Role of Birkhoff-James orthogonality in the study of geometric properties of operator spaces

Professor Kallol Paul

Department of Mathematics, Jadavpur University Kolkata 700032, India.

* This is a joint work with Dr. D. Sain, Dr. P. Ghosh., A. Ray, and A. Mal

**This presentation is for OTOA-2018.

• To talk of Birkhoff-James orthogonality and smoothness in a normed linear space.

- To talk of Birkhoff-James orthogonality and smoothness in a normed linear space.
- To explore the orthogonality relation between elements in Banach space X and the space of bounded linear operators B(X).

- To talk of Birkhoff-James orthogonality and smoothness in a normed linear space.
- To explore the orthogonality relation between elements in Banach space X and the space of bounded linear operators B(X).
- To study smoothness of the space of bounded linear operator through Birkhoff-James orthogonality.

- To talk of Birkhoff-James orthogonality and smoothness in a normed linear space.
- To explore the orthogonality relation between elements in Banach space X and the space of bounded linear operators B(X).
- To study smoothness of the space of bounded linear operator through Birkhoff-James orthogonality.
- To study extreme contraction on the space of bounded linear operators through norm attainment set of an operator.

- To talk of Birkhoff-James orthogonality and smoothness in a normed linear space.
- To explore the orthogonality relation between elements in Banach space X and the space of bounded linear operators B(X).
- To study smoothness of the space of bounded linear operator through Birkhoff-James orthogonality.
- To study extreme contraction on the space of bounded linear operators through norm attainment set of an operator.

We begin with two figures:

We begin with two figures:

Here $x \not\perp y$.

We begin with two figures:

Here $x \perp y$.

Let (X, ||.||) be a real normed linear space. Let B_X = {x ∈ X : ||x|| ≤ 1} and S_X = {x ∈ X : ||x|| = 1} be the unit ball and the unit sphere of the normed linear space X respectively.

- Let (X, ||.||) be a real normed linear space. Let B_X = {x ∈ X : ||x|| ≤ 1} and S_X = {x ∈ X : ||x|| = 1} be the unit ball and the unit sphere of the normed linear space X respectively.
- For any two elements x, y ∈ X, x is said to be orthogonal to y in the sense of Birkhoff-James, written as x ⊥_B y, iff ||x|| ≤ ||x + λy|| ∀λ ∈ ℝ.

- Let (X, ||.||) be a real normed linear space. Let B_X = {x ∈ X : ||x|| ≤ 1} and S_X = {x ∈ X : ||x|| = 1} be the unit ball and the unit sphere of the normed linear space X respectively.
- For any two elements x, y ∈ X, x is said to be orthogonal to y in the sense of Birkhoff-James, written as x ⊥_B y, iff ||x|| ≤ ||x + λy|| ∀λ ∈ ℝ.
- ▶ In $\ell_2(\mathbb{R}^2)$, $(1,0) \perp_B (0,1)$ but $(1,1) \not\perp_B (0,1)$, whereas in $\ell_\infty(\mathbb{R}^2)$, $(1,1) \perp_B (1,0)$ and $(1,1) \perp_B (0,1)$.

- Let (X, ||.||) be a real normed linear space. Let B_X = {x ∈ X : ||x|| ≤ 1} and S_X = {x ∈ X : ||x|| = 1} be the unit ball and the unit sphere of the normed linear space X respectively.
- ► For any two elements $x, y \in \mathbb{X}$, x is said to be orthogonal to y in the sense of Birkhoff-James, written as $x \perp_B y$, iff $||x|| \le ||x + \lambda y|| \forall \lambda \in \mathbb{R}$.
- ▶ In $\ell_2(\mathbb{R}^2)$, $(1,0) \perp_B (0,1)$ but $(1,1) \not\perp_B (0,1)$, whereas in $\ell_\infty(\mathbb{R}^2)$, $(1,1) \perp_B (1,0)$ and $(1,1) \perp_B (0,1)$.
- Similarly for *T*, *A* ∈ B(X, Y),(the Banach space of all bounded linear operators defined between X and Y) *T* is said to be orthogonal to *A*, in the sense of Birkhoff-James iff

$$\|\boldsymbol{T}\| \leq \|\boldsymbol{T} + \lambda \boldsymbol{A}\| \; \forall \lambda \in \mathbb{R}.$$

