The metric space of norms, and the normed space of metrics

Apoorva Khare

Indian Institute of Science and Analysis & Probability Research Group, Bangalore

Operator Theory and Operator Algebras ISI Bangalore, December 2018

Definition: A norm on a Banach space \mathbb{B} over \mathbb{R} or \mathbb{C} is a map $\|\cdot\|:\mathbb{B}\to[0,\infty)$ that vanishes only at 0, is sub-additive, and is homogeneous:

 $\|\alpha v\| = |\alpha| \cdot \|v\|, \quad \forall v \in \mathbb{B} \text{ and scalars } \alpha.$

Definition: A norm on a Banach space \mathbb{B} over \mathbb{R} or \mathbb{C} is a map $\|\cdot\|:\mathbb{B}\to[0,\infty)$ that vanishes only at 0, is sub-additive, and is homogeneous:

 $\|\alpha v\| = |\alpha| \cdot \|v\|, \qquad \forall v \in \mathbb{B} \text{ and scalars } \alpha.$

Throughout, we will work over \mathbb{R} for simplicity.

Definition: A norm on a Banach space \mathbb{B} over \mathbb{R} or \mathbb{C} is a map $\|\cdot\|:\mathbb{B}\to[0,\infty)$ that vanishes only at 0, is sub-additive, and is homogeneous:

 $\|\alpha v\| = |\alpha| \cdot \|v\|, \qquad \forall v \in \mathbb{B} \text{ and scalars } \alpha.$

Throughout, we will work over \mathbb{R} for simplicity.

Folklore: Fix $k \ge 1$. All norms on \mathbb{R}^k are topologically equivalent – i.e., Lipschitz equivalent: there exist $0 < m \le M$ such that

$$m \cdot \|v\| \leq \|v\|' \leq M \cdot \|v\|, \quad \forall v \in \mathbb{R}^k.$$

Definition: A norm on a Banach space \mathbb{B} over \mathbb{R} or \mathbb{C} is a map $\|\cdot\|:\mathbb{B}\to[0,\infty)$ that vanishes only at 0, is sub-additive, and is homogeneous:

 $\|\alpha v\| = |\alpha| \cdot \|v\|, \qquad \forall v \in \mathbb{B} \text{ and scalars } \alpha.$

Throughout, we will work over \mathbb{R} for simplicity.

Folklore: Fix $k \ge 1$. All norms on \mathbb{R}^k are topologically equivalent – i.e., Lipschitz equivalent: there exist $0 < m \le M$ such that

$$m \cdot ||v|| \leq ||v||' \leq M \cdot ||v||, \quad \forall v \in \mathbb{R}^k.$$

This equivalence can be quantified into a pseudometric: the Banach–Mazur distance. Namely, if $U := (\mathbb{R}^k, \|\cdot\|)$ and $U' := (\mathbb{R}^k, \|\cdot\|')$, then

 $d_{BM}(\|\cdot\|,\|\cdot\|') = d_{BM}(U,U') = \log \inf\{\|T\|\cdot\|T^{-1}\|: T \in GL_{\mathbb{R}}(U,U')\}.$

Thus, $d_{BM}(U, U') = 0$ if and only if there exists a linear isometry $T: U \to U'$.

The Banach–Mazur compactum

Definition: Quotient the space of norms on \mathbb{R}^k by the equivalence relation

$$U \sim U' \iff d_{BM}(U, U') = 0.$$

The quotient metric space $\mathcal{Q}(\mathbb{R}^k)$ is called the *Banach–Mazur compactum*.

The Banach–Mazur compactum

Definition: Quotient the space of norms on \mathbb{R}^k by the equivalence relation

$$U \sim U' \iff d_{BM}(U, U') = 0.$$

The quotient metric space $\mathcal{Q}(\mathbb{R}^k)$ is called the *Banach–Mazur compactum*.

