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@ Weakly Monotone Creation and Annihilation Operators
© Partial isometries and commutation relations

© Monotone Independence

@ Distribution of sum of position operators

© Combinatorics of moments

@ Weakly monotone ordered partitions
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Construction - JW (2005)

Weakly Monotone Fock Space

Consider Hilbert space H with orthonormal basis {e, : n € N} C H.
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Construction - JW (2005)

Weakly Monotone Fock Space

Consider Hilbert space H with orthonormal basis {e, : n € N} C H.
By Fum(H) we denote the subspace of the full Fock space on H
spanned by the vacuum vector Q and the simple tensors of the form

e, ®e, , Q- -6, where jy>i_q4>--->i.
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Construction - JW (2005)

Weakly Monotone Fock Space

Consider Hilbert space H with orthonormal basis {e, : n € N} C H.
By Fum(H) we denote the subspace of the full Fock space on H
spanned by the vacuum vector Q and the simple tensors of the form

e, e, , @ --®e, where ip>ipg > >0
scalar product:

. 1 |f r=s,k1=j1,--~7kr:jr
<ek,®---®€k1aejs®"'®eﬂ>_{ 0 otherwise
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Construction - JW (2005)

Weakly Monotone Fock Space

Consider Hilbert space H with orthonormal basis {e, : n € N} C H.
By Fum(H) we denote the subspace of the full Fock space on H
spanned by the vacuum vector Q and the simple tensors of the form

e, e, , @ --®e, where ip>ipg > >0
scalar product:

1 |f r=s,k1:_].1,~~7kr:./.r
0 otherwise

<ek,®--~®ek1,ejs®---®ej1>—{

The indexes are weakly decreasing, hence weakly monotone Fock
space.
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Creation and Annihilation Operators

Creation AJT- := AT(e;) by the basis vector ¢; is defined by

AJTQ = €,
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Creation and Annihilation Operators

Creation AJT- := AT(e;) by the basis vector ¢; is defined by

AJTQ = ej,
Alle, @€, ,® - 06) = 606,86, ,8 Q¢
if j > i
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Creation and Annihilation Operators

Creation AJT- := AT(e;) by the basis vector ¢; is defined by

AJTQ = ej,
Alle, @€, ,® - 06) = 606,86, ,8 Q¢
if j > i

Alle,®e, , @ ®e) = 0 if j<iy

. Crismale, M. Griseta, J. Wysoczafski Sum of position operators



Creation and Annihilation Operators

Creation AJT- := AT(e;) by the basis vector ¢; is defined by

AJTQ = ej,
Alle, @€, ,® - 06) = 606,86, ,8 Q¢
if j > i

Alle,®e, , @ ®e) = 0 if j<iy

4

Annihilation

Annihilation A; by the basis vector ¢; is defined by

Aile) = 08, A, ®e, ,® - Qey) =76, , @ B
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Partial isometries

The operators AJ-AJT- and A}Aj are orthogonal projections, hence the

creation operators Aj- and the annilhilation operators A; are partial
isometries
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Partial isometries

The operators AJ-AJT- and A}Aj are orthogonal projections, hence the

creation operators AJT- and the annilhilation operators A; are partial
isometries

Orthogonal projections AJT.AJ-

map Fum(H) onto the subspace Fym(#)~; spanned by the vacuum
and simple tensors of the form (starting with ;)

eRe ® --®e, where j>i>...>h
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Partial isometries

The operators AJ-AJT- and A}Aj are orthogonal projections, hence the

creation operators AJT- and the annilhilation operators A; are partial
isometries

Orthogonal projections AJT.AJ-

map Fum(H) onto the subspace Fym(#)~; spanned by the vacuum
and simple tensors of the form (starting with ¢;)

eRe ® --®e, where j>ip>...>h

Orthogonal projections AjAJT

map Fum(H) onto the subspace F,,(H)<; spanned by the vacuum
and simple tensors of the form (starting with e;, for any iy < j)

eik®"'®ei1 with _jzlkZZIl
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Creation and annihilation operators are bounded and mutually
adjoint: (A;)" = AJT- and satisfy relations:
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Relations

Creation and annihilation operators are bounded and mutually
adjoint: (A;)" = AJT- and satisfy relations:

AkAj:O I'FJ<k
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Relations

Creation and annihilation operators are bounded and mutually
adjoint: (A;)" = AJT- and satisfy relations:

AkAj:O I'FJ<k
AlAT =0 if j>k
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Relations

