be a *m*-hypercontraction if $\Delta_T^{(1)} \ge 0$ and $\Delta_T^{(m)} \ge 0$.

For a *m*-hypercontraction, the defect operator of order *m* is $D_{m,T^*} = (\Delta_T^{(m)})^{\frac{1}{2}}$ and the defect space is $\mathcal{D}_{m,T^*} = \overline{\operatorname{ran}}(\Delta_T^{(m)})^{\frac{1}{2}}$. • This is also well-known that for a *m*-hypercontraction *T*, $\Delta_T^{(k)} \ge 0$ for all $1 \le k \le m$.

Let us consider the operator

$$\Delta_{\mathcal{T}}^{(k)} = (1 - \sigma_{\mathcal{T}})^k (1_{\mathcal{H}}) = \sum_{j=0}^k (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} \sum_{|\alpha|=j} \gamma_{\alpha} \mathcal{T}^{\alpha} \mathcal{T}^{*\alpha} \quad (k \in \mathbb{N}),$$

where $\gamma_{\alpha} = \frac{|\alpha|!}{\alpha!}$ for $\alpha \in \mathbb{N}^n$.

Definition 4

An *n*-tuple of commuting bounded linear operators T is said to be a *m*-hypercontraction if $\Delta_T^{(1)} \ge 0$ and $\Delta_T^{(m)} \ge 0$.

For a *m*-hypercontraction, the defect operator of order *m* is $D_{m,T^*} = (\Delta_T^{(m)})^{\frac{1}{2}}$ and the defect space is $\mathcal{D}_{m,T^*} = \overline{\operatorname{ran}}(\Delta_T^{(m)})^{\frac{1}{2}}$. • This is also well-known that for a *m*-hypercontraction *T*, $\Delta_T^{(k)} \ge 0$ for all $1 \le k \le m$.

• An *m*-hypercontraction $T \in \mathcal{B}(\mathcal{H})^n$ is said to be pure if

$$\operatorname{SOT} - \lim_{k \to \infty} \sigma_T^k(I_{\mathcal{H}}) = 0.$$

Weighted Bergman Space

For any positive integer $\ell \geq 0$ and a complex Hilbert space \mathcal{E} , we denote by $\mathbb{H}_{\ell}(\mathbb{B}^n, \mathcal{E})$ the \mathcal{E} -valued weighted Bergman space with domain \mathbb{B}^n , that is

$$\mathbb{H}_\ell(\mathbb{B}^n,\mathcal{E}):=\Big\{f=\sum_{lpha\in\mathbb{N}^n}f_lpha z^lpha\in\mathcal{O}(\mathbb{B}^n,\mathcal{E}):\|f\|^2=\sum_{lpha\in\mathbb{N}^n}rac{\|f_lpha\|^2}{
ho_\ell(lpha)}<\infty\Big\},$$

where $\rho_{\ell}(\alpha) = \frac{(\ell+|\alpha|-1)!}{\alpha!(\ell-1)!}$.

Weighted Bergman Space

For any positive integer $\ell \geq 0$ and a complex Hilbert space \mathcal{E} , we denote by $\mathbb{H}_{\ell}(\mathbb{B}^n, \mathcal{E})$ the \mathcal{E} -valued weighted Bergman space with domain \mathbb{B}^n , that is

$$\mathbb{H}_\ell(\mathbb{B}^n,\mathcal{E}):=\Big\{f=\sum_{lpha\in\mathbb{N}^n}f_lpha z^lpha\in\mathcal{O}(\mathbb{B}^n,\mathcal{E}):\|f\|^2=\sum_{lpha\in\mathbb{N}^n}rac{\|f_lpha\|^2}{
ho_\ell(lpha)}<\infty\Big\},$$

where $\rho_{\ell}(\alpha) = \frac{(\ell+|\alpha|-1)!}{\alpha!(\ell-1)!}$.