- Let (X, ||.||) be a real normed linear space. Let B_X = {x ∈ X : ||x|| ≤ 1} and S_X = {x ∈ X : ||x|| = 1} be the unit ball and the unit sphere of the normed linear space X respectively.
- ► For any two elements $x, y \in \mathbb{X}$, x is said to be orthogonal to y in the sense of Birkhoff-James, written as $x \perp_B y$, iff $||x|| \le ||x + \lambda y|| \forall \lambda \in \mathbb{R}$.
- ▶ In $\ell_2(\mathbb{R}^2)$, $(1,0) \perp_B (0,1)$ but $(1,1) \not\perp_B (0,1)$, whereas in $\ell_\infty(\mathbb{R}^2)$, $(1,1) \perp_B (1,0)$ and $(1,1) \perp_B (0,1)$.
- Similarly for *T*, *A* ∈ B(X, Y),(the Banach space of all bounded linear operators defined between X and Y) *T* is said to be orthogonal to *A*, in the sense of Birkhoff-James iff

$$\|\boldsymbol{T}\| \leq \|\boldsymbol{T} + \lambda \boldsymbol{A}\| \; \forall \lambda \in \mathbb{R}.$$

► For $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ the set of all points at which T attains norm is denoted by M_T , i.e., $M_T = \{x \in S_{\mathbb{X}} : ||Tx|| = ||T||\}$.

- Let (X, ||.||) be a real normed linear space. Let B_X = {x ∈ X : ||x|| ≤ 1} and S_X = {x ∈ X : ||x|| = 1} be the unit ball and the unit sphere of the normed linear space X respectively.
- ► For any two elements $x, y \in \mathbb{X}$, x is said to be orthogonal to y in the sense of Birkhoff-James, written as $x \perp_B y$, iff $||x|| \le ||x + \lambda y|| \forall \lambda \in \mathbb{R}$.
- ▶ In $\ell_2(\mathbb{R}^2)$, $(1,0) \perp_B (0,1)$ but $(1,1) \not\perp_B (0,1)$, whereas in $\ell_\infty(\mathbb{R}^2)$, $(1,1) \perp_B (1,0)$ and $(1,1) \perp_B (0,1)$.
- Similarly for *T*, *A* ∈ B(X, Y),(the Banach space of all bounded linear operators defined between X and Y) *T* is said to be orthogonal to *A*, in the sense of Birkhoff-James iff

$$\|\boldsymbol{T}\| \leq \|\boldsymbol{T} + \lambda \boldsymbol{A}\| \; \forall \lambda \in \mathbb{R}.$$

► For $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ the set of all points at which T attains norm is denoted by M_T , i.e., $M_T = \{x \in S_{\mathbb{X}} : ||Tx|| = ||T||\}$.

Smoothness in a normed linear space

• An element $x \in S_X$ is said to be a smooth point if there is a unique hyperplane H supporting B_X at x.

Smoothness in a normed linear space

• An element $x \in S_X$ is said to be a smooth point if there is a unique hyperplane H supporting B_X at x.

• Equivalently an element $x \in S_X$ is said to be a smooth point if there exists a unique linear functional $f \in S_{X^*}$ such that f(x) = ||x|| = 1.

Smoothness in a normed linear space

• An element $x \in S_X$ is said to be a smooth point if there is a unique hyperplane H supporting B_X at x.

• Equivalently an element $x \in S_X$ is said to be a smooth point if there exists a unique linear functional $f \in S_{X^*}$ such that f(x) = ||x|| = 1.

• The geometric interpretation of a smooth point in a two dimensional real normed linear space goes like this

• In general Birkhoff-James orthogonality is not right additive, i.e., $x \perp_B y$, $x \perp_B z$ may not imply that $x \perp_B (y + z)$.

• In general Birkhoff-James orthogonality is not right additive, i.e., $x \perp_B y, x \perp_B z$ may not imply that $x \perp_B (y + z)$. Look at (1, 1) in $\ell_{\infty}(\mathbb{R}^2)$, (1, 1) \perp_B (1, 0) and (1, 1) \perp_B (0, 1) but (1, 1) $\not\perp_B$ (1, 1).