Creation and annihilation operators are bounded and mutually
adjoint: (A;)" = AJT- and satisfy relations:

Relations

AkAj:O I'FJ<k
AlAT =0 if j>k
AAL =0 if k#]j
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Creation and annihilation operators are bounded and mutually

adjoint: (A;)" = AJT- and satisfy relations:

AkAj =0 if J < k

AlAT =0 if j>k

AAL =0 if k#]j
More relations (j, m € N)

AAL = (A)"(A)",
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Commutation relations

Commutation relations

I—AAL = Y ALA., n=dim(H) = oo

k>j
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Commutation relations

Commutation relations

I—AAL = Y ALA., n=dim(H) = oo
k>j

Ih—Po = Y AlA, n=dim(H) < oo

k=1
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Commutation relations

Commutation relations

I—AAL = Y ALA,  n=dim(H) = oo
k>j

h—Po = Y AA, n=dim(H)< oo

k=1

Problem

Describe C*({A},Aj : J<n=dim(H) < c0}), i.e. the C*-algebra
generated by the weakly monotone creation and annihilation
operators (i.e. by partial isometries).
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Monotone independence of algebras

Monotone independence - N. MURAKI 2001

Let (A, ¢) be a non-commutative probability space, i.e. A is a unital
*-algebra and ¢ is a state on A. We say that a family {4; : j € N}
of subalgebras of 4 is monotone independent in (A, ) if the
following two condition hold:
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Monotone independence of algebras

Monotone independence - N. MURAKI 2001

Let (A, ¢) be a non-commutative probability space, i.e. A is a unital
*-algebra and ¢ is a state on A. We say that a family {4; : j € N}
of subalgebras of 4 is monotone independent in (A, ) if the
following two condition hold:

Ifi<j>kandaec A, be A, c € A then abc = p(b)ac (local
index maxima get out)
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Monotone independence of algebras

Monotone independence - N. MURAKI 2001

Let (A, ») be a non-commutative probability space, i.e. A is a unital
*-algebra and ¢ is a state on A. We say that a family {4; : j € N}
of subalgebras of 4 is monotone independent in (A, ) if the
following two condition hold:

[M1]
Ifi<j>kandaecA;, be Aj c € A then abc = p(b)ac (local
index maxima get out)

lfjp>...>j<...<j,and a; € Aj then
n

o(aray...a,) = H ©(a;)
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Monotone independence of position operators

Let B be the unital *-algebra of all bounded operators on the weakly
monotone Fock space Fym(?) and let ¢ be the vacuum state:

o(b) := (b2, Q) for b € B.
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Monotone independence of position operators

Let B be the unital *-algebra of all bounded operators on the weakly
monotone Fock space Fym(?) and let ¢ be the vacuum state:

o(b) := (b2, Q) for b € B. For each j € N consider the *-subalgebra
B; = alg{A;, AJT} C B generated by the creation A;f and annihilation
A; operators.
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Monotone independence of position operators

Let 13 be the unital *-algebra of all bounded operators on the weakly
monotone Fock space Fym(?) and let ¢ be the vacuum state:

o(b) := (b2, Q) for b € B. For each j € N consider the *-subalgebra
B; = alg{A;, AJT} C B generated by the creation A;f and annihilation
A; operators.

Monotone independence

The algebras {B; :j € N} are monotone independent in the
non-commutative probability space (53, ¢).
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Monotone independence of position operators

Let 13 be the unital *-algebra of all bounded operators on the weakly
monotone Fock space Fym(?) and let ¢ be the vacuum state:

o(b) := (b2, Q) for b € B. For each j € N consider the *-subalgebra
B; = alg{A;, AJT} C B generated by the creation A;f and annihilation
A; operators.

Monotone independence

The algebras {B; :j € N} are monotone independent in the
non-commutative probability space (53, ¢).

vy

Corollary

For j € N the position operators G; := A; + AJT- are monotone
independent in (B, ¢).

A
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Main object of our study

Sums of position operators

We study the distributions

p((5)7), meN

of the sums

p
Sp = Gl+G2+---+Gp=Z(Aj+A}>

j=1

of position operators, for p € N.
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Main object of our study

Sums of position operators

We study the distributions

p((5)7), meN

of the sums

p
Sp = Gl+G2+---+Gp=Z(Aj+A}>

j=1

of position operators, for p € N.

