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Invariant Subspaces of H2(E )

Let E be a separable Hilbert space of infinite dimension and H2(E )
be the E -valued Hardy space, that is,

H2(E ) :=
{
f (z) =

∞∑
n=0

anz
n
∣∣ ∞∑

n=0

‖an‖2
E <∞, z ∈ D}.

Definition 1

A closed subspace M ⊆ H2(E ) is said to be invariant if MzM ⊆ M,
where Mz denotes the multiplication operator on H2(E ).

Theorem 2 (Beurling-Lax-Halmos)

A closed subspace M ⊆ H2(E ) is invariant under Mz if and only if
there exists a separable Hilbert space E∗ and an inner multiplier Θ
such that M = ΘH2(E∗).
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Sz.-Nagy-Foias model

Definition 3

A bounded linear operator T on a Hilbert space H is said to be in
C·0 class if ‖T ∗nh‖ → 0 as n→∞ for all h ∈ H, that is, if
T ∗n → 0 as n→∞ in the strong operator topology.

The Sz.-Nagy and Foias analytic model: It says that if T is a
contraction on a separable Hilbert space, and in C·0 class,
then there exists a coefficient Hilbert space E∗ and an
M∗z -invariant closed subspace Q of E∗-valued Hardy space
H2(E∗) such that

T ∼= PQMz |Q.

Moreover, using Beurling-Lax-Halmos theorem, we have a
Hilbert space E and a B(E , E∗)-valued inner multiplier
Θ ∈ H∞B(E,E∗)(D), such that

Q⊥ = ΘH2(E).
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Characteristic Function for contraction

For a contraction T ∈ B(H), consider the following contractive
analytic function from DT to DT∗ ,

ΘT (z) = [−T + zDT∗(1− zT ∗)−1DT ]|DT
for z ∈ D,

where DT = (I − T ∗T )
1
2 , DT∗ = (I − TT ∗)

1
2 , DT = ranDT and

DT∗ = ranDT∗ . It is known as the Characteristic Function for a
contraction T . It helps to modify the Sz.-Nagy-Foias model more
explicitly.

Modified Sz.-Nagy-Foias model: If T is a C.0-contraction on a
seperable Hilbert space H, then there exist a co-invariant
subspace Q of H2(DT∗) such that

T ∼= PQMz |Q.

And also the co-invariant subspace Q can be expressed in
terms of the characteristic function of T , that is,

Q⊥ = ΘTH
2(DT ).
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Question

In this talk, we will address the following questions in multi-
variable setting in the space of (weighted-) Bergman space over
the Euclidean Ball in Cn.

More precisely,

(1) Given a (weighted-) Bergman shift invariant subspace M, can
there be an analogous representation (like in the vector-valued
Hardy space) in terms of multipliers from the Drury-Arveson
space?

(2) Is there is any explicit description of that multiplier (analogous
to the characteristic function for contraction)?
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Preliminaries

For an n-tuple of commuting bounded linear operators
T = (T1, . . . ,Tn) ∈ B(H)n, we say T is a row contraction if the
operator

Hn → H, (h1, . . . , hn) 7→
n∑

i=1

Tihi

is a contraction. That is, the operator viewed as a row operator
T : Hn → H is a contraction. Consider the associated completely
positive map

σT : B(H)→ B(H),X 7→
n∑

i=1

TiXT
∗
i .

Using the map σT , for each k ∈ N, we are going to define the
defect operators of different orders of T .
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m-Hypercontraction Operators

Let us consider the operator

∆
(k)
T = (1−σT )k(1H) =

k∑
j=0

(−1)j
(

k
j

) ∑
|α|=j

γαT
αT ∗α (k ∈ N),

where γα = |α|!
α! for α ∈ Nn.

Definition 4

An n-tuple of commuting bounded linear operators T is said to be

a m-hypercontraction if ∆
(1)
T ≥ 0 and ∆

(m)
T ≥ 0.

For a m-hypercontraction, the defect operator of order m is

Dm,T∗ = (∆
(m)
T )

1
2 and the defect space is Dm,T∗ = ran(∆

(m)
T )

1
2 .