Properties of $\mathcal{Q}(\mathbb{R}^k)$:

- **1** $\mathcal{Q}(\mathbb{R}^k)$ is a compact, connected metric space.
- 2 Examples of distances in $\mathcal{Q}(\mathbb{R}^k)$: if $p,q \in [1,2]$ or $p,q \in [2,\infty]$ then

$$d_{BM}(\|\cdot\|_p, \|\cdot\|_q) = \log(k) \cdot |1/p - 1/q|.$$

However, this does not hold if p < 2 < q; for instance, if k = 2 then $d_{BM}(\|\cdot\|_1, \|\cdot\|_{\infty}) = 0.$

Recall: two norms are equivalent if $\exists 0 < m \leqslant M$ such that

$$m \cdot ||v|| \leq ||v||' \leq M \cdot ||v||, \quad \forall v \in \mathbb{R}^k,$$

for the tightest possible m, M.

Recall: two norms are equivalent if $\exists 0 < m \leqslant M$ such that

$$m \cdot ||v|| \leq ||v||' \leq M \cdot ||v||, \quad \forall v \in \mathbb{R}^k,$$

for the tightest possible m, M.

Lemma (V.G. Drinfeld, 2000s)

The following is a (different) pseudometric on the space of norms:

 $d_{coarse}(\|\cdot\|, \|\cdot\|') := \log(M/m),$

Recall: two norms are equivalent if $\exists 0 < m \leqslant M$ such that

$$m \cdot ||v|| \leq ||v||' \leq M \cdot ||v||, \quad \forall v \in \mathbb{R}^k,$$

for the tightest possible m, M.

Lemma (V.G. Drinfeld, 2000s)

The following is a (different) pseudometric on the space of norms:

 $d_{coarse}(\|\cdot\|, \|\cdot\|') := \log(M/m),$

When do two norms have 'coarse distance' zero? If and only if proportional.

Recall: two norms are equivalent if $\exists 0 < m \leqslant M$ such that

$$m \cdot ||v|| \leq ||v||' \leq M \cdot ||v||, \quad \forall v \in \mathbb{R}^k,$$

for the tightest possible m, M.

Lemma (V.G. Drinfeld, 2000s)

The following is a (different) pseudometric on the space of norms:

 $d_{coarse}(\|\cdot\|, \|\cdot\|') := \log(M/m),$

When do two norms have 'coarse distance' zero? If and only if proportional. We call the quotient space $Q_{coarse}(\mathbb{R}^k)$ as the *coarse Banach–Mazur space*.

Recall: two norms are equivalent if $\exists 0 < m \leqslant M$ such that

$$m \cdot ||v|| \leq ||v||' \leq M \cdot ||v||, \quad \forall v \in \mathbb{R}^k,$$

for the tightest possible m, M.

Lemma (V.G. Drinfeld, 2000s)

The following is a (different) pseudometric on the space of norms:

 $d_{coarse}(\|\cdot\|, \|\cdot\|') := \log(M/m),$

When do two norms have 'coarse distance' zero? If and only if proportional. We call the quotient space $Q_{coarse}(\mathbb{R}^k)$ as the *coarse Banach–Mazur space*.

Questions:

() Is $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ related to the Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$?

2 What are the properties of $\mathcal{Q}_{coarse}(\mathbb{R}^k)$?

Banach–Mazur distance on norms A new metric – norm – on norms

Coarse Banach-Mazur space: properties

Lemma (Distances between *p*-norms)

$$d_{coarse}(\|\cdot\|_p\ ,\ \|\cdot\|_q) = \log(k) \left|1/p - 1/q\right|, \qquad \forall p,q \in [1,\infty].$$

This is 'coarser' than the Banach-Mazur distance.

Banach–Mazur distance on norms A new metric – norm – on norms

Coarse Banach-Mazur space: properties

Lemma (Distances between *p*-norms)

$$d_{coarse}(\|\cdot\|_p, \|\cdot\|_q) = \log(k) |1/p - 1/q|, \quad \forall p, q \in [1, \infty].$$

This is 'coarser' than the Banach-Mazur distance.

Proof sketch: If $1 \leq p < q < \infty$ then Hölder's inequality implies:

$$k^{-1/p} \|v\|_p \leqslant k^{-1/q} \|v\|_q, \qquad \forall v \in \mathbb{R}^k,$$

with equality if $v = (c, \ldots, c)^T$.