• In general Birkhoff-James orthogonality is not right additive, i.e., $x \perp_B y, x \perp_B z$ may not imply that $x \perp_B (y + z)$. Look at (1, 1) in $\ell_{\infty}(\mathbb{R}^2)$, (1, 1) \perp_B (1, 0) and (1, 1) \perp_B (0, 1) but (1, 1) $\not\perp_B$ (1, 1). • *x* is a smooth point iff $x \perp_B y$ and $x \perp_B z$ implies $x \perp_B (y + z)$ i.e., iff Birkhoff-James orthogonality is right additive at *x*.

• In general Birkhoff-James orthogonality is not right additive, i.e., $x \perp_B y, x \perp_B z$ may not imply that $x \perp_B (y + z)$. Look at (1, 1) in $\ell_{\infty}(\mathbb{R}^2)$, (1, 1) \perp_B (1, 0) and (1, 1) \perp_B (0, 1) but (1, 1) $\not\perp_B$ (1, 1). • *x* is a smooth point iff $x \perp_B y$ and $x \perp_B z$ implies $x \perp_B (y + z)$ i.e., iff Birkhoff-James orthogonality is right additive at *x*. The detailed proof is here. right-additive

• In general Birkhoff-James orthogonality is not right additive, i.e., $x \perp_B y, x \perp_B z$ may not imply that $x \perp_B (y + z)$. Look at (1, 1) in $\ell_{\infty}(\mathbb{R}^2)$, $(1, 1) \perp_B (1, 0)$ and $(1, 1) \perp_B (0, 1)$ but $(1, 1) \not\perp_B (1, 1)$. • *x* is a smooth point iff $x \perp_B y$ and $x \perp_B z$ implies $x \perp_B (y + z)$ i.e., iff Birkhoff-James orthogonality is right additive at *x*. The detailed proof is here. right-additive • So *T* is a smooth point iff $T \perp_B A_1$ and $T \perp_B A_2$ implies that

 $T\bot_B(A_1+A_2).$

To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that $T \perp_B A$, where T is given.

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that $T \perp_B A$, where T is given.
- ► We explore the connection between orthogonality in X, Y and orthogonality in B(X, Y).

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that T ⊥_B A, where T is given.
- ► We explore the connection between orthogonality in X, Y and orthogonality in B(X, Y).
- ► We begin with the case when both X and Y are finite dimensional.

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that T ⊥_B A, where T is given.
- ► We explore the connection between orthogonality in X, Y and orthogonality in B(X, Y).
- ► We begin with the case when both X and Y are finite dimensional.

Theorem. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that T ⊥_B A, where T is given.
- ► We explore the connection between orthogonality in X, Y and orthogonality in B(X, Y).
- ► We begin with the case when both X and Y are finite dimensional.

Theorem. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

• Using this result we can study the smoothness of $\mathcal{T} \in \mathbb{B}(\mathbb{X}, \mathbb{Y}).$

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that T ⊥_B A, where T is given.
- ► We explore the connection between orthogonality in X, Y and orthogonality in B(X, Y).
- ► We begin with the case when both X and Y are finite dimensional.

Theorem. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

• Using this result we can study the smoothness of $\mathcal{T} \in \mathbb{B}(\mathbb{X}, \mathbb{Y}).$

Theorem. $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ is smooth iff $M_T = \{\pm x_0\}$ and Tx_0 is a smooth point.

- To check whether T ∈ B(X, Y) is a smooth point or not we verify T ⊥_B A₁ and T ⊥_B A₂ implies T ⊥_B (A₁ + A₂) or not.
- For this we first need to find some way out to construct an operator A such that T ⊥_B A, where T is given.
- ► We explore the connection between orthogonality in X, Y and orthogonality in B(X, Y).
- ► We begin with the case when both X and Y are finite dimensional.

Theorem. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

• Using this result we can study the smoothness of $\mathcal{T} \in \mathbb{B}(\mathbb{X}, \mathbb{Y}).$

Theorem. $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ is smooth iff $M_T = \{\pm x_0\}$ and Tx_0 is a smooth point.