This is also well-known that for a m-hypercontraction T ,

∆
(k)
T ≥ 0 for all 1 ≤ k ≤ m.

An m-hypercontraction T ∈ B(H)n is said to be pure if

SOT− lim
k→∞

σkT (IH) = 0.
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Weighted Bergman Space

For any positive integer ` ≥ 0 and a complex Hilbert space E , we
denote by H`(Bn, E) the E-valued weighted Bergman space with
domain Bn, that is

H`(Bn, E) :=
{
f =

∑
α∈Nn

fαz
α ∈ O(Bn, E) : ‖f ‖2 =

∑
α∈Nn

‖fα‖2

ρ`(α)
<∞

}
,

where ρ`(α) = (`+|α|−1)!
α!(`−1)! .

It is also a reproducing kernel Hilbert space with kernel

K` : Bn × Bn → B(E), K`(z ,w) =
1E

(1− 〈z ,w〉)`
.

In particular, if ` = 1, H1(Bn, E) is known as the
Drury-Arveson space and we use H2

n(E) to denote it.
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Model for m-Hypercontraction operators

Muller and Vasilescu have shown that a pure m-hypercontraction
can be dilated to the weighted-shift operators on Hm(Bn,Dm,T∗).
More precisely,

Theorem 5 (Muller and Vasilescu)

Let T be a pure m-hypercontraction on a Hilbert space H. Then
there exists a co-invariant subspace Q of Hm(Bn,Dm,T∗) such that
T ∼= (PQMz1 |Q, . . . ,PQMzn |Q).

They established this result with the help of the following dilation
map, πm : H → Hm(Bn,Dm,T∗) defined by

πmh(z) =
∑
α∈Nn

ρm(α)(Dm,T∗T
∗αh)zα = Dm,T∗(1− ZT ∗)−mh,

where Z : Hn → H defined by Z (h1, . . . , hn) =
∑n

i=1 zihi and Mzi

is the shift on Hm(Bn,Dm,T∗) for all i = 1, . . . , n and Q = ranπm
which is a joint co-invariant subspace of Hm(Bn,Dm,T∗).
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Invariant Subspaces of Weighted Bergman space

Recently, Sarkar has produced a Beurling-Lax-Halmos type result
for the general reproducing kernel Hilbert space. We will invoke
this result for the weighted Bergman space.

Theorem 6 (Sarkar)

Let M be a closed subspace of Hm(Bn, E). Then M is a joint
(Mz1 ⊗ IE , . . . ,Mzn ⊗ IE)-invariant subspace if and only if there
exists a Hilbert space E∗ and a partial isometric multiplier Φ from
H2
n(E∗) to Hm(Bn, E) such that M = ΦH2

n(E∗).

Combining above two results we have that given a
m-hypercontraction T there exists a Hilbert space E∗ and a
partial isometric multiplier Φ from H2

n(E∗) to Hm(Bn, E) such
that Ti

∼= P(ΦH2
n (E∗))⊥Mzi |(ΦH2

n (E∗))⊥ , for i = 1, . . . , n.
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Construction of the Characteristic function

We consider the operator Cm,T : H → l2(Nn,Dm,T∗) defined
by

h 7→ (ρm−1(α)
1
2Dm,T∗T

∗αh)α∈Nn .

Here,
[ T ∗

Cm,T

]
: H → Hn ⊕ l2(Nn,Dm,T∗) is an isometry.

Definition 7 (Characteristic triple)

For a m-hypercontraction T on H, a triple (E ,B,D) consists of a
Hilbert space E and operators B ∈ B(E ,Hn),
D ∈ B

(
E , l2(Nn,Dm,T∗)

)
is a characteristic triple if the

corresponding block operator matrix[
T ∗ B
Cm,T D

]
: H⊕ E → Hn ⊕ l2(Nn,Dm,T∗)

is a co-isometry.
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Construction of the Characteristic function

For a characteristic triple (E ,B,D) of T , let us define an
operator-valued analytic function Φ : Bn → B(E ,Dm,T∗) by

Φ(z) =
∑
α∈Nn

ρm−1(α)
1
2Dαz

α+Dm,T∗(1−ZT ∗)−mZB
(
z ∈ Bn

)
.