Banach–Mazur distance on norms A new metric – norm – on norms

Coarse Banach-Mazur space: properties

Lemma (Distances between *p*-norms)

 $d_{coarse}(\|\cdot\|_p, \|\cdot\|_q) = \log(k) |1/p - 1/q|, \quad \forall p, q \in [1, \infty].$

This is 'coarser' than the Banach-Mazur distance.

Proof sketch: If $1 \leq p < q < \infty$ then Hölder's inequality implies:

$$k^{-1/p} \|v\|_p \leqslant k^{-1/q} \|v\|_q, \qquad \forall v \in \mathbb{R}^k,$$

with equality if $v = (c, \ldots, c)^T$.

For the other way, $||v||_p \ge ||v||_q \forall v$, with equality along coordinate axes.

Banach–Mazur distance on norms A new metric – norm – on norms

Coarse Banach-Mazur space: properties

Lemma (Distances between *p*-norms)

 $d_{coarse}(\|\cdot\|_p, \|\cdot\|_q) = \log(k) |1/p - 1/q|, \quad \forall p, q \in [1, \infty].$

This is 'coarser' than the Banach-Mazur distance.

Proof sketch: If $1 \leq p < q < \infty$ then Hölder's inequality implies:

$$k^{-1/p} \|v\|_p \leqslant k^{-1/q} \|v\|_q, \qquad \forall v \in \mathbb{R}^k,$$

with equality if $v = (c, ..., c)^T$. For the other way, $||v||_p \ge ||v||_q \quad \forall v$, with equality along coordinate axes.

More generally:

Lemma

The Banach–Mazur compactum $Q(\mathbb{R}^k)$ is a topological quotient of $Q_{coarse}(\mathbb{R}^k)$.

Banach–Mazur distance on norms A new metric – norm – on norms

Coarse Banach-Mazur space: properties

Lemma (Distances between *p*-norms)

 $d_{coarse}(\|\cdot\|_p, \|\cdot\|_q) = \log(k) \left|1/p - 1/q\right|, \qquad \forall p, q \in [1, \infty].$

This is 'coarser' than the Banach-Mazur distance.

Proof sketch: If $1 \leq p < q < \infty$ then Hölder's inequality implies:

$$k^{-1/p} \|v\|_p \leqslant k^{-1/q} \|v\|_q, \qquad \forall v \in \mathbb{R}^k,$$

with equality if $v = (c, ..., c)^T$. For the other way, $||v||_p \ge ||v||_q \forall v$, with equality along coordinate axes.

More generally:

Lemma

The Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$ is a topological quotient of $\mathcal{Q}_{coarse}(\mathbb{R}^k)$.

Proof: If two norms are proportional (hence the same point in $\mathcal{Q}_{coarse}(\mathbb{R}^k)$), then $||T|| \cdot ||T^{-1}|| = 1$ for T = Id. So they have distance zero in $\mathcal{Q}(\mathbb{R}^k)$. Apporva Khare, IISc Bangalore

Banach–Mazur distance on norms A new metric – norm – on norms

The coarse metric is in fact a norm

Theorem (K., 2018)

For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.

Banach–Mazur distance on norms A new metric – norm – on norms

The coarse metric is in fact a norm

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- **2** $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- **2** $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

In particular, "the space of norms lies in a normed space." What is this norm?

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- **2** $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

In particular, "the space of norms lies in a normed space." What is this norm?

To understand this norm, the metric embedding is done as follows:

• Fix $X = S^{k-1}$, the unit sphere, and send a norm N on \mathbb{R}^k to $\log N|_X : X \to \mathbb{R}$. Thus $\mathcal{Q}_{coarse}(\mathbb{R}^k) \hookrightarrow C(X, \mathbb{R}) \dots$ modulo what?

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- 2 $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

In particular, "the space of norms lies in a normed space." What is this norm?