▶ **Remark.** In case X and Y are Hilbert spaces, *T* is smooth iff $M_T = \{\pm x_0\}$.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Theorem. Let \mathbb{X} be a reflexive Banach space and \mathbb{Y} be any normed space. Let $T \in K(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty compact connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Theorem. Let \mathbb{X} be a reflexive Banach space and \mathbb{Y} be any normed space. Let $T \in K(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty compact connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

Using this result we can show the following.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Theorem. Let \mathbb{X} be a reflexive Banach space and \mathbb{Y} be any normed space. Let $T \in K(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty compact connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

Using this result we can show the following.

Theorem. Let X be a reflexive Banach space and Y be any normed space. Then $T \in K(X, Y)$ is smooth iff $M_T = \{\pm x_0\}$ and Tx_0 is a smooth point.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Theorem. Let \mathbb{X} be a reflexive Banach space and \mathbb{Y} be any normed space. Let $T \in K(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty compact connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

Using this result we can show the following.

Theorem. Let X be a reflexive Banach space and Y be any normed space. Then $T \in K(X, Y)$ is smooth iff $M_T = \{\pm x_0\}$ and Tx_0 is a smooth point.

We highlight some part of the proof.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Theorem. Let \mathbb{X} be a reflexive Banach space and \mathbb{Y} be any normed space. Let $T \in K(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty compact connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

Using this result we can show the following.

Theorem. Let X be a reflexive Banach space and Y be any normed space. Then $T \in K(X, Y)$ is smooth iff $M_T = \{\pm x_0\}$ and Tx_0 is a smooth point.

We highlight some part of the proof.

Sufficiency: Let $T \perp_B A_1$ and $T \perp_B A_2$. Then $Tx_0 \perp_B A_1x_0$ and $Tx_0 \perp_B A_2x_0$. Thus $Tx_0 \perp_B (A_1 + A_2)x_0$ and so $T \perp_B (A_1 + A_2)$.

Next we consider the case $T \in K(\mathbb{X}, \mathbb{Y})$.

Theorem. Let \mathbb{X} be a reflexive Banach space and \mathbb{Y} be any normed space. Let $T \in K(\mathbb{X}, \mathbb{Y})$ and $M_T = D \cup (-D)$, where D is a non-empty compact connected subset of $S_{\mathbb{X}}$. Then for any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A$ iff there exists $x \in M_T$ such that $Tx \perp_B Ax$.

Using this result we can show the following.

Theorem. Let X be a reflexive Banach space and Y be any normed space. Then $T \in K(X, Y)$ is smooth iff $M_T = \{\pm x_0\}$ and Tx_0 is a smooth point.

We highlight some part of the proof.

Sufficiency: Let $T \perp_B A_1$ and $T \perp_B A_2$. Then $Tx_0 \perp_B A_1x_0$ and $Tx_0 \perp_B A_2x_0$. Thus $Tx_0 \perp_B (A_1 + A_2)x_0$ and so $T \perp_B (A_1 + A_2)$. Necessity: Let *T* be smooth and $M_T = \{\pm x_0\}$. If possible let Tx_0 is not smooth. Then there exists *y*, *z* such that $Tx_0 \perp_B y$, $Tx_0 \perp_B z$ but $Tx_0 \not\perp_B (y + z)$. Let $x_0 \perp_B H$. Define $A_1(\alpha x_0 + h) = \alpha y$ and $A_2(\alpha x_0 + h) = \alpha z$. Then $T \perp_B A_1$ and $T \perp_B A_2$ but $T \not\perp_B (A_1 + A_2)$, a contradiction.

For Hilbert space we have a complete characterization of orthogonality as well as smoothness.

For Hilbert space we have a complete characterization of orthogonality as well as smoothness. **Theorem.** Let \mathbb{H} be a Hilbert space and $T \in B(\mathbb{H})$. Then the following are equivalent:

For Hilbert space we have a complete characterization of orthogonality as well as smoothness.

Theorem. Let \mathbb{H} be a Hilbert space and $T \in B(\mathbb{H})$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{H}), \ T \bot_B A \Leftrightarrow T x_0 \bot_B A x_0$ for some $x_0 \in M_T$

For Hilbert space we have a complete characterization of orthogonality as well as smoothness.