• It is also a reproducing kernel Hilbert space with kernel

$$\mathcal{K}_\ell:\mathbb{B}^n imes\mathbb{B}^n o\mathcal{B}(\mathcal{E}),\quad \mathcal{K}_\ell(z,w)=rac{1_\mathcal{E}}{(1-\langle z,w
angle)^\ell}.$$

 In particular, if ℓ = 1, 𝔄₁(𝔅ⁿ, 𝔅) is known as the Drury-Arveson space and we use H²_n(𝔅) to denote it.

Model for *m*-Hypercontraction operators

Muller and Vasilescu have shown that a pure *m*-hypercontraction can be dilated to the weighted-shift operators on $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$. More precisely,

Theorem 5 (Muller and Vasilescu)

Let T be a pure m-hypercontraction on a Hilbert space \mathcal{H} . Then there exists a co-invariant subspace \mathcal{Q} of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $T \cong (P_{\mathcal{Q}}M_{z_1}|_{\mathcal{Q}}, \dots, P_{\mathcal{Q}}M_{z_n}|_{\mathcal{Q}}).$

Model for *m*-Hypercontraction operators

Muller and Vasilescu have shown that a pure *m*-hypercontraction can be dilated to the weighted-shift operators on $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$. More precisely,

Theorem 5 (Muller and Vasilescu)

Let T be a pure m-hypercontraction on a Hilbert space \mathcal{H} . Then there exists a co-invariant subspace \mathcal{Q} of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $T \cong (P_{\mathcal{Q}}M_{z_1}|_{\mathcal{Q}}, \ldots, P_{\mathcal{Q}}M_{z_n}|_{\mathcal{Q}}).$

They established this result with the help of the following dilation map, $\pi_m : \mathcal{H} \to \mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ defined by

$$\pi_m h(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_m(\alpha) (D_{m,T^*} T^{*\alpha} h) z^{\alpha} = D_{m,T^*} (1 - ZT^*)^{-m} h,$$

where $Z : \mathcal{H}^n \to \mathcal{H}$ defined by $Z(h_1, \ldots, h_n) = \sum_{i=1}^n z_i h_i$ and M_{z_i} is the shift on $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ for all $i = 1, \ldots, n$ and $\mathcal{Q} = \operatorname{ran} \pi_m$ which is a joint co-invariant subspace of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$.

Recently, Sarkar has produced a Beurling-Lax-Halmos type result for the general reproducing kernel Hilbert space. We will invoke this result for the weighted Bergman space.

Theorem 6 (Sarkar)

Let M be a closed subspace of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$. Then M is a joint $(M_{z_1} \otimes I_{\mathcal{E}}, \ldots, M_{z_n} \otimes I_{\mathcal{E}})$ -invariant subspace if and only if there exists a Hilbert space \mathcal{E}_* and a partial isometric multiplier Φ from $H^2_n(\mathcal{E}_*)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ such that $M = \Phi H^2_n(\mathcal{E}_*)$.

Recently, Sarkar has produced a Beurling-Lax-Halmos type result for the general reproducing kernel Hilbert space. We will invoke this result for the weighted Bergman space.

Theorem 6 (Sarkar)

Let M be a closed subspace of $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$. Then M is a joint $(M_{z_1} \otimes I_{\mathcal{E}}, \ldots, M_{z_n} \otimes I_{\mathcal{E}})$ -invariant subspace if and only if there exists a Hilbert space \mathcal{E}_* and a partial isometric multiplier Φ from $H^2_n(\mathcal{E}_*)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{E})$ such that $M = \Phi H^2_n(\mathcal{E}_*)$.