To understand this norm, the metric embedding is done as follows:

- Fix $X = S^{k-1}$, the unit sphere, and send a norm N on \mathbb{R}^k to $\log N|_X : X \to \mathbb{R}$. Thus $\mathcal{Q}_{coarse}(\mathbb{R}^k) \hookrightarrow C(X, \mathbb{R}) \dots$ modulo what?
- The seminorm on C(X, R) is: N(f) := diam im(f).
 This is called a *diameter seminorm*.

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- **2** $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

In particular, "the space of norms lies in a normed space." What is this norm?

To understand this norm, the metric embedding is done as follows:

• Fix $X = S^{k-1}$, the unit sphere, and send a norm N on \mathbb{R}^k to $\log N|_X : X \to \mathbb{R}$. Thus $\mathcal{Q}_{coarse}(\mathbb{R}^k) \hookrightarrow C(X, \mathbb{R}) \dots$ modulo what?

 The seminorm on C(X, ℝ) is: N(f) := diam im(f). This is called a *diameter seminorm*. Two functions f, g are equivalent if im(f - g) has diameter zero, i.e., f - g is a constant. This translates to log N - log N' being constant: i.e., N, N' proportional.

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- **2** $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

In particular, "the space of norms lies in a normed space." What is this norm?

To understand this norm, the metric embedding is done as follows:

• Fix $X = S^{k-1}$, the unit sphere, and send a norm N on \mathbb{R}^k to $\log N|_X : X \to \mathbb{R}$. Thus $\mathcal{Q}_{coarse}(\mathbb{R}^k) \hookrightarrow C(X, \mathbb{R}) \dots$ modulo what?

 The seminorm on C(X, ℝ) is: N(f) := diam im(f). This is called a *diameter seminorm*. Two functions f, g are equivalent if im(f - g) has diameter zero, i.e., f - g is a constant. This translates to log N - log N' being constant: i.e., N, N' proportional.

• Unboundedness: Define the norms $N_{q,j}(v) := ||v||_2 + q|v_j|$, for $q \ge 0, \ j = 1, \dots, k$.

Theorem (K., 2018)

- Solution For each integer k ≥ 1, the projective space Q_{coarse}(ℝ^k) of norms on ℝ^k is a complete, path-connected metric subspace of a real Banach space.
- **2** $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ is a singleton if k = 1, and unbounded if $k \ge 2$.

In particular, "the space of norms lies in a normed space." What is this norm?

To understand this norm, the metric embedding is done as follows:

• Fix $X = S^{k-1}$, the unit sphere, and send a norm N on \mathbb{R}^k to $\log N|_X : X \to \mathbb{R}$. Thus $\mathcal{Q}_{coarse}(\mathbb{R}^k) \hookrightarrow C(X, \mathbb{R}) \dots$ modulo what?

 The seminorm on C(X, ℝ) is: N(f) := diam im(f). This is called a *diameter seminorm*. Two functions f, g are equivalent if im(f - g) has diameter zero, i.e., f - g is a constant. This translates to log N - log N' being constant: i.e., N, N' proportional.

• Unboundedness: Define the norms $N_{q,j}(v) := ||v||_2 + q|v_j|$, for $q \ge 0, \ j = 1, \ldots, k$. The map $: N_{q,j} \mapsto \log(1+q)\mathbf{e}_j$ is an isometry onto the non-negative coordinate axes in $(\mathbb{R}^k, \|\cdot\|_1)$.

Apoorva Khare, IISc Bangalore

Distortion

The same construction applies to metrics on the finite set

$$[n] := \{1, \dots, n\}, \qquad n \geqslant 1.$$

Given metrics $\rho,\rho':[n]\times[n]\to[0,\infty),$ define

$$d_{coarse}(\rho,\rho') := \log \max_{j \neq k \in [n]} \frac{\rho'(j,k)}{\rho(j,k)} - \log \min_{j \neq k \in [n]} \frac{\rho'(j,k)}{\rho(j,k)}.$$

Distortion

The same construction applies to metrics on the finite set

$$[n] := \{1, \dots, n\}, \qquad n \ge 1.$$

Given metrics $\rho,\rho':[n]\times[n]\to[0,\infty),$ define

$$d_{coarse}(\rho,\rho') := \log \max_{j \neq k \in [n]} \frac{\rho'(j,k)}{\rho(j,k)} - \log \min_{j \neq k \in [n]} \frac{\rho'(j,k)}{\rho(j,k)}.$$

Remark 1: $\exp \circ d_{coarse}$ is called the *distortion* between ρ, ρ' ; widely used in metric geometry and computer science. [Bourgain, Mataousek, ...]