Theorem. Let \mathbb{H} be a Hilbert space and $T \in B(\mathbb{H})$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{H})$, $T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$ (ii) $M_T = S_{H_0}$, where H_0 is a finite dimensional subspace of \mathbb{H} and $||T||_{H_0^{\perp}} < ||T||$.

For Hilbert space we have a complete characterization of orthogonality as well as smoothness.

Theorem. Let \mathbb{H} be a Hilbert space and $T \in B(\mathbb{H})$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{H})$, $T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$ (ii) $M_T = S_{H_0}$, where H_0 is a finite dimensional subspace of \mathbb{H} and $||T||_{H_0^{\perp}} < ||T||$. **Theorem.** Let \mathbb{H} be a Hilbert space. Then $T \in B(\mathbb{H})$ is a

smooth point iff $M_T = \{\pm x_0\}$ and $\|T\|_{x_0^{\perp}} < \|T\|$.

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Conjecture. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Then the following are equivalent:

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Conjecture. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{X}, \mathbb{Y}), T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Conjecture. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$ (ii) $M_T = D \cup (-D)$, where *D* is a non-empty connected subset of $S_{\mathbb{X}}$, span(D) is finite dimensional subspace of \mathbb{X} and $\|T\|_{span(D)^{\perp}} < \|T\|$.

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Conjecture. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$ (ii) $M_T = D \cup (-D)$, where *D* is a non-empty connected subset of $S_{\mathbb{X}}$, span(D) is finite dimensional subspace of \mathbb{X} and $\|T\|_{span(D)^{\perp}} < \|T\|$. However, assuming $M_T = \{\pm x_0\}$ we have the following results for orthogonality and smoothness.

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Conjecture. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$ (ii) $M_T = D \cup (-D)$, where *D* is a non-empty connected subset of $S_{\mathbb{X}}$, span(D) is finite dimensional subspace of \mathbb{X} and $\|T\|_{span(D)^{\perp}} < \|T\|$.

However, assuming $M_T = \{\pm x_0\}$ we have the following results for orthogonality and smoothness.

Theorem. Let \mathbb{X} , \mathbb{Y} be normed linear spaces. Let $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $M_T = \{\pm x_0\}$. Further *T* satisfies the property : Given any $\delta > 0$, if $\{H_\alpha : \alpha \in \Lambda\}$ is the collection of all hyperspaces such that $d(x_0, H_\alpha) > \delta$ then $\sup\{\|Tx\| : x \in (\bigcup_\alpha H_\alpha) \cap S_{\mathbb{X}}\} < \|T\|$. Then for any $A \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$, $T \perp_B A$ if and only if $Tx_0 \perp_B Ax_0$.

Analogous characterization for orthogonality in B(X, Y) for infinite dimensional normed spaces X and Y is still open. Here we make the following conjecture.

Conjecture. Let $T \in B(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Then the following are equivalent:

(i)For any $A \in B(\mathbb{X}, \mathbb{Y})$, $T \perp_B A \Leftrightarrow Tx_0 \perp_B Ax_0$ for some $x_0 \in M_T$ (ii) $M_T = D \cup (-D)$, where *D* is a non-empty connected subset of $S_{\mathbb{X}}$, span(D) is finite dimensional subspace of \mathbb{X} and $\|T\|_{span(D)^{\perp}} < \|T\|$.

However, assuming $M_T = \{\pm x_0\}$ we have the following results for orthogonality and smoothness.

Theorem. Let \mathbb{X} , \mathbb{Y} be normed linear spaces. Let $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $M_T = \{\pm x_0\}$. Further T satisfies the property : Given any $\delta > 0$, if $\{H_\alpha : \alpha \in \Lambda\}$ is the collection of all hyperspaces such that $d(x_0, H_\alpha) > \delta$ then $\sup\{\|Tx\| : x \in (\cup_\alpha H_\alpha) \cap S_{\mathbb{X}}\} < \|T\|$. Then for any $A \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$, $T \perp_B A$ if and only if $Tx_0 \perp_B Ax_0$. In addition, if Tx_0 is smooth, then T is also smooth.

