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Linear dynamics studies the behaviour of orbits of (continuous, linear)
operators

T : X → X

on separable Banach or Fréchet spaces X .

The orbit of a vector x ∈ X is given by

orb(x ,T ) = {x ,Tx ,T 2x , . . .}.

Good, short introduction: Aneesh M (talk)
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Three basic notions
An operator T is hypercyclic if there is a vector x ∈ X such that

orb(x ,T ) is dense in X .

x

U1

U2

T
n1x

T
n2x

Each such vector x is called a hypercyclic vector for T .
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Chaos
An operator T is called chaotic if
• T is hypercyclic;
• the set of periodic points for T is dense in X .

As a consequence, every non-empty open set U contains a
hypercyclic vector and a periodic point:

x

dense orbit

periodic orbit

p

U

This implies that the dynamical system has sensitive dependence on
initial conditions.
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Frequent hypercyclicity

Bayart and Grivaux (2004) have introduced an exciting new notion.

In other words, x is frequently hypercyclic for T if, for any open set
U 6= ∅,

∃nk with nk = O(k) such that T nk x ∈ U, k ≥ 1.

Karl Grosse-Erdmann (UMons) A glimpse at linear dynamics OTOA 2018 7 / 25



Frequent hypercyclicity
Bayart and Grivaux (2004) have introduced an exciting new notion.

In other words, x is frequently hypercyclic for T if, for any open set
U 6= ∅,

∃nk with nk = O(k) such that T nk x ∈ U, k ≥ 1.

Karl Grosse-Erdmann (UMons) A glimpse at linear dynamics OTOA 2018 7 / 25



Frequent hypercyclicity
Bayart and Grivaux (2004) have introduced an exciting new notion.

An operator T is called hypercyclic if there is some x ∈ X
(called hypercyclic vector) such that

∀U 6= ∅ open, {n ≥ 0 ; T nx ∈ U} 6= ∅,

In other words, x is frequently hypercyclic for T if, for any open set
U 6= ∅,

∃nk with nk = O(k) such that T nk x ∈ U, k ≥ 1.

Karl Grosse-Erdmann (UMons) A glimpse at linear dynamics OTOA 2018 7 / 25



Frequent hypercyclicity
Bayart and Grivaux (2004) have introduced an exciting new notion.

An operator T is called frequently hypercyclic if there is some x ∈ X
(called frequently hypercyclic vector) such that

∀U 6= ∅ open, dens{n ≥ 0 ; T nx ∈ U} > 0,

where dens is the lower density of a set.

In other words, x is frequently hypercyclic for T if, for any open set
U 6= ∅,

∃nk with nk = O(k) such that T nk x ∈ U, k ≥ 1.

Karl Grosse-Erdmann (UMons) A glimpse at linear dynamics OTOA 2018 7 / 25



Frequent hypercyclicity
Bayart and Grivaux (2004) have introduced an exciting new notion.

An operator T is called frequently hypercyclic if there is some x ∈ X
(called frequently hypercyclic vector) such that

∀U 6= ∅ open, dens{n ≥ 0 ; T nx ∈ U} > 0,

where dens is the lower density of a set.

In other words, x is frequently hypercyclic for T if, for any open set
U 6= ∅,

∃nk with nk = O(k) such that T nk x ∈ U, k ≥ 1.

Karl Grosse-Erdmann (UMons) A glimpse at linear dynamics OTOA 2018 7 / 25



Examples
A large and flexible class of operators that contains many hypercyclic
operators are weighted shifts (“shifting is good for chaos”).

Let X = `p, 1 ≤ p <∞, or c0. Let w = (wn)n be a bounded sequence
with wn 6= 0, n ≥ 1. Then a weighted backward shift is given by

Bw (xn)n = (wn+1xn+1)n.

In particular, the multiple of the backward shift B

T = λB : (xn)n → λ(xn+1)n, |λ| > 1

is
hypercyclic (Rolewicz 1969),
chaotic (Godefroy-Shapiro 1991), and
frequently hypercyclic (Bayart-Grivaux 2006).
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The characterization of hypercyclic and chaotic weighted shifts is
well-known (Salas 1995, GE 2000):

Bw hypercyclic ⇐⇒ sup
n

n∏
k=1

|wk | =∞.

Bw chaotic ⇐⇒

{∑
n

1∏n
k=1 |wk |p

<∞, if X = `p,

limn
∏n

k=1 |wk | =∞, if X = c0.

The characterization of the frequently hypercyclic weighted backward
shifts had been an open problem until recently (−→ later).
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Another well-known hypercyclic operator (MacLane 1952) is the
differentiation operator

D : H(C)→ H(C), f → f ′.

Here, H(C) is the Fréchet space of entire functions on C, endowed
with the compact-open topology.

The operator is even chaotic (Godefroy-Shapiro 1991) and frequently
hypercyclic (Bayart-Grivaux 2006).

Note that D is also a weighted shift:

D
(∑

n

anzn
)
=
∑

n

(n + 1)an+1zn.
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Chaos vs. frequent hypercyclicity
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How can the orbit of a vector x be frequently hypercyclic?
Recall that we need that, for any open set U 6= ∅,

∃nk with nk = O(k) such that T nk x ∈ U, k ≥ 1.

But the visits to U cannot occur regularly, because the orbit must also
visit any other non-empty open set!

Only possibility: while at U, visit U often before moving away:

x

U

This looks as if in U one has a periodic point.
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So, does frequent hypercyclicity imply chaos?