Distortion

The same construction applies to metrics on the finite set

$$[n] := \{1, \dots, n\}, \qquad n \ge 1.$$

Given metrics $\rho,\rho':[n]\times[n]\to[0,\infty),$ define

$$d_{coarse}(\rho,\rho') := \log \max_{j \neq k \in [n]} \frac{\rho'(j,k)}{\rho(j,k)} - \log \min_{j \neq k \in [n]} \frac{\rho'(j,k)}{\rho(j,k)}.$$

Remark 1: $\exp \circ d_{coarse}$ is called the *distortion* between ρ, ρ' ; widely used in metric geometry and computer science. [Bourgain, Mataousek, ...]

Remark 2: This metric is not comparable to another well-known metric on 'metrics on [n]': the *Gromov–Hausdorff metric*.

The coarse Banach–Mazur space of metrics

Theorem (K., 2018)

Fix an integer $n \ge 2$.

- The map d_{coarse} is a pseudometric on the space of metrics on [n], with equivalence classes precisely consisting of proportional metrics.
- **2** The quotient metric space $Q_{coarse}([n])$ is a complete, path-connected, metric subspace of the Banach space $\mathbb{R}^{\binom{[n]}{2}}/\sim = C(\binom{[n]}{2}, \mathbb{R})/\sim$ with the diameter norm.

Here $\binom{[n]}{2}$ denotes the discrete set of two-element subsets of [n].

The coarse Banach–Mazur space of metrics

Theorem (K., 2018)

Fix an integer $n \ge 2$.

- The map d_{coarse} is a pseudometric on the space of metrics on [n], with equivalence classes precisely consisting of proportional metrics.
- **2** The quotient metric space $Q_{coarse}([n])$ is a complete, path-connected, metric subspace of the Banach space $\mathbb{R}^{\binom{[n]}{2}}/\sim = C(\binom{[n]}{2},\mathbb{R})/\sim$ with the diameter norm.

Here $\binom{[n]}{2}$ denotes the discrete set of two-element subsets of [n].

3 The space $Q_{coarse}([n])$ is a singleton if n = 2, and unbounded otherwise.

The coarse Banach–Mazur space of metrics

Theorem (K., 2018)

Fix an integer $n \ge 2$.

- The map d_{coarse} is a pseudometric on the space of metrics on [n], with equivalence classes precisely consisting of proportional metrics.
- **2** The quotient metric space $Q_{coarse}([n])$ is a complete, path-connected, metric subspace of the Banach space $\mathbb{R}^{\binom{[n]}{2}}/\sim = C(\binom{[n]}{2},\mathbb{R})/\sim$ with the diameter norm.

Here $\binom{[n]}{2}$ denotes the discrete set of two-element subsets of [n].

3 The space $Q_{coarse}([n])$ is a singleton if n = 2, and unbounded otherwise.

Thus the (proportionality classes of) metrics on [n] sit in a normed space.

A norm on metrics A general framework; concluding questions

Connection to Lipschitz distance

In studying norms on \mathbb{R}^k , our metric space $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ was strictly coarser than the Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$.

In studying norms on \mathbb{R}^k , our metric space $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ was strictly coarser than the Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$.

• Analogous result here: there is another well-studied metric on the space of metrics on [n]: the *Lipschitz distance*, and our metric space $Q_{coarse}([n])$ is coarser than the Lipschitz topology.

In studying norms on \mathbb{R}^k , our metric space $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ was strictly coarser than the Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$.

