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Aim of the talk

• To talk of Birkhoff-James orthogonality and smoothness in a
normed linear space.

• To explore the orthogonality relation between elements in
Banach space X and the space of bounded linear operators
B(X).
• To study smoothness of the space of bounded linear operator
through Birkhoff-James orthogonality.
• To study extreme contraction on the space of bounded linear
operators through norm attainment set of an operator.
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Orthogonality in a normed linear space
I Let (X, ‖.‖) be a real normed linear space. Let

BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} be
the unit ball and the unit sphere of the normed linear space
X respectively.

I For any two elements x , y ∈ X, x is said to be orthogonal
to y in the sense of Birkhoff-James, written as x ⊥B y , iff
‖x‖ ≤ ‖x + λy‖ ∀λ ∈ R.

I In `2(R2), (1,0)⊥B(0,1) but (1,1) 6⊥B (0,1), whereas in
`∞(R2), (1,1) ⊥B (1,0) and (1,1) ⊥B (0,1).

I Similarly for T ,A ∈ B(X,Y),( the Banach space of all
bounded linear operators defined between X and Y ) T is
said to be orthogonal to A, in the sense of Birkhoff-James
iff

‖T‖ ≤ ‖T + λA‖ ∀λ ∈ R.

I For T ∈ B(X,Y) the set of all points at which T attains
norm is denoted by MT , i.e., MT = {x ∈ SX : ‖Tx‖ = ‖T‖}.
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Smoothness in a normed linear space
• An element x ∈ SX is said to be a smooth point if there is a
unique hyperplane H supporting BX at x .

• Equivalently an element x ∈ SX is said to be a smooth point if
there exists a unique linear functional f ∈ SX∗ such that
f (x) = ‖x‖ = 1.
• The geometric interpretation of a smooth point in a two
dimensional real normed linear space goes like this
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Relation between Birkhoff-James orthogonality and
Smoothness in a normed linear space

• In general Birkhoff-James orthogonality is not right additive,
i.e., x⊥By , x⊥Bz may not imply that x⊥B(y + z).

Look at (1,1)
in `∞(R2), (1,1)⊥B(1,0) and (1,1)⊥B(0,1) but (1,1) 6⊥B (1,1).
• x is a smooth point iff x⊥By and x⊥Bz implies x⊥B(y + z)
i.e., iff Birkhoff-James orthogonality is right additive at x .
The detailed proof is here. right-additive
• So T is a smooth point iff T⊥BA1 and T⊥BA2 implies that
T⊥B(A1 + A2).
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Smoothness in B(X,Y)
I To check whether T ∈ B(X,Y) is a smooth point or not we

verify T ⊥B A1 and T ⊥B A2 implies T ⊥B (A1 + A2) or not.

I For this we first need to find some way out to construct an
operator A such that T ⊥B A, where T is given.

I We explore the connection between orthogonality in X,Y
and orthogonality in B(X,Y).

I We begin with the case when both X and Y are finite
dimensional.
Theorem. Let T ∈ B(X,Y) and MT = D ∪ (−D), where D
is a non-empty connected subset of SX. Then for any
A ∈ B(X,Y), T ⊥B A iff there exists x ∈ MT such that
Tx ⊥B Ax .

I Using this result we can study the smoothness of
T ∈ B(X,Y).
Theorem. T ∈ B(X,Y) is smooth iff MT = {±x0} and Tx0
is a smooth point.

I Remark. In case X and Y are Hilbert spaces, T is smooth
iff MT = {±x0}.
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Smoothness in B(X,Y)
Next we consider the case T ∈ K (X,Y).

Theorem. Let X be a reflexive Banach space and Y be any
normed space. Let T ∈ K (X,Y) and MT = D ∪ (−D), where D
is a non-empty compact connected subset of SX. Then for any
A ∈ B(X,Y), T ⊥B A iff there exists x ∈ MT such that
Tx ⊥B Ax .
Using this result we can show the following.
Theorem. Let X be a reflexive Banach space and Y be any
normed space. Then T ∈ K (X,Y) is smooth iff MT = {±x0}
and Tx0 is a smooth point.
We highlight some part of the proof.
Sufficiency: Let T ⊥B A1 and T ⊥B A2. Then Tx0 ⊥B A1x0 and
Tx0 ⊥B A2x0. Thus Tx0 ⊥B (A1 + A2)x0 and so T ⊥B (A1 + A2).
Necessity: Let T be smooth and MT = {±x0}. If possible let
Tx0 is not smooth. Then there exists y , z such that
Tx0 ⊥B y ,Tx0 ⊥B z but Tx0 6⊥B (y + z). Let x0 ⊥B H. Define
A1(αx0 + h) = αy and A2(αx0 + h) = αz. Then T ⊥B A1 and
T ⊥B A2 but T 6⊥B (A1 + A2), a contradiction.
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Smoothness in B(X,Y)

For Hilbert space we have a complete characterization of
orthogonality as well as smoothness.

Theorem. Let H be a Hilbert space and T ∈ B(H). Then the
following are equivalent:
(i)For any A ∈ B(H), T⊥BA⇔ Tx0⊥BAx0 for some x0 ∈ MT
(ii) MT = SH0 , where H0 is a finite dimensional subspace of H
and ‖T‖H0

⊥ < ‖T‖.
Theorem. Let H be a Hilbert space. Then T ∈ B(H) is a
smooth point iff MT = {±x0} and ‖T‖x⊥0 < ‖T‖.
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Smoothness in B(X,Y)

Analogous characterization for orthogonality in B(X,Y) for
infinite dimensional normed spaces X and Y is still open. Here
we make the following conjecture.

