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Setting and definitions

Given operator A, what can we say about the spectral properties of

A+B for B ∈ Class X?

Classically Class X = {trace cl.}, {Hilb.–Schmidt}, {comp.}.
Here: A, B self-adj. on separable H, Class X = {finite rk}.

Definition

Through Aγ = A+ γ( · , ϕ)ϕ, parameter γ ∈ R realizes all
self-adjoint rank one perturbations (of a given self-adjoint operator
A) in the direction of a cyclic ϕ (WLOG).

Definition

Through A
Γ

= A+ BΓB∗, the symmetric d× d matrices Γ
parametrize all self-adjoint finite rank perturbations with range
contained in that of B. WLOG: RangeB is a cyclic subspace and
B : Cd → H left-invertible on its range.
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Cyclicity examples on R2 (recall A
Γ

= A + BΓB∗)

Aγ =

(
1 0
0 3

)
+ γ( · , e1)e1. Here e1 is not cyclic.

Aγ =

(
1 0
0 3

)
+ γ( · , e1 + e2)(e1 + e2).

e1 + e2 is cyclic for Aγ for all γ ∈ R.

Aγ1,γ2 =

(
1 0
0 3

)
+ γ1( · , e1)e1 + γ2( · , e2)e2.

Aγ1,γ2 cannot be written as rank one perturbation.

{e1, e2} spans a cyclic subspace for all Aγ1,γ2 .

e1 + e2 is cyclic iff γ1 6= γ2 − 2.

Cyclicity of A does not imply that of A
Γ

; because for
γ1 = γ2 − 2, above operator Aγ1,γ2 = (1 + γ1)I is not cyclic.

On finite dimensional space, this theory reduces to finding EVA
through diagonalization UAγ = DU .
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Scalar measure and decomposition

Theorem (Scalar Spectral Theorem)

Let A be a self-adjoint operator on Hilbert space H with (cyclic)
vector ϕ. Then there exists a unique measure µ = µϕ such that

(
(A− zI)−1ϕ,ϕ

)
H

=
(
(Mt − zI)−11,1

)
L2(µ)

=

∫
dµ(t)

t− z
=: F (z)

for z ∈ C\R. Namely, (A on H) ∼ (Mt on L2(µ)).

Here A ∼ T means that UA = TU with unitary U .

µ contains all the spectral information of operator A.

EVA λ of A is reflected in point mass at λ, i.e. µ{λ} > 0.

Lebesgue decompose the spectral measure dµ = dµac + dµs.

Further decompose dµs = dµp + dµsc.

Through A ∼Mt decompose operator A = Aac ⊕Ap ⊕Asc.

The spectrum σ := suppµ.

Alternatively decompose A = Aess ⊕Ad and σ = σess∪̇σd.
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Perturbation theory (A, T = A + B self-adjoint)
A ∼ T (Mod compact operators) means UA = TU +K for
some unitary U and compact K.

Theorem (Weyl–vonNeuman early 1900’s)

A ∼ T (Mod compact operators) ⇔ σess(A) = σess(T ).

Theorem (Kato–Rosenblum 1950’s, Carey–Pincus 1976)

A ∼ T (Mod trace class) ⇔ Aac ∼ Tac, conditions.

Theorem (Aronszajn–Donoghue Theory 1970-80’s)

Spectral type is not stable under rank one perturbations. The
singular parts of A and Aγ are mutually singular. (next slide)

Theorem (Poltoratski 2000)

Conditions on purely singular operators ⇒ A ∼ T (Mod rank 1).

Barry Simon: “The cynic might feel that I have finally sunk to my proper

level [...] to rank one perturbations – maybe something so easy that I can

say something useful! We’ll see even this is hard and exceedingly rich.”
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Let G(x) :=
∫ dµ(t)

(t−x)2 , and Cauchy transform Fγ(z) :=
∫ dµγ(t)

t−z .