Since all G;'s have the same distribution, hence the law of S, will be
the p-fold monotone convolution of the single distribution of G;.
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Distribution of sums of position operators

Distribution of a single position operator

The distribution of each position operator G; := A; + AJT- is the
V4 — x?
27

Wigner semicircle law W(x) := on [—2, 2], since

o((GP™) = C = L(Q’"), (6™ ) =0, m>0.

m
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Distribution of sums of position operators

Distribution of a single position operator

The distribution of each position operator G; := A; + AJT- is the

N
Wigner semicircle law W(x) := % on [—2, 2], since
m
1 2m
\2m — — \2m+1 — >
A6m = o= (7). @ =0. m=0

Monotone convolution of semicirlce law

p
The distribution of the sum S, := Z G; of p position operators is
j=1
the p-th monotone convolution power of the semicircle law:
Wy =Wp---> W
—_————

p
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Distribution of sum of two position operators

Theorem: distribution of S, = G; + G

The distribution of S, is absolutely continuous with density

L (\/\/100 “T6x2 - x2 + 10 — V4 — x2) x| <2

WQ(X) =
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Distribution of sum of two position operators

Theorem: distribution of S, = G; + G
The distribution of S, is absolutely continuous with density

L(VVI-162 -2 + 10— VA=) x| <2
%\/—2x2—2|x|\/x2—4+20, 2< x| <

WQ(X) =

N |1
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Distribution of sum of two position operators

Theorem: distribution of S, = G; + G

The distribution of S, is absolutely continuous with density

L (\/\/100 “T6x2 - x2 + 10 — V4 — x2) x| <2

Wa(x) = L\/ 2x2 — 2|x|v/xZ — 4 + 20, 2<|X|§f§>

x| > 3

O-b
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Distribution of sum of two position operators

Theorem: distribution of S, = G; + G

The distribution of S, is absolutely continuous with density

L(VVI-162 -2 + 10— VA=) x| <2
Walx) =4 L /-2x2 —2lx|VxE — 4 + 20, 2<|x <3

0 x| >3

In particular, at the distinguished points W5(+2) = 21/3 and
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Distribution of sum of p position operators

Theorem: distribution W, of Sy := G1 + Go + -+ - + G,

The distribution of S, is an absolutely continuous probability measure
with density W, := W*?.
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Distribution of sum of p position operators

Theorem: distribution W, of Sy := G1 + Go + -+ - + G,

The distribution of S, is an absolutely continuous probability measure
with density W, := W*"P. The Cauchy transform of W, defined by

T W,(x) dx

Y

Gp(2) =

oo Z—X

satisfies the recursion

Gp(2) + Gp(2) - (Kp-a(2) —2) +1 = 0,
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Distribution of sum of p position operators

Theorem: distribution W, of Sy := G1 + Go + -+ - + G,

The distribution of S, is an absolutely continuous probability measure
with density W, := W*"P. The Cauchy transform of W, defined by

G,() = * W, (x) dx

Y
oo Z—X

satisfies the recursion

gi(z) + gp(z) : (Kp—l(z) - Z) +1 = 0,

p—1
where ng(z) = Kp_1(2).
k=1
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Distribution of sum of p position operators

Theorem: support of the distribution W,

The support of the measure W, is a symmetric interval [ — a,, a,]
where the right-end points satisfy the recursion

1
ap_|_]_ = ap + —.
dp
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Distribution of sum of p position operators

Theorem: support of the distribution W,

The support of the measure W, is a symmetric interval [ — a,, a,]
where the right-end points satisfy the recursion

1
ap+1 = ap + —.
dp

Tools for proof

|
A\

Consider Zhukovsky map Z(w) := w + —, its p-fold compositions Z,
w

and the reciprocal Cauchy transforms Fp(z) := QL() of W.
o(z
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Distribution of sum of p position operators

Theorem: support of the distribution W,

The support of the measure W, is a symmetric interval [ — a,, a,]
where the right-end points satisfy the recursion

1
ap+1 = ap + —.
dp

Tools for proof

|
A\

Consider Zhukovsky map Z(w) := w + —, its p-fold compositions Z,
w

and the reciprocal Cauchy transforms Fp(z) := QL() of W,. Then
o(z

we have
Zy(Fp(z)) =2z, and
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Distribution of sum of p position operators

Theorem: support of the distribution W,

The support of the measure W, is a symmetric interval [ — a,, a,]
where the right-end points satisfy the recursion