Conjecture. Let T ∈ B(X,Y) and MT 6= ∅. Then the following
are equivalent:
(i)For any A ∈ B(X,Y), T⊥BA⇔ Tx0⊥BAx0 for some x0 ∈ MT
(ii) MT = D ∪ (−D), where D is a non-empty connected subset
of SX, span(D) is finite dimensional subspace of X and
‖T‖span(D)⊥ < ‖T‖.
However, assuming MT = {±x0} we have the following results
for orthogonality and smoothness.
Theorem. Let X,Y be normed linear spaces. Let T ∈ B(X,Y)
and MT = {±x0}. Further T satisfies the property : Given any
δ > 0, if {Hα : α ∈ Λ} is the collection of all hyperspaces such
that d(x0,Hα) > δ then sup{‖Tx‖ : x ∈ (∪αHα) ∩ SX} < ‖T‖.
Then for any A ∈ B(X,Y), T⊥BA if and only if Tx0⊥BAx0.
In addition, if Tx0 is smooth, then T is also smooth.
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Smoothness in B(X,Y)

This again gives a sufficient condition for the smoothness of an
arbitrary bounded linear operator. For the necessary part we
could obtain the following which is a little different from the
sufficient part:

Theorem. Let X,Y be normed linear spaces. Let T ∈ B(X,Y)
and MT 6= ∅. Suppose that T is smooth. Then
(i) MT = {±x0}, for some x0 ∈ SX.
(ii) Tx0 is a smooth point.
(iii) sup{‖Tx‖ : x ∈ Hα ∩ SX} < ‖T‖ for all α ∈ Λ, where
{Hα:α∈Λ} is the collection of all hyperspaces such that
d(x0,Hα) > 0.



Smoothness in B(X,Y)

This again gives a sufficient condition for the smoothness of an
arbitrary bounded linear operator. For the necessary part we
could obtain the following which is a little different from the
sufficient part:
Theorem. Let X,Y be normed linear spaces. Let T ∈ B(X,Y)
and MT 6= ∅. Suppose that T is smooth. Then

(i) MT = {±x0}, for some x0 ∈ SX.
(ii) Tx0 is a smooth point.
(iii) sup{‖Tx‖ : x ∈ Hα ∩ SX} < ‖T‖ for all α ∈ Λ, where
{Hα:α∈Λ} is the collection of all hyperspaces such that
d(x0,Hα) > 0.



Smoothness in B(X,Y)

This again gives a sufficient condition for the smoothness of an
arbitrary bounded linear operator. For the necessary part we
could obtain the following which is a little different from the
sufficient part:
Theorem. Let X,Y be normed linear spaces. Let T ∈ B(X,Y)
and MT 6= ∅. Suppose that T is smooth. Then
(i) MT = {±x0}, for some x0 ∈ SX.

(ii) Tx0 is a smooth point.
(iii) sup{‖Tx‖ : x ∈ Hα ∩ SX} < ‖T‖ for all α ∈ Λ, where
{Hα:α∈Λ} is the collection of all hyperspaces such that
d(x0,Hα) > 0.



Smoothness in B(X,Y)

This again gives a sufficient condition for the smoothness of an
arbitrary bounded linear operator. For the necessary part we
could obtain the following which is a little different from the
sufficient part:
Theorem. Let X,Y be normed linear spaces. Let T ∈ B(X,Y)
and MT 6= ∅. Suppose that T is smooth. Then
(i) MT = {±x0}, for some x0 ∈ SX.
(ii) Tx0 is a smooth point.

(iii) sup{‖Tx‖ : x ∈ Hα ∩ SX} < ‖T‖ for all α ∈ Λ, where
{Hα:α∈Λ} is the collection of all hyperspaces such that
d(x0,Hα) > 0.



Smoothness in B(X,Y)

This again gives a sufficient condition for the smoothness of an
arbitrary bounded linear operator. For the necessary part we
could obtain the following which is a little different from the
sufficient part:
Theorem. Let X,Y be normed linear spaces. Let T ∈ B(X,Y)
and MT 6= ∅. Suppose that T is smooth. Then
(i) MT = {±x0}, for some x0 ∈ SX.
(ii) Tx0 is a smooth point.
(iii) sup{‖Tx‖ : x ∈ Hα ∩ SX} < ‖T‖ for all α ∈ Λ, where
{Hα:α∈Λ} is the collection of all hyperspaces such that
d(x0,Hα) > 0.



Extreme points in the unit ball of a normed space

• An element x ∈ SX is said to be an extreme point of BX if for
any y , z ∈ BX and t ∈ (0,1), x = (1− t)y + tz implies that
x = y = z.

• The set of all extreme points of the unit ball of a normed linear
space X is denoted by EX.
• An operator T ∈ B(X,Y) is said to be an extreme contraction
on B(X,Y) if T is an extreme point of the unit ball of B(X,Y),
i.e., for any T1,T2 ∈ B(X,Y) and t ∈ (0,1), T = (1− t)T1 + tT2
implies that T = T1 = T2.
The following theorem explores the role of norm attainment set
of an operator on characterizing extreme contraction on a
Banach space.
Theorem. Let X be a finite-dimensional polygonal Banach
space and let Y be a strictly convex normed linear space. Then
T ∈ B(X ; Y ) with ‖T‖ = 1 is an extreme contraction if and only
if span(MT ∩ EX) = X.
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