Theorem (Aronszajn–Donoghue)

When γ 6= 0, the sets

Sγ =
{
x ∈ R

∣∣∣ lim
y↘0

F (x+ iy) = −1/γ;G(x) =∞
}
,

Pγ =
{
x ∈ R

∣∣∣ lim
y↘0

F (x+ iy) = −1/γ;G(x) <∞
}
,

C = clos
{
x ∈ R

∣∣∣ lim
y↘0

ImF (x+ iy) 6= 0
}

contain spectral information of Aγ as follows:

(i) Set Pγ is the set of eigenvalues, and set C (Sγ) is a carrier for
the absolutely (singular) continuous measure, respectively.

(ii) The singular parts of A and Aγ are mutually singular.

Main tool: Aronszajn–Krein formula Fγ = F
1+γF .

Literature provides finer results and pathological examples.
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Origins and applications of rank one perturbations

Describe all self-adjoint extensions of a symmetric operator
with deficiency indices (1, 1).

Differential operators with changing boundary conditions:

Sturm–Liouville operators (Weyl 1910),

Half-line Schrödinger operator Au = − d2

dx2u+ V u,

Maybe soon PDEs.

Anderson-type Hamiltonian

Aω = A+
∑
m∈N

ωm( · , ϕm)ϕm

for orthonormal ϕm and i.i.d. random ωm, ω = (ω1, ω2, . . .).
For example, the discrete random Schrödinger operator.



Rank one perturbations and analysis

Nehari interpolation problem

Holomorphic composition operators

Rigid functions

Functional models (Nagy–Foiaş, deBranges–Rovnyak,
Nikolski–Vasyunin)

Two weight problem for Hilbert/Cauchy transform

Existence of the limit in the Julia–Carathéodory quotient

Carlesson embedding



What are finite rank perturbations related to?

Describe all self-adjoint extensions of a symmetric operator
with finite deficiency indicees (d, d).

Second order differential operators with both endpoints limit
circle.

Higher order differential operators.

Functional models with matrix-valued characteristic functions
(Nagy–Foiaş, deBranges–Rovnyak, Nikolski–Vasyunin).

Ex. of the limit in the (matrix-valued) Julia–Carath. quotient.

Two weight problem for Hilbert/Cauchy transform with
matrix-valued weights.



Subset of interested people

Unitary rank one perturbations or their corresponding model spaces
were studied by Aleksandrov, Ball, Clark, Douglas–Shapiro–Shields,
Kapustin, Poltoratski, Ross, Sarason, etc.

A self-adjoint setting was studied by Albeverio–Kurasov,
Aronszajn–Donoghue, delRio, Kato-Rosenblum, Poltoratski,
Simon, etc.

Finite rank generalizations occur in literature by Albeverio–Kurasov
(extension theory), Gesztesy et al., Kapustin–Poltoratski (purely
singular spectra), Martin.

Baranov has extended some aspects to rank one perturbations of
normal operators.



Matrix-valued spectral measures
With bk = Bek, for k = 1, 2, . . . , d, consider (singular) form
bounded perturbations, that means that for each k we have

‖(1 + |A|)−1/2bk‖H <∞ where |A| = (A∗A)1/2.

Theorem (Matrix-valued Spectral Theorem)

Let A be a self-adjoint on H with cyclic set {bk}. Then there is a
unique matrix-valued measure M so that

B∗(A− zI)−1B =

∫
dM(t)

t− z
for z ∈ C\R;

i.e. A ∼Mt on L2(M) with ‖f‖2
L2(M)

=
∫

([dM(t)]f(t), f(t))
Cd
.

We associate scalar spectral measure µ := trM. Then dM = Wdµ
with W = B∗B, B(t) = (Ub1(t), Ub2(t), . . .), and the
vector-valued integral∫

[dM]f =

∫
W (t)f(t)dµ(t).
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Spectral Measure of A
Γ

= A + BΓB∗ and decomposition

The columns of B form a cyclic set for all A
Γ

.

So via the Spectral Theorem,

F
Γ

(z) := B∗(A
Γ
− zI)−1B =

∫
R

dMΓ(t)

t− z
,

defines the family {M
Γ
} of spectral measures of A

Γ
.

With µ
Γ

:= trM
Γ

and W
Γ

= B∗
Γ
B

Γ
we have

dM
Γ

= W
Γ
dµ

Γ
.