Combining above two results we have that given a *m*-hypercontraction *T* there exists a Hilbert space *E*_{*} and a partial isometric multiplier Φ from *H*²_n(*E*_{*}) to 𝔄_m(𝔅ⁿ, *E*) such that *T_i* ≅ *P*<sub>(Φ*H*²_n(*E*_{*}))[⊥]*M*<sub>*z_i*|(Φ*H*²_n(*E*_{*}))[⊥], for *i* = 1,..., n.
</sub></sub>

• We consider the operator $C_{m,T}:\mathcal{H}\to l^2(\mathbb{N}^n,\mathcal{D}_{m,T^*})$ defined by

$$h\mapsto (\rho_{m-1}(\alpha)^{\frac{1}{2}}D_{m,T^*}T^{*\alpha}h)_{\alpha\in\mathbb{N}^n}.$$

• We consider the operator $C_{m,T} : \mathcal{H} \to l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ defined by $h \mapsto (\alpha - (\alpha)^{\frac{1}{2}} \mathcal{D} - T^{*\alpha} h)$

$$h\mapsto (\rho_{m-1}(\alpha)^{\frac{1}{2}}D_{m,T^*}T^{*\alpha}h)_{\alpha\in\mathbb{N}^n}.$$

• Here,
$$\begin{bmatrix} \mathcal{T}^*\\ \mathcal{C}_{m,\mathcal{T}} \end{bmatrix}$$
 : $\mathcal{H} o \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,\mathcal{T}^*})$ is an isometry.

• We consider the operator $C_{m,T} : \mathcal{H} \to l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ defined by

$$h\mapsto (\rho_{m-1}(\alpha)^{\frac{1}{2}}D_{m,T^*}T^{*\alpha}h)_{\alpha\in\mathbb{N}^n}.$$

• Here,
$$\begin{bmatrix} T^*\\ C_{m,T} \end{bmatrix}$$
 : $\mathcal{H} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$ is an isometry.

Definition 7 (Characteristic triple)

For a *m*-hypercontraction *T* on *H*, a triple (\mathcal{E}, B, D) consists of a Hilbert space \mathcal{E} and operators $B \in \mathcal{B}(\mathcal{E}, \mathcal{H}^n)$, $D \in \mathcal{B}(\mathcal{E}, l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*}))$ is a characteristic triple if the corresponding block operator matrix

$$\begin{bmatrix} T^* & B \\ C_{m,T} & D \end{bmatrix} : \mathcal{H} \oplus \mathcal{E} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*})$$

is a co-isometry.

For a characteristic triple (\mathcal{E}, B, D) of \mathcal{T} , let us define an operator-valued analytic function $\Phi : \mathbb{B}^n \to \mathcal{B}(\mathcal{E}, \mathcal{D}_{m, \mathcal{T}^*})$ by

$$\Phi(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB \qquad (z \in \mathbb{B}^n).$$

For a characteristic triple (\mathcal{E}, B, D) of \mathcal{T} , let us define an operator-valued analytic function $\Phi : \mathbb{B}^n \to \mathcal{B}(\mathcal{E}, \mathcal{D}_{m, \mathcal{T}^*})$ by

$$\Phi(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB \qquad (z \in \mathbb{B}^n).$$

It satisfies the following identity

$$\frac{I_{\mathcal{D}_{m,T^*}}}{(1-\langle z,w\rangle)^m}-\frac{\Phi(z)\Phi(w)^*}{1-\langle z,w\rangle}=D_{m,T^*}(1-ZT^*)^{-m}(1-TW^*)^{-m}D_{m,T^*}.$$

For a characteristic triple (\mathcal{E}, B, D) of \mathcal{T} , let us define an operator-valued analytic function $\Phi : \mathbb{B}^n \to \mathcal{B}(\mathcal{E}, \mathcal{D}_{m, \mathcal{T}^*})$ by

$$\Phi(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB \qquad (z \in \mathbb{B}^n).$$

It satisfies the following identity

 $\frac{I_{\mathcal{D}_{m,T^*}}}{(1-\langle z,w\rangle)^m}-\frac{\Phi(z)\Phi(w)^*}{1-\langle z,w\rangle}=D_{m,T^*}(1-ZT^*)^{-m}(1-TW^*)^{-m}D_{m,T^*}.$

• Thus we have find a general recipe of constructing characteristic functions of *m*-hypercontractions as follows.