- Analogous result here: there is another well-studied metric on the space of metrics on [n]: the *Lipschitz distance*, and our metric space $Q_{coarse}([n])$ is coarser than the Lipschitz topology.
- Definition: The Lipschitz distance between two metrics ρ, ρ' on [n] is:

$$d_{Lip}(\rho, \rho') := \log \inf_{f} \{ \|f\| \cdot \|f^{-1}\| \},\$$

where one runs over all bi-Lipschitz homeomorphisms $f:[n] \rightarrow [n]$, and

$$\|f\| := \sup_{j \neq k} \frac{\rho'(f(j), f(k))}{\rho(j, k)}$$

In studying norms on \mathbb{R}^k , our metric space $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ was strictly coarser than the Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$.

- Analogous result here: there is another well-studied metric on the space of metrics on [n]: the *Lipschitz distance*, and our metric space $Q_{coarse}([n])$ is coarser than the Lipschitz topology.
- Definition: The Lipschitz distance between two metrics ρ, ρ' on [n] is:

$$d_{Lip}(\rho, \rho') := \log \inf_{f} \{ \|f\| \cdot \|f^{-1}\| \},\$$

where one runs over all bi-Lipschitz homeomorphisms $f:[n]\rightarrow [n],$ and

$$\|f\| := \sup_{j \neq k} \frac{\rho'(f(j), f(k))}{\rho(j, k)}$$

• It is easy to see that if $d_{coarse}(\rho, \rho') = 0$ then $||f|| \cdot ||f^{-1}|| = 1$ for f = Id. So ρ, ρ' also have Lipschitz distance zero.

In studying norms on \mathbb{R}^k , our metric space $\mathcal{Q}_{coarse}(\mathbb{R}^k)$ was strictly coarser than the Banach–Mazur compactum $\mathcal{Q}(\mathbb{R}^k)$.

- Analogous result here: there is another well-studied metric on the space of metrics on [n]: the *Lipschitz distance*, and our metric space $Q_{coarse}([n])$ is coarser than the Lipschitz topology.
- Definition: The Lipschitz distance between two metrics ρ, ρ' on [n] is:

$$d_{Lip}(\rho, \rho') := \log \inf_{f} \{ \|f\| \cdot \|f^{-1}\| \},\$$

where one runs over all bi-Lipschitz homeomorphisms $f:[n] \rightarrow [n]$, and

$$\|f\| := \sup_{j \neq k} \frac{\rho'(f(j), f(k))}{\rho(j, k)}$$

• It is easy to see that if $d_{coarse}(\rho, \rho') = 0$ then $||f|| \cdot ||f^{-1}|| = 1$ for f = Id. So ρ, ρ' also have Lipschitz distance zero.

These constructions and facts are completely parallel to the story for norms on \mathbb{R}^k . How to understand these parallels (common framework)? Apoorva Khare, IISc Bangalore

More general frameworks

The above settings can be generalized. For example:

Theorem (K., 2018)

Let \mathbb{B} be a Banach space over \mathbb{R} , and let $X \subset \mathbb{B} \setminus \{0\}$ be such that every ray $\mathbb{R}^+ v$, $0 \neq v \in \mathbb{B}$ intersects X.

Let \mathcal{N}_X consist of all norms N on \mathbb{B} such that $N|_X$ is bounded away from $0, \infty$. Then the proportionality classes in \mathcal{N}_X form a complete, path-connected metric subspace of the Banach space $C(X, \mathbb{R})/\sim$ with the diameter norm.

More general frameworks

The above settings can be generalized. For example:

Theorem (K., 2018)

Let \mathbb{B} be a Banach space over \mathbb{R} , and let $X \subset \mathbb{B} \setminus \{0\}$ be such that every ray $\mathbb{R}^+ v$, $0 \neq v \in \mathbb{B}$ intersects X.

Let \mathcal{N}_X consist of all norms N on \mathbb{B} such that $N|_X$ is bounded away from $0, \infty$. Then the proportionality classes in \mathcal{N}_X form a complete, path-connected metric subspace of the Banach space $C(X, \mathbb{R})/\sim$ with the diameter norm.