1
ap+1 = ap + —.
dp

Tools for proof

|
A\

Consider Zhukovsky map Z(w) := w + —, its p-fold compositions Z,
w

and the reciprocal Cauchy transforms Fp(z) := QL() of W,. Then
o(z

we have
ZP(]:p(Z)) =z, and ]:p(ap) =1,
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Distribution of sum of p position operators

Theorem: support of the distribution W,

The support of the measure W, is a symmetric interval [ — a,, a,]
where the right-end points satisfy the recursion
1

ap+1 = ap + —.
dp

Tools for proof

|
A\

Consider Zhukovsky map Z(w) := w + —, its p-fold compositions Z,
w

and the reciprocal Cauchy transforms Fp(z) := QL() of W,. Then
o(z

we have
Zy(Fp(z)) =2z, and Fp(ap) =1, Fp(—a,)=—1.
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Distribution of sum of p position operators

Estimate for the support of W,

In particular, we have the estimate (supp(W,) = [—ap, a,])

Ve+Velp+1) < 3, < /20 + /20
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Distribution of sum of p position operators

Estimate for the support of W,

In particular, we have the estimate (supp(W,) = [—ap, a,])

Ve+Velp+1) < 3, < /20 + /20

ap _ap
P >/2 and lim =2 = /2.
VP p=oo /P

hence
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Distribution of sum of p position operators

Estimate for the support of W,

In particular, we have the estimate (supp(W,) = [—ap, a,])

Ve+Vpp+1) < 3, < /20 + /20

22 > v2 and  lim 22 = 2.

VP P P

hence

Therefore the scaled supports [— ] form an ascending

NV

sequence of intervals with intersection [—v/2, v/2]:
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Distribution of sum of p position operators

Estimate for the support of W,

In particular, we have the estimate (supp(W,) = [—ap, a,])

Ve+Vpp+1) < 3, < /20 + /20

22 > v2 and  lim 22 = 2.

VP P P

hence

Therefore the scaled supports [— ] form an ascending

NV

sequence of intervals with intersection [—v/2, v/2]:
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Distribution of sum of p position operators

Estimate for the support of W,

In particular, we have the estimate (supp(W,) = [—ap, a,])

\/p+ Vplp+1)<a, <1/2p++/2p

22 > v2 and  lim 22 = 2.

VP P P

hence

Therefore the scaled supports [— ] form an ascending

NV

sequence of intervals with intersection [—v/2, v/2]:

dp+1 dp \/
P« 2 — \/p+/p(p+1) < a,.
e VAt D) < 3,
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Moments of Sy = G; + Go

Since the odd moments vanish, we consider only the even ones.
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Moments of Sy = G; + Go

Since the odd moments vanish, we consider only the even ones.

Recursion for p = 2

The (even) moment sequence d® = ¢((S,)?") satisfies dé2) =1 and

d@ Zdn k( 4 4 1)
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Moments of Sy = G; + Go

Since the odd moments vanish, we consider only the even ones.

Recursion for p = 2

The (even) moment sequence d® = ¢((S,)?") satisfies dé2) =1 and

PG Z k(d(2)1+ck 1)

1 2k
C, = k——|—1<k> Catalan numbers.
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Moments of S, = G1 + Go + -+ - + G,

Theorem: recursion for arbitrary p € N

The (even) moment sequences d'®) := ©((S,)?"), defined for
p,n €N (p>1, n>0), satisfy the recursion

d? = 1, (n=0),
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Moments of S, = G1 + Go + -+ - + G,

Theorem: recursion for arbitrary p € N

The (even) moment sequences d'®) := ©((S,)?"), defined for
p,n €N (p>1, n>0), satisfy the recursion

d? = 1, (n=0),
d,(,l) == Cnv (P:]-),
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Moments of S, = G1 + Go + -+ - + G,

Theorem: recursion for arbitrary p € N

The (even) moment sequences d'®) := ©((S,)?"), defined for
p,n €N (p>1, n>0), satisfy the recursion

d? = 1, (n=0),
d,(,l) == Cnv (P:]-),

n p
dr(rp) = Zdﬁ’i)k ’ (Z dIgEl) :

k=1 j=1
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Momentsof S = G+ Gy +---+ G

Theorem: recursion for arbitrary p € N

The (even) moment sequences d,?) := ((S,)?"), defined for
p,n €N (p>1, n>0), satisfy the recursion

dP = 1, (n=0),
d,(,l) = Cna (P:]-),

n P
) = o, (3
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Moments of S, = G1 + Go + -+ - + G,

Examples - Franz Lehner’'s computer calