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Hellinger distance

p = (p1, . . . ,pn), q = (q1, . . . ,qn): discrete probability
distributions, i.e.

pi ,qi ≥ 0,
n∑

i=1
pi =

n∑
i=1

qi = 1.

Hellinger distance

dH(p,q) =
1√
2
‖
√

p −
√

q‖2

=

(
n∑

i=1

pi + qi

2
−

n∑
i=1

√
pi
√

qi

)1/2

.
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dH(p,q) = (trA(p,q)− trG(p,q))1/2 ,

where tr p =
n∑

i=1
pi .

Hellinger distance: useful to quantify the similarity
between two probability distributions.

Important in

Probability
Statistics
Machine learning ...
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Matrix/noncommutative/quantum version

Commutative Noncommutative

p,q probability vectors A,B density matrices i.e.
A,B ≥ 0 (positive semidefinite)
trA = trB = 1.

dH(p,q) = dH(A,B) =√
trA(p,q)− trG(p,q)

√
trA(A,B)− trG(A,B).

In this talk, we will work mainly with positive definite
matrices.
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A,B > 0 (positive definite).

There is only one possible arithmetic mean

A(A,B) =
A + B

2
.

But geometric mean can have different meanings:
A1/2B1/2 or A1/4B1/2A1/4

(AB)1/2(
A1/2BA1/2

)1/2

A#B = A1/2
(
A−1/2BA−1/2

)1/2 A1/2

exp log A+log B
2
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In this talk

Different versions of G(A,B) give different versions of the
Hellinger distance on matrices.

We aim to study
1 The different Hellinger distances on positive matrices

and their properties, esp. the convexity properties.
2 Barycentres with respect to these distances.
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A straightforward generalization

d1(A,B) =
1√
2
‖A1/2 − B1/2‖2

=
√

trA(A,B)− trA1/2B1/2.

d1 is a metric on P (set of all positive definite matrices).
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G(A,B) = (AB)1/2

A,B ≥ 0,
AB ≥ 0 iff A and B commute.
All eigenvalues of AB are nonnegative.
There is a unique square root of AB that has nonnegative
eigenvalues.

(AB)1/2 = A1/2 (A1/2BA1/2)1/2
A−1/2

is that unique square root.

(AB)1/2 and
(
A1/2BA1/2

)1/2 are similar.

Hence tr(AB)1/2 = tr
(
A1/2BA1/2

)1/2
.
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Second version

d2(A,B) =

√
trA(A,B)− tr (A1/2BA1/2)

1/2
.

d2 is a metric on P much studied as the Bures distance in
quantum information, and as the Wasserstein distance in
optimal transport theory and statistics.

Fidelity: F (A,B) = tr
(
A1/2BA1/2

)1/2
.

d2(A,B) =
1√
2

min
U∈U
‖A1/2 − B1/2U‖2.
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G(A,B) = A#B

A#B = A1/2
(
A−1/2BA−1/2

)1/2 A1/2.

Introduced by Pusz and Woronowicz in 1975.
Most accepted definition of matrix geometric mean.

Has remarkable properties.

Important applications in diverse areas.
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Third version

d3(A,B) =
√

trA(A,B)− trA#B.
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G(A,B) = exp log A+log B
2

The log Euclidean mean

L(A,B) = exp
(

log A + log B
2

)
.

Important in applications due to ease of computation.

The fourth version

d4(A,B) =
√

trA(A,B)− trL(A,B).

Tanvi Jain



Are d3 and d4 metrics on P?

Clearly, both are symmetric.

Comparing the different geometric means:

tr(A#B) ≤ trL(A,B) ≤ tr(A1/2B1/2) ≤ tr(AB)1/2.

This gives

d2
3 (A,B) ≥ d2

4 (A,B) ≥ d2
1 (A,B) ≥ d2

2 (A,B).

d1 is a metric =⇒
d3(A,B) = 0 iff A = B, and d4(A,B) = 0 iff A = B.
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But d3 and d4 are not metrics as they do not satisfy the
triangle inequality.
Let

A =

[
2 5
5 17

]
, B =

[
13 8
8 5

]
, C =

[
5 3
3 10

]
.

Then d3(A,B) ≈ 5.0347 and
d3(A,C) + d3(C,B) ≈ 4.6768.
Let

A =

[
4 −7
−7 13

]
,B =

[
8 −2
−2 1

]
,C =

[
5 −4
−4 5

]
.