Theorem

For any set X of size at least 3, the equivalence classes (again by scaling) of metrics ρ on X bounded away from $0, \infty$ outside the diagonal – i.e., such that

$$0 < \inf_{x \neq x' \in X} \rho(x, x') \leqslant \sup_{x \neq x' \in X} \rho(x, x') < \infty$$

form a complete, path-connected unbounded metric subspace of the Banach space $C(\binom{X}{2}, \mathbb{R})/\sim$. Here $\binom{X}{2}$ comprises the pairs of elements in X.

What we are working with in **all** of the above examples is:

• A set X – e.g. a k-dimensional \mathbb{R} -vector space; or a set of size n.

What we are working with in **all** of the above examples is:

- A set X e.g. a k-dimensional \mathbb{R} -vector space; or a set of size n.
- This set X is further equipped with a class C of metrics that have additional structure (e.g. \mathbb{R} -scaling and translation-invariance; no compatibility) and this class of metrics is moreover *bi-Lipschitz* with respect to one another.

What we are working with in **all** of the above examples is:

- A set X e.g. a k-dimensional \mathbb{R} -vector space; or a set of size n.
- This set X is further equipped with a class C of metrics that have additional structure (e.g. \mathbb{R} -scaling and translation-invariance; no compatibility) and this class of metrics is moreover *bi-Lipschitz* with respect to one another.
- The key extra ingredient is a symmetry group G of the 'structured set' X (G = invertible linear maps; permutations). Now we define the G-distance between two metrics $\rho, \rho' \in C$ to be:

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \},\$$

where one defines:

$$||g|| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

What we are working with in **all** of the above examples is:

- A set X e.g. a k-dimensional \mathbb{R} -vector space; or a set of size n.
- This set X is further equipped with a class C of metrics that have additional structure (e.g. \mathbb{R} -scaling and translation-invariance; no compatibility) and this class of metrics is moreover *bi-Lipschitz* with respect to one another.
- The key extra ingredient is a symmetry group G of the 'structured set' X (G = invertible linear maps; permutations). Now we define the G-distance between two metrics $\rho, \rho' \in C$ to be:

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \},\$$

where one defines:

$$||g|| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

• This is a pseudo-metric, and quotienting gives a metric space that we call $\mathcal{Q}_G(X)$.

Apoorva Khare, IISc Bangalore

What we are working with in **all** of the above examples is:

- A set X e.g. a k-dimensional \mathbb{R} -vector space; or a set of size n.
- This set X is further equipped with a class C of metrics that have additional structure (e.g. \mathbb{R} -scaling and translation-invariance; no compatibility) and this class of metrics is moreover *bi-Lipschitz* with respect to one another.
- The key extra ingredient is a symmetry group G of the 'structured set' X (G = invertible linear maps; permutations). Now we define the G-distance between two metrics $\rho, \rho' \in C$ to be:

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \},\$$

where one defines:

$$||g|| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

• This is a pseudo-metric, and quotienting gives a metric space that we call $Q_G(X)$. Note: If $G = \{1\}$ then we get *distortion metrics*.

Apoorva Khare, IISc Bangalore

Given a 'symmetry group' G of X,

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \}, \quad \text{where } \|g\| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

Examples:

If $X = \mathbb{R}^k$ and $G = GL_k(\mathbb{R})$, then we recover the Banach–Mazur compactum:

 $\mathcal{Q}_G(\mathbb{R}^k) = \mathcal{Q}(\mathbb{R}^k), \qquad d_G = d_{BM}.$

Given a 'symmetry group' G of X,

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \}, \quad \text{where } \|g\| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

Examples:

If $X = \mathbb{R}^k$ and $G = GL_k(\mathbb{R})$, then we recover the Banach–Mazur compactum:

$$\mathcal{Q}_G(\mathbb{R}^k) = \mathcal{Q}(\mathbb{R}^k), \qquad d_G = d_{BM}.$$

If X = R^k and G = {Id_k} instead, then we recover our coarse Banach–Mazur space with its diameter norm:

$$\mathcal{Q}_{\mathrm{Id}}(\mathbb{R}^k) = \mathcal{Q}_{coarse}(\mathbb{R}^k), \qquad d_G = d_{coarse}.$$