Lebesgue decomp. dµ = wdx+ dµs yields:

dM(x) = dMac(x) + dMs(x).

Aronszajn–Krein-type: F
Γ

= (I + FΓ)−1F = F (I + ΓF )−1.
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Finite rank Kato–Rosenblum

Theorem

For self-adjoint A, T with A ∼ T (Mod finite rank), the absolutely
continuous parts of A and T are unitarily equivalent.

Theorem (Wave operators)

The wave operators exist;
i.e. defining WΓ(τ) := eiτAΓe−iτAPac, where Pac is the
orth. proj. onto the absolutely continuous part of A, the strong
limit s-limτ→±∞WΓ(τ) exists.

Idea of proof for wave operators: For any f ∈ L2(Mac) we have

s-limτ→±∞VΓ
PAΓ

ac WΓ(τ)f = (I + ΓF±)f.
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Spectral representation of A
Γ

Consider the spectral representation of A
Γ

= Mt + BΓB∗,

i.e. unitary V
Γ

: L2(M)→ L2(MΓ) with V
Γ
A

Γ
= MsVΓ

.

Theorem (L.–Treil)

The spectral representation takes the form

(V
Γ
he)(s) = h(s)e− Γ

∫
h(t)− h(s)

t− s
[dM(t)]e

for e ∈ Cd and compactly supported h ∈ C1(R).

For a matrix-valued measure M = Wµ and ε > 0, define operator
TM
±ε : L2(M)→ L2(ΓMΓΓ) by

TM
±εf(s) =

∫
[dM(t)]

f(t)

s− t± iε
.

Theorem (L.–Treil)

Operators TM
±ε : L2(M)→ L2(ΓMΓΓ) are (uniformly in ε)

bounded with norm at most 2.
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Vector mutual singularity of singular parts

Definition

Matrix-valued measures M = Wµ and N = V ν are vector
mutually singular (M ⊥ N) if one can extent W and V so that

RanW (t) ⊥ RanV (t) µ-a.e. and ν-a.e.

Theorem (L.–Treil)

Singular parts of the matrix-valued measures M and MΓ satisfy

Ms ⊥ ΓMΓ
s Γ and MΓ

s ⊥ ΓMsΓ.

The proof uses uniform boundedness of the spectral representation
and a matrix A2 condition.



Aleksandrov Spectral Averaging

Theorem (L.–Treil)

Let Γ0 be a self-adjoint and Γ1 be a positive definite d× d matrix.
Consider scalar-valued Borel measurable f ∈ L1(R). We have∫∫

f(x)dM
Γ0+tΓ1

(x)dt = Γ−1
1

∫
f(x)dx.

In particular, for any Borel set B with zero Lebesgue measure
M

Γ0+tΓ1
(B) = 0 for Lebesgue a.e. t ∈ R.

We can also show that the scalar-valued spectral measures
µ

Γ
(B) = 0 for Lebesgue almost all Γ in a “cylinder”.

For an arbitrary singular Radon measure ν on R,
ν ⊥ (µ

Γ0+tΓ1
)s for all except maybe countably many t ∈ R.



Aleksandrov Spectral Averaging

Theorem (L.–Treil)

Let Γ0 be a self-adjoint and Γ1 be a positive definite d× d matrix.
Consider scalar-valued Borel measurable f ∈ L1(R). We have∫∫

f(x)dM
Γ0+tΓ1

(x)dt = Γ−1
1

∫
f(x)dx.

In particular, for any Borel set B with zero Lebesgue measure
M

Γ0+tΓ1
(B) = 0 for Lebesgue a.e. t ∈ R.

We can also show that the scalar-valued spectral measures
µ

Γ
(B) = 0 for Lebesgue almost all Γ in a “cylinder”.

For an arbitrary singular Radon measure ν on R,
ν ⊥ (µ

Γ0+tΓ1
)s for all except maybe countably many t ∈ R.



Summary

Kato–Rosenblum simple proof and existence of wave operators

Vector mutual singularity of matrix-valued spectral measures

Aleksandrov spectral averaging yields some mutual singularity
also of scalar-valued spectral measures

Proofs and results from rank one perturbation theory needed
to be changed