Theorem 8

Let T be a pure m-hypercontraction on \mathcal{H} . Suppose (\mathcal{E}, B, D) is a characteristic triple of T. Then the above defined function Φ defines a partial isometric multiplier from $H^2_n(\mathcal{E})$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that $\mathcal{Q}^{\perp} = \Phi H^2_n(\mathcal{E})$, where \mathcal{Q} is the model space for T.

Unitary Equivalence

Two row contractions $T = (T_1, \dots, T_n)$ and $R = (R_1, \dots, R_n)$ on \mathcal{H} are said to be unitary equivalent if there exist a unitary U on \mathcal{H} such that $T_i = UR_iU^*$, for all $i = 1, \dots, n$.

Unitary Equivalence

Two row contractions $T = (T_1, \dots, T_n)$ and $R = (R_1, \dots, R_n)$ on \mathcal{H} are said to be unitary equivalent if there exist a unitary U on \mathcal{H} such that $T_i = UR_iU^*$, for all $i = 1, \dots, n$.

Definition 9

The characteristic functions Φ_T and Φ_R of two pure *m*-hypercontractions T and R are said to coincide if there exists two unitary $\Gamma : (\text{Ker}M_{\Phi_R})^{\perp} \rightarrow (\text{Ker}M_{\Phi_T})^{\perp}$ and $\tau : \mathcal{D}_{m,T^*} \rightarrow \mathcal{D}_{m,R^*}$ such that

$$M_{\Phi_R}|_{(\operatorname{Ker} M_{\Phi_R})^{\perp}} = (I \otimes \tau) M_{\Phi_T} \Gamma.$$

Unitary Equivalence

Two row contractions $T = (T_1, \dots, T_n)$ and $R = (R_1, \dots, R_n)$ on \mathcal{H} are said to be unitary equivalent if there exist a unitary U on \mathcal{H} such that $T_i = UR_iU^*$, for all $i = 1, \dots, n$.

Definition 9

The characteristic functions Φ_T and Φ_R of two pure *m*-hypercontractions T and R are said to coincide if there exists two unitary $\Gamma : (\text{Ker}M_{\Phi_R})^{\perp} \rightarrow (\text{Ker}M_{\Phi_T})^{\perp}$ and $\tau : \mathcal{D}_{m,T^*} \rightarrow \mathcal{D}_{m,R^*}$ such that

$$M_{\Phi_R}|_{(\operatorname{Ker} M_{\Phi_R})^{\perp}} = (I \otimes \tau) M_{\Phi_T} \Gamma.$$

Theorem 10

Two pure m-hypercontractions are unitarily equivalent if and only if their characteristic functions coincide.

Factorization w.r.t invariant subspace

• Sz.-Nagy-Foias have produced a factorization of the characteristic function for a contraction in terms of multipliers of invariant subspaces of it. A similar kind of factorization result is also true for *m*-hypercontractions.

Factorization w.r.t invariant subspace

 Sz.-Nagy-Foias have produced a factorization of the characteristic function for a contraction in terms of multipliers of invariant subspaces of it. A similar kind of factorization result is also true for *m*-hypercontractions.

Theorem 11

Let $T = (T_1, ..., T_n)$ be a pure m-hypercontraction on \mathcal{H} and $\mathcal{H}_1 \subseteq \mathcal{H}$ be a joint T-invariant subspace. Then there exists two Hilbert spaces \mathcal{E}_T and \mathcal{E} , and two multipliers Φ_1 from $H^2_n(\mathcal{E}_T)$ to $H^2_n(\mathcal{E}_2)$ and Φ_2 from $H^2_n(\mathcal{E}_2)$ to $\mathbb{H}_m(\mathbb{B}^n, \mathcal{D}_{m,T^*})$ such that the characteristic function of T has a factorization, that is,

$$\Phi_T = \Phi_2 \Phi_1.$$

Canonical Factorization

Consider
$$\Psi_{\beta}(z) = \left[\cdots, \frac{1}{\sqrt{\gamma_{|\alpha|}}} \left(\frac{|\alpha|!}{\alpha!}\right)^{\frac{1}{2}} z^{\alpha} I_{\mathcal{D}_{m,T^*}}, \cdots\right]_{\alpha \in \mathbb{N}^n}$$
, where $\gamma_j^{-1} = \left(\begin{array}{c} m+j-2\\ j \end{array}\right)$ for $j \neq 0$ and $\gamma_0 = 0$.

Theorem 12

Let T be a m-hypercontraction, and let

$$S(z) = \sum_{\alpha \in \mathbb{N}^n} \rho_{m-1}(\alpha)^{\frac{1}{2}} D_{\alpha} z^{\alpha} + D_{m,T^*} (1 - ZT^*)^{-m} ZB$$

be a characteristic function of T corresponding to a triple (\mathcal{E}, B, D) . Then $S(z) = \Psi_{\beta}(z)\tilde{S}(z)$, where $\tilde{S}(z) = D + C_{m,T}(1 - ZT^*)^{-1}ZB$ is the transfer function of the canonical co-isometry (w.r.t. the triple (\mathcal{E}, B, D))

$$\begin{bmatrix} T^* & B \\ C_{m,T} & D \end{bmatrix} : \mathcal{H} \oplus \mathcal{E} \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m,T^*}).$$

Relation between different order hypercontraction

Let T be a pure m_2 -hypercontraction. Then for $1 \le m_1 \le m_2$, T is also a m_1 -hypercontraction. For i = 1, 2, \tilde{S}_i be the the transfer function of the co-isometries

$$\begin{bmatrix} T^* & B_i \\ C_{m_i,T} & D_i \end{bmatrix} : \mathcal{H} \oplus \mathcal{E}_i \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m_i,T^*}).$$

Relation between different order hypercontraction

Let T be a pure m_2 -hypercontraction. Then for $1 \le m_1 \le m_2$, T is also a m_1 -hypercontraction. For i = 1, 2, \tilde{S}_i be the the transfer function of the co-isometries

$$\begin{bmatrix} T^* & B_i \\ C_{m_i,T} & D_i \end{bmatrix} : \mathcal{H} \oplus \mathcal{E}_i \to \mathcal{H}^n \oplus l^2(\mathbb{N}^n, \mathcal{D}_{m_i,T^*}).$$

Theorem 13

Let T be a pure m_2 -hypercontraction. Suppose that $(\mathcal{E}_1, B_1, D_1)$ and $(\mathcal{E}_2, B_2, D_2)$ are characteristic triples of T considered as a m_1 -hypercontraction and m_2 -hypercontraction $(1 \le m_1 < m_2)$. Then there exist isometries $Y \in \mathcal{B}(\overline{ran} \ C_{m_2, T}; l^2(\mathbb{N}^n, \mathcal{D}_{m_1, T^*}))$ and $X \in \mathcal{B}(\overline{ran} \ B_1^*; \mathcal{E}_2)$ such that

$$ilde{S}_1(z)|_{({\it KerB}_1)^\perp}=Y ilde{S}_2(z)X$$

for all $z \in \mathbb{B}^n$.

 J. Agler, *Hypercontractions and subnormality*, J. Operator Theory 13 (1985), 203–217.

- [2] V. Muller and F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979–989.
- [3] J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces - I, J. Operator Theory 73 (2015), 433–441.
- [4] J. Sarkar, An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces - II, Complex Analysis and Operator Theory 10(2016), 769–782.

THANK YOU FOR YOUR ATTENTION