Given a 'symmetry group' G of X,

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \}, \quad \text{where } \|g\| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

Examples:

If $X = \mathbb{R}^k$ and $G = GL_k(\mathbb{R})$, then we recover the Banach–Mazur compactum:

$$\mathcal{Q}_G(\mathbb{R}^k) = \mathcal{Q}(\mathbb{R}^k), \qquad d_G = d_{BM}.$$

If X = R^k and G = {Id_k} instead, then we recover our coarse Banach–Mazur space with its diameter norm:

$$\mathcal{Q}_{\mathrm{Id}}(\mathbb{R}^k) = \mathcal{Q}_{coarse}(\mathbb{R}^k), \qquad d_G = d_{coarse}.$$

If X = [n] and G = S_n = Aut(X), we recover the Lipschitz distance Q([n]).

If X = [n] and $G = \{1\}$, we recover our coarse version $\mathcal{Q}_{coarse}([n])$.

Given a 'symmetry group' G of X,

$$d_G(\rho, \rho') := \log \inf_{g \in G} \{ \|g\| \cdot \|g^{-1}\| \}, \quad \text{where } \|g\| := \sup_{x \neq x'} \frac{\rho'(g(x), g(x'))}{\rho(x, x')}.$$

Examples:

If $X = \mathbb{R}^k$ and $G = GL_k(\mathbb{R})$, then we recover the Banach–Mazur compactum:

$$\mathcal{Q}_G(\mathbb{R}^k) = \mathcal{Q}(\mathbb{R}^k), \qquad d_G = d_{BM}.$$

If X = R^k and G = {Id_k} instead, then we recover our coarse Banach–Mazur space with its diameter norm:

$$\mathcal{Q}_{\mathrm{Id}}(\mathbb{R}^k) = \mathcal{Q}_{coarse}(\mathbb{R}^k), \qquad d_G = d_{coarse}.$$

If X = [n] and G = S_n = Aut(X), we recover the Lipschitz distance Q([n]).

If X = [n] and $G = \{1\}$, we recover our coarse version $\mathcal{Q}_{coarse}([n])$.

In both of these settings, Q is clearly a quotient of Q_{coarse} .

Apoorva Khare, IISc Bangalore

Concluding questions; References

- Find 'more familiar' (geometric) models for the spaces Q_{coarse}(ℝ^k), Q_{coarse}([n]).
- What are the automorphism groups of these spaces? E.g. Q_{coarse}(ℝ^k) is equipped with PGL_k(ℝ) of symmetries. Also with an involution arising from dual norms (observed by T. Tao).

Concluding questions; References

- Find 'more familiar' (geometric) models for the spaces Q_{coarse}(ℝ^k), Q_{coarse}([n]).
- What are the automorphism groups of these spaces? E.g. Q_{coarse}(ℝ^k) is equipped with PGL_k(ℝ) of symmetries. Also with an involution arising from dual norms (observed by T. Tao).
- 3 We have shown that $Q_{coarse}([n])$ embeds into $Q_{coarse}([n+1])$. In parallel, how are $Q_{coarse}(\mathbb{R}^k)$ and $Q_{coarse}(\mathbb{R}^{k+1})$ related?
- What are the smallest Banach spaces inside which these objects might be embedded? (Classical results of Menger, Fréchet, Schoenberg,...)

Concluding questions; References

- Find 'more familiar' (geometric) models for the spaces Q_{coarse}(ℝ^k), Q_{coarse}([n]).
- What are the automorphism groups of these spaces? E.g. Q_{coarse}(ℝ^k) is equipped with PGL_k(ℝ) of symmetries. Also with an involution arising from dual norms (observed by T. Tao).
- What are the smallest Banach spaces inside which these objects might be embedded? (Classical results of Menger, Fréchet, Schoenberg,...)
- The non-compact normed space of norms on a finite-dimensional Banach space Preprint (under revision) arXiv:1810.06188, 2016.
 - Thanks are owed to:
 - Infosys Foundation, Bangalore ${\scriptstyle \bullet}$
 - Ramanujan Fellowship, SERB, India •