No!

Theorem (Bayart-Grivaux 2007)
There is a weighted backward shift Bw on c0 that is frequently
hypercyclic but that does not have any non-trivial periodic points. It is
therefore not chaotic.

The construction is highly non-trivial.

Note:

Bayart-Ruzsa (2015) have characterized the weighted shifts Bw that
are frequently hypercyclic on c0. The conditions are rather technical.

Based on these conditions, Bonilla-GE (2018) have given a simpler
construction of a frequently hypercyclic shift on c0 that has no
non-trivial periodic points.
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Can a counter-example also be constructed using weighted shifts on
`p-spaces?

How to characterize frequently hypercyclic weighted shifts on `p?

Theorem (Bayart-Ruzsa 2015)
Let Bw be a weighted backward shift on `p, 1 ≤ p <∞. Then the
following are equivalent:

(i) Bw is frequently hypercyclic;
(ii) Bw is chaotic;

(iii)
∑

n
1∏n

k=1 |wk |p
<∞.

This is in stark contrast to the case of c0. So what do the `p have that
c0 does not?
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For their proof, Bayart-Ruzsa refine a result of Erdős-Sarközy which
says that if dens(A) > 0 then A− A has bounded gaps.

A careful study of the proof of Bayart-Ruzsa leads to the following:

Theorem (Charpentier, Menet, GE, 2018...)
Let Bw be a weighted backward shift on a Banach sequence space in
which the unit sequences (en)n form an unconditional basis. Suppose
that this basis is boundedly complete. Then the following are
equivalent:

(i) Bw is frequently hypercyclic;
(ii) Bw is chaotic;

(iii)
∑

n
1∏n

k=1 wk
en converges in X.

Bounded completeness means that the boundedness of (
∑N

n=1 xnen)N
in X implies the convergence of

∑∞
n=1 xnen.
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This result does not extend to Fréchet sequence spaces!

As we have seen,
D : H(C)→ H(C), f → f ′

is a weighted shift on some sequence space. And in this space, (en)n
is a boundedly complete unconditional basis.
Nonetheless, we have the following:

Theorem (Charpentier, Menet, GE, 2018...)
There exists a frequently hypercyclic weighted shift on H(C) that is not
chaotic.

Strangely enough, the behaviour is again different for
D = {z ∈ C : |z| < 1}.

Theorem (Charpentier, Menet, GE, 2018...)
On H(D), weighted shifts are frequently hypercylic if and only if they
are chaotic.
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Question
Under which (general) properties on the space or the operator does
frequent hypercyclicity imply chaos?
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On the other hand, does chaos imply frequent hypercyclicity?

No!

Theorem (Menet 2017)
Let X = `p, 1 ≤ p <∞, or c0. Then there is an operator T on X that is
chaotic but not frequently hypercyclic.

His operators are infinite matrices of the following form:

T =



0 ∗
∗ 0

∗ 0 ∗ ∗
. . . 0

∗ 0 ∗
0 0

∗ 0
. . . 0

∗ 0
0 0

∗ 0
. . .


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Further recent advances
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The problem of inverses

By a classical theorem of Birkhoff (1920), an operator T is hypercyclic
if and only if

∀U,V 6= ∅ open, ∃n ≥ 0 : T n(U) ∩ V 6= ∅.

Now, this condition is invariant under passing to the inverse T−1.

Thus, if T is invertible, then

T hypercyclic ⇐⇒ T−1 hypercyclic.

It had been a question of Bayart-Grivaux (2006) if this is also so for
frequent hypercyclicity.

Breaking news (Menet, 7 and 14 December 2018)
No!
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Hypercyclic algebras

... have been studied intensively in the last three years by
Bès, Conejero, Papathanasiou, Bayart, Falcó, GE, ...

Motivation:

Let T be a hypercyclic operator. We denote by

HC(T )

the set of all hypercyclic vectors for T .
Then HC(T ) is dense, and even residual (Birkhoff 1920).
As a consequence we have that

X = HC(T ) + HC(T ).

Hence HC(T ) ∪ {0} can only be a linear subspace if X = HC(T ) ∪ {0}
(this can happen, but is rare...)
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So, can HC(T ) ∪ {0} contain a large linear subspace?

YES - it’s always the case!

Theorem (Herrero-Bourdon 1991/1993)
Let T be a hypercyclic operator.
Then HC(T ) ∪ {0} contains a dense linear subspace.
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So, does HC(T ) ∪ {0} contain a closed infinite-dimensional linear
subspace?

• NO for λB, |λ| > 1 on `p, 1 ≤ p <∞, or c0 (Montes 1996)

• YES for D on H(C) (Shkarin 2010)

This question is by now quite well understood for general operators.
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Recent work has concentrated on the question if HC(T ) ∪ {0} can
contain a subalgebra – provided that X is a Banach (or Fréchet)
algebra.

• YES for λB, |λ| > 1 on `1 with the convolution product
(Bayart-Matheron 2009)

• YES for D on H(C) with the pointwise product.
(Bayart-Matheron 2009, Shkarin 2010)

Theorem (Falcó-GE 2018...)

(a) Let Bw be a mixing weighted shift on `1 with the convolution
product. Then HC(Bw ) ∪ {0} contains a subalgebra that is not
finitely generated.

(b) Let D be the differentiation operator on H(C). Then HC(D) ∪ {0}
contains a subalgebra that is not finitely generated.

The latter answers a question of Aron (2009) - also solved by
Bès-Papathanasiou (2018...)
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