It satisfies the following identity

IDm,T∗

(1− 〈z ,w〉)m
− Φ(z)Φ(w)∗

1− 〈z ,w〉
= Dm,T∗(1− ZT ∗)−m(1− TW ∗)−mDm,T∗ .

Thus we have find a general recipe of constructing
characteristic functions of m-hypercontractions as follows.

Theorem 8

Let T be a pure m-hypercontraction on H. Suppose (E ,B,D) is a
characteristic triple of T . Then the above defined function Φ
defines a partial isometric multiplier from H2

n(E) to Hm(Bn,Dm,T∗)
such that Q⊥ = ΦH2

n(E), where Q is the model space for T .
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Unitary Equivalence

Two row contractions T = (T1, · · · ,Tn) and R = (R1, . . . ,Rn) on
H are said to be unitary equivalent if there exist a unitary U on H
such that Ti = URiU

∗, for all i = 1, . . . , n.

Definition 9

The characteristic functions ΦT and ΦR of two pure
m-hypercontractions T and R are said to coincide if there exists
two unitary Γ : (KerMΦR

)⊥ → (KerMΦT
)⊥ and

τ : Dm,T∗ → Dm,R∗ such that

MΦR
|(KerMΦR

)⊥ = (I ⊗ τ)MΦT
Γ.

Theorem 10

Two pure m-hypercontractions are unitarily equivalent if and only
if their characteristic functions coincide.
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Factorization w.r.t invariant subspace

Sz.-Nagy-Foias have produced a factorization of the
characteristic function for a contraction in terms of multipliers
of invariant subspaces of it. A similar kind of factorization
result is also true for m-hypercontractions.

Theorem 11

Let T = (T1, . . . ,Tn) be a pure m-hypercontraction on H and
H1 ⊆ H be a joint T -invariant subspace. Then there exists two
Hilbert spaces ET and E , and two multipliers Φ1 from H2

n(ET ) to
H2
n(E2) and Φ2 from H2

n(E2) to Hm(Bn,Dm,T∗) such that the
characteristic function of T has a factorization, that is,

ΦT = Φ2Φ1.
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Canonical Factorization

Consider Ψβ(z) =
[
· · · , 1√

γ|α|

(
|α|!
α!

) 1
2
zαIDm,T∗ , · · ·

]
α∈Nn

, where

γ−1
j =

(
m + j − 2

j

)
for j 6= 0 and γ0 = 0.

Theorem 12

Let T be a m-hypercontraction, and let

S(z) =
∑
α∈Nn

ρm−1(α)
1
2Dαz

α + Dm,T∗(1− ZT ∗)−mZB

be a characteristic function of T corresponding to a triple
(E ,B,D). Then S(z) = Ψβ(z)S̃(z), where
S̃(z) = D + Cm,T (1− ZT ∗)−1ZB is the transfer function of the
canonical co-isometry (w.r.t. the triple (E ,B,D))[

T ∗ B
Cm,T D

]
: H⊕ E → Hn ⊕ l2(Nn,Dm,T∗).
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Relation between different order hypercontraction

Let T be a pure m2-hypercontraction. Then for 1 ≤ m1 ≤ m2, T
is also a m1-hypercontraction. For i = 1, 2, S̃i be the the transfer
function of the co-isometries[

T ∗ Bi

Cmi ,T Di

]
: H⊕ Ei → Hn ⊕ l2(Nn,Dmi ,T∗).

Theorem 13

Let T be a pure m2-hypercontraction. Suppose that (E1,B1,D1)
and (E2,B2,D2) are characteristic triples of T considered as a
m1-hypercontraction and m2-hypercontraction (1 ≤ m1 < m2).
Then there exist isometries Y ∈ B(ran Cm2,T ; l2(Nn,Dm1,T∗)) and
X ∈ B(ran B∗1 ; E2) such that

S̃1(z)|(KerB1)⊥ = Y S̃2(z)X

for all z ∈ Bn.
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