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e An element x € Sx is said to be a smooth point if there is a
unique hyperplane H supporting Bx at x.
e Equivalently an element x € Sx is said to be a smooth point if
there exists a unique linear functional f € Sx- such that
F(x) = ||| = 1.
e The geometric interpretation of a smooth point in a two
dimensional real normed linear space goes like this

____=Non-smooth pt

“ssmooth pte”
e

Unit sphere in usual
norminRxR

Unit sphere in max
norminRxR



Relation between Birkhoff-James orthogonality and
Smoothness in a hormed linear space

¢ In general Birkhoff-James orthogonality is not right additive,
i.e., X Lgy, xLgz may notimply that x L g(y + 2).



Relation between Birkhoff-James orthogonality and
Smoothness in a hormed linear space

¢ In general Birkhoff-James orthogonality is not right additive,
i.e., xLgy,x1gz may notimply that x Lg(y + z). Look at (1, 1)
in Eoo(Rz)a (1 ) 1 )J—B(1 ’ 0) and (1 ’ 1)J—B(07 1) but (1 ’ 1) -/J/—B (1 ) 1)



Relation between Birkhoff-James orthogonality and
Smoothness in a hormed linear space

¢ In general Birkhoff-James orthogonality is not right additive,
i.e., xLgy,x1gz may notimply that x Lg(y + z). Look at (1, 1)
in £oo(R?), (1,1)Lp(1,0) and (1,1)L(0,1) but (1,1) Lg (1,1).
e x is a smooth point iff x L gy and x L gz implies x Lg(y + z)
i.e., iff Birkhoff-James orthogonality is right additive at x.



Relation between Birkhoff-James orthogonality and
Smoothness in a hormed linear space

¢ In general Birkhoff-James orthogonality is not right additive,
i.e., xLgy,x1gz may notimply that x Lg(y + z). Look at (1, 1)
in £oo(R?), (1,1)Lp(1,0) and (1,1)L(0,1) but (1,1) Lg (1,1).
e x is a smooth point iff x L gy and x L gz implies x Lg(y + z)
i.e., iff Birkhoff-James orthogonality is right additive at x.

The detailed proof is here. right-additive



Relation between Birkhoff-James orthogonality and
Smoothness in a hormed linear space

¢ In general Birkhoff-James orthogonality is not right additive,
i.e., xLgy,x1gz may notimply that x Lg(y + z). Look at (1, 1)
in £oo(R?), (1,1)Lp(1,0) and (1,1)L(0,1) but (1,1) Lg (1,1).
e x is a smooth point iff x L gy and x L gz implies x Lg(y + z)
i.e., iff Birkhoff-James orthogonality is right additive at x.

The detailed proof is here. right-additive

e So T is a smooth point iff T_LgA; and T LgA, implies that
TJ_B(A1 + A2)
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Sufficiency: Let T 1g Ajand T Lg As. Then Txy Lg Aixo and
Txg Lg Asxg. Thus Txy Lp (A1 + Ag)Xo andso T 1p (A1 + Ag).
Necessity: Let T be smooth and M = {£xg}. If possible let
Txg is not smooth. Then there exists y, z such that

Txo Lgy, Txo Lg zbut Txg Lg (y + 2). Let xo Lg H. Define
Ai(axg + h) = ay and Ax(axg + h) = az. Then T Lg Ay and

T LgAxbut T g (A1 + Az), a contradiction.
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For Hilbert space we have a complete characterization of
orthogonality as well as smoothness.

Theorem. Let H be a Hilbert space and T € B(H). Then the
following are equivalent:

(ifForany A € B(H), T LgA < TxyLgAxp for some xg € Mr
(i) M7 = Sp,, where Hy is a finite dimensional subspace of H
and || 7|, < [ 7]

Theorem. Let H be a Hilbert space. Then T € B(H) is a
smooth point iff My = {£xp} and || T||X0l < || TJ.
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However, assuming Mr = {+Xxp} we have the following results
for orthogonality and smoothness.

Theorem. Let X, Y be normed linear spaces. Let T € B(X, Y)
and Mr = {£xp}. Further T satisfies the property : Given any
5 > 0,if {H, : « € A} is the collection of all hyperspaces such
that d(xg, H) > ¢ then sup{|| Tx|| : x € (UoHa) N Sx} < || T|-
Then forany A € B(X,Y), TLgAif and only if TxgLgAXxp.

In addition, if Txg is smooth, then T is also smooth.
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This again gives a sulfficient condition for the smoothness of an
arbitrary bounded linear operator. For the necessary part we
could obtain the following which is a little different from the
sufficient part:

Theorem. Let X, Y be normed linear spaces. Let T € B(X, Y)
and Mt # (). Suppose that T is smooth. Then

(i) Mt = {£xp}, for some xp € Sx.

(i) Txo is a smooth point.

(iii) sup{|| Tx|| : x € Ho, N Sx} < || T|| for all « € A, where
{Ha:.aen} is the collection of all hyperspaces such that

d(xo, Ha) > 0.
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The following theorem explores the role of norm attainment set
of an operator on characterizing extreme contraction on a
Banach space.



Extreme points in the unit ball of a normed space

e An element x € Sx is said to be an extreme point of By if for
any y,ze Bgandt e (0,1), x = (1 — t)y + tz implies that
xX=y=2z

e The set of all extreme points of the unit ball of a normed linear
space X is denoted by Ex.

e An operator T € B(X, Y) is said to be an extreme contraction
on B(X,Y) if T is an extreme point of the unit ball of B(X, Y),
ie,forany Ty, T, e B(X,Y)and t € (0,1), T=(1—-1t)T1 + tT»
impliesthat T = Ty = T».

The following theorem explores the role of norm attainment set
of an operator on characterizing extreme contraction on a
Banach space.

Theorem. Let X be a finite-dimensional polygonal Banach
space and let Y be a strictly convex normed linear space. Then
T € B(X; Y) with || T|| = 1 is an extreme contraction if and only
if span(Mr N Ex) = X.
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