This again gives a sufficient condition for the smoothness of an arbitrary bounded linear operator. For the necessary part we could obtain the following which is a little different from the sufficient part:

This again gives a sufficient condition for the smoothness of an arbitrary bounded linear operator. For the necessary part we could obtain the following which is a little different from the sufficient part:

Theorem. Let X, Y be normed linear spaces. Let $T \in \mathbb{B}(X, Y)$ and $M_T \neq \emptyset$. Suppose that T is smooth. Then

This again gives a sufficient condition for the smoothness of an arbitrary bounded linear operator. For the necessary part we could obtain the following which is a little different from the sufficient part:

Theorem. Let \mathbb{X} , \mathbb{Y} be normed linear spaces. Let $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Suppose that T is smooth. Then (i) $M_T = \{\pm x_0\}$, for some $x_0 \in S_{\mathbb{X}}$.

This again gives a sufficient condition for the smoothness of an arbitrary bounded linear operator. For the necessary part we could obtain the following which is a little different from the sufficient part:

Theorem. Let \mathbb{X} , \mathbb{Y} be normed linear spaces. Let $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Suppose that *T* is smooth. Then (i) $M_T = \{\pm x_0\}$, for some $x_0 \in S_{\mathbb{X}}$. (ii) Tx_0 is a smooth point.

This again gives a sufficient condition for the smoothness of an arbitrary bounded linear operator. For the necessary part we could obtain the following which is a little different from the sufficient part:

Theorem. Let \mathbb{X} , \mathbb{Y} be normed linear spaces. Let $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $M_T \neq \emptyset$. Suppose that T is smooth. Then (i) $M_T = \{\pm x_0\}$, for some $x_0 \in S_{\mathbb{X}}$. (ii) Tx_0 is a smooth point. (iii) $\sup\{\|Tx\| : x \in H_\alpha \cap S_{\mathbb{X}}\} < \|T\|$ for all $\alpha \in \Lambda$, where $\{H_{\alpha:\alpha \in \Lambda}\}$ is the collection of all hyperspaces such that $d(x_0, H_\alpha) > 0$.

• An element $x \in S_X$ is said to be an extreme point of B_X if for any $y, z \in B_X$ and $t \in (0, 1), x = (1 - t)y + tz$ implies that x = y = z.

• An element $x \in S_X$ is said to be an extreme point of B_X if for any $y, z \in B_X$ and $t \in (0, 1), x = (1 - t)y + tz$ implies that x = y = z.

• The set of all extreme points of the unit ball of a normed linear space X is denoted by E_X .

• An element $x \in S_X$ is said to be an extreme point of B_X if for any $y, z \in B_X$ and $t \in (0, 1), x = (1 - t)y + tz$ implies that x = y = z.

• The set of all extreme points of the unit ball of a normed linear space X is denoted by E_X .

• An operator $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ is said to be an extreme contraction on $\mathbb{B}(\mathbb{X}, \mathbb{Y})$ if T is an extreme point of the unit ball of $\mathbb{B}(\mathbb{X}, \mathbb{Y})$, i.e., for any $T_1, T_2 \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $t \in (0, 1), T = (1 - t)T_1 + tT_2$ implies that $T = T_1 = T_2$.

• An element $x \in S_X$ is said to be an extreme point of B_X if for any $y, z \in B_X$ and $t \in (0, 1), x = (1 - t)y + tz$ implies that x = y = z.

• The set of all extreme points of the unit ball of a normed linear space X is denoted by E_X .

• An operator $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ is said to be an extreme contraction on $\mathbb{B}(\mathbb{X}, \mathbb{Y})$ if T is an extreme point of the unit ball of $\mathbb{B}(\mathbb{X}, \mathbb{Y})$, i.e., for any $T_1, T_2 \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $t \in (0, 1), T = (1 - t)T_1 + tT_2$ implies that $T = T_1 = T_2$.

The following theorem explores the role of norm attainment set of an operator on characterizing extreme contraction on a Banach space.

• An element $x \in S_X$ is said to be an extreme point of B_X if for any $y, z \in B_X$ and $t \in (0, 1), x = (1 - t)y + tz$ implies that x = y = z.

• The set of all extreme points of the unit ball of a normed linear space X is denoted by E_X .