Then d4(A,B) ≈ 3.3349 and
d4(A,C) + d4(C,B) ≈ 3.3146.
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d3 and d4 are not metrics but their squares
are divergences on P

Divergence on P
Φ : P× P→ [0,∞)

(i) Φ(A,B) = 0 if and only if A = B.
(ii) The first derivative DΦ with respect to the second

variable vanishes on the diagonal; i.e.,

DΦ(A,X )|X=A = 0.

(iii) The second derivative D2Φ is positive on the
diagonal; i.e.,

D2Φ(A,X )|X=A(Y ,Y ) ≥ 0 for all Hermitian Y .
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Examples

Square of the Euclidean distance:
Φ(A,B) = ‖A− B‖2

2.

d2
1 and d2

2 are divergences.

Umegaki relative entropy:
d(A‖B) = tr (A log A− log B)− A− B)) .
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Bregman divergence
ϕ : R+ → R strictly convex and differentiable.

ϕ̃(A,B) = trϕ(A)− trϕ(B)− trϕ′(B)(A− B).

When ϕ(x) = x log x − x , ϕ̃(A,B) = D(A‖B).
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The functions d2
3 and d2

4

Theorem
d2

3 and d2
4 are divergences.

We shall denote d2
i by Φi , i = 1, . . . ,4.
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The maps X 7→ A#X and Φ3

Let g(X ) = A#X .

For X > 0 X 1/2 = 1√
2

+ 1
π

∞∫
0

(
λ

λ2+1 − (λ + X )−1
)
λ1/2dλ.

Dg(X )(Y ) =

∞∫
0

(λ + XA−1)−1Y (λ + A−1X )−1dν(λ),

where dν(λ) = 1
π
λ1/2dλ.

Then
DΦ3(A,A) = 0,

and
D2Φ3(A,A)(Y ,Y ) =

1
4

tr YA−1Y .

Thus Φ3 is a divergence.
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Convexity and joint convexity

f : P→ P or R+ is convex if for all X ,Y ∈ P and for all
0 < t < 1

f ((1− t)X + tY ) ≤ (1− t)f (X ) + tf (Y ).

f is strictly convex if the two sides are equal only if X = Y .

f : P× P→ P or R+ is jointly convex if for all
X1,X2,Y1,Y2 ∈ P and for all 0 < t < 1

f ((1− t)X1 + tY1, (1− t)X2 + tY2) ≤ (1−t)f (X1,X2)+tf (Y1,Y2).
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Convexity of Φ3

Convexity of Φ3

Φ3 is jointly convex, and strictly convex in each of its
variables separately.

(A,B) 7→ A#B is jointly concave.
(A basic fact in the theory of geometric mean)

This implies (A,B) 7→ trA#B is jointly concave and hence
Φ3 is jointly convex.
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f : R+ → R+ continuous.
Define f̂ : P→ R as

f̂ (X ) = trf (X ).

f is concave (strictly concave) iff f̂ is so.
t 7→ t1/2 is strictly concave. Hence X 7→ trX 1/2 is strictly
concave.
This implies X 7→ trA#X is strictly concave.

Tanvi Jain



Coming to Φ4

Φ3(A,B) ≥ Φ4(A,B) ≥ Φ1(A,B).

We also know that

Φ3(A,A) = Φ4(A,A) = Φ1(A,A) = 0,

and
DΦ1(A,A) = DΦ3(A,A) = 0.

These together imply

DΦ4(A,A) = 0.
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We have seen that Φ4 satisfies the first two conditions for
being a divergence.

divergence
Φ4 is a divergence on P.

Third condition: a consequence of the convexity of Φ4.

We establish a nice connection of Φ4 with the relative
entropy.
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A digression

Barycentres with respect to the divergence Φ

A1, . . . ,Am ∈ P.
Problem 1: Find Y0 in P that minimizes

m∑
j=1

1
m

Φ(Aj ,Y ).

Problem 2: Find X0 in P that minimizes

m∑
j=1

1
m

Φ(X ,Aj).

The minimizers in Problems 1 and 2 need not exist and
need not be unique.
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Looking at the Bregman divergence on R+ :

ϕ : R+ → R strictly convex, differentiable.
Associated Bregman divergence on R+:

Φ(x , y) = ϕ(x)− ϕ(y)− ϕ′(y)(x − y).