• An operator $T \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ is said to be an extreme contraction on $\mathbb{B}(\mathbb{X}, \mathbb{Y})$ if T is an extreme point of the unit ball of $\mathbb{B}(\mathbb{X}, \mathbb{Y})$, i.e., for any $T_1, T_2 \in \mathbb{B}(\mathbb{X}, \mathbb{Y})$ and $t \in (0, 1), T = (1 - t)T_1 + tT_2$ implies that $T = T_1 = T_2$.

The following theorem explores the role of norm attainment set of an operator on characterizing extreme contraction on a Banach space.

Theorem. Let \mathbb{X} be a finite-dimensional polygonal Banach space and let \mathbb{Y} be a strictly convex normed linear space. Then $T \in \mathbb{B}(X; Y)$ with ||T|| = 1 is an extreme contraction if and only if span $(M_T \cap E_{\mathbb{X}}) = \mathbb{X}$.

References

- 1. Abatzoglou, T. J., *Norm derivatives on spaces of operators*, Math. Ann. **239** (1979), 129-135.
- 2. Bhatia, R. and Šemrl, P., Orthogonality of matrices and distance problem, Linear Alg. Appl. 287,(1999) pp. 77-85.
- 3. Birkhoff, G., Orthogonality in linear metric spaces, Duke Math. J., 1, (1935) pp. 169-172.
- 4. Deeb, W. and Khalil, R., *Exposed and smooth points of some classes of operators in L(I^p)*, Journal of Functional Analysis, **103** (2) (1992), 217-228.
- 5. Grzaslewicz, R. and Younis, R., Smooth points and M-ideals, Journal of Mathematical Analysis and Applications, **175** (1993) 91-95.
- 6. Ghosh P., Sain D. and Paul K., orthogonality of bounded linear operators, Linear Algebra and its Applications, 500 (2016), 43-51.

- 7. Heinrich S., *The differentiability of the norm in spaces of operators*, Functional. Anal, i Prilozen. (4) 9 (1975), 93-94. (English translation: Functional Anal. Appl. (4) 9 (1975), 360-362.)
- 8. Hennefeld J., *Smooth, compact operators*, Proc. Amer. Math. Soc., **77** (1) (1979), 87-90.
- 9. Holub, J.R., On the metric geometry of ideals of operators on Hilbert space, Math. Ann. 201 (1973), 157-163.
- 10. James C. R., Orthogonality and linear functionals in normed linear spaces, Transactions of the American Mathematical Society, Vol. 61 (1947) 265-292.
- 11. James C. R., *Inner products in normed linear spaces*, Bull. Amer. Math. Soc., **53** (1947a), 559-566.
- 12. Kittaneh, F. and Younis, R., Smooth points of certain operator spaces, Int. Equations and Operator Theory 13 (1990), 849-855.

- 13. Li, C.K. and Schneider, H., *Orthogonality of matrices*, Linear Alg. Appl., **47**,(2002) pp. 115-122.
- 14. Paul, K., *Translatable radii of an operator in the direction of another operator*, Scientiae Mathematicae 2 (1999), 119-122.
- 15. Paul, K., Sain, D. and Ghosh, P., Birkhoff-James orthogonality and smoothness of bounded linear operators, Linear Algebra and its Applications, **506** (2016) 551-563.
- 16. Paul, K., Sain, D. and Jha K., On strong orthogonality and strictly convex normed linear space, Journal of Inequalities and Application, (2013) 2013:242.
- 17. Sain, D. and Paul, K., Operator norm attainment and inner product spaces, Linear Algebra and its Applications, 439 (2013) 2448–2452.
- 18. Sain, D., Paul, K. and Mal, A., A complete characterization of Birkhoff-James orthogonality in infinite

dimensional normed space, Journal of Operator Theory, **80** (2018) 399-413.

- 19. Sain, D., Paul, K. and Hait, S., Operator norm attainment and Birkhoff-James orthogonality, Linear Algebra and its Applications, 476 (2015) 85–97.
- 20. Sain, D., Ray, A. and Paul, K., *Extreme contractions on finite-dimensional polygonal Banach spaces*, Journal of Convex Analysis, **26** no. 3 (2019) [Final page numbers is not yet available].
- 21. Werner, W., Smooth points in some spaces of bounded operators, Integral Equation Operator Theory, 15 (1992) 496-502.

Thank You