Φ is strictly convex in x but need not be convex in y .

Solutions of Problem 1

argmin
y∈R+

m∑
j=1

1
m

Φ(aj , y)

is the arithmetic mean
m∑

j=1

1
maj .

This is the characteristic property of Bregman
divergences.
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Solution of Problem 2

argmin
x∈R+

m∑
j=1

1
m

Φ(x ,aj)

isϕ′−1

(
m∑

j=1

1
mφ
′(aj)

)
.
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Minimization problems on matrix Bregman
divergences

ϕ : R+ → R strictly convex and differentiable.
ϕ̃ associated Bregman divergence on P.
Solution to Problem 1 is the arithmetic mean.

Solution to Problem 2 is the matrix

(ϕ′
−1

 m∑
j=1

1
m
ϕ′(Aj)
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A special case

ϕ(x) = x log x − x .

ϕ̃(X ,Y ) = tr (X (log X − log Y )− (X − Y )) .

For A1, . . . ,Am in P the minimizer for

m∑
j=1

1
m
ϕ̃(X ,Aj))

is the log Euclidean mean

L(A1, . . . ,Am) = exp

 m∑
j=1

1
m

log Aj

 .
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Computing the variance, i.e., the minimum value of the
objective function:

σ2
ϕ̃ =

1
m

m∑
j=1

ϕ̃(L,Aj)

=
1
m

m∑
j=1

[trL(logL − log Aj)− tr(L − Aj)]

=
1
m

tr


m∑

j=1

[
L

(
1
m

m∑
k=1

log Ak − log Aj

)
− (L − Aj)

]
= −trL+

1
m

tr
m∑

j=1

Aj .

Thus

σ2
ϕ̃ = trA(A1, . . . ,Am)− trL(A1, . . . ,Am).
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In particular, the divergence Φ4 can be characterized as
the minimum value

Φ4(A,B) = min
X>0

[ϕ̃(X ,A) + ϕ̃(X ,B)] ,

where ϕ̃(X ,Y ) = tr (X (log X − log Y )− (X − Y )) .
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Convexity of Φ4

Let f (x , y) be a jointly convex function which is strictly
convex in each of its variables separately. Suppose for
each a,b

g(a,b) = min
x

[f (x ,a) + f (x ,b)] ,

exists. Then the function g(a,b) is jointly convex, and is
strictly convex in each of the variables separately.
ϕ̃ is jointly convex and strictly convex in each of its
variables.

Convexity of Φ4

Φ4 is jointly convex and strictly convex in each of its
variables separately.
(Taking f (X ,Y ) = ϕ̃(X ,Y ), we have g(A,B) = Φ4(A,B)).

Tanvi Jain



Barycentres with respect to the divergences
Φj

Consider the functions:

Ψi(X ) =
m∑

j=1

1
m

Φi(X ,Aj) X ∈ P.

Does there exist an Xj that minimizes Ψj(X )?
Is this Xj unique, if it exists?
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If f is a convex function on an open convex set,
then a critical point of f is the global minimum of f .
If f is strictly convex, then f can have at most one such
critical point.

X 7→ Ψi(X ) is strictly convex on P.
This reduces the problem of finding the minimizer to that
of computing the critical point.
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The barycentre with respect to Φ1 is the classical
1/2-power mean.

Q1/2 =

 m∑
j=1

1
m

A1/2
j

2

.

For Φ2 is the barycentre is the Wasserstein mean. This is
the unique solution of the matrix equation

X =
m∑

j=1

1
m

(X 1/2AjX 1/2)1/2.

Has major applications in optimal transport, statistics,
quantum information and other areas.
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An observation

In both cases the barycentre is the unique Xi that satisfies
the matrix equation

X =
m∑

j=1

1
m
Gi(X ,Aj),

where G1(X ,A) = X 1/4A1/2X 1/4 and
G2(A,X ) =

(
X 1/2AX 1/2

)1/2
.
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With some work we can see that the same holds for the
other two as well, i.e., the barycentres for Φ3 and Φ4 are
the unique matrices that satisfy the respective matrix
equations

X =
m∑

j=1

X#Aj ,

(Lim-Palfia power mean important in the study of
geometric means.) and

X =
m∑

j=1

1
m
L(X ,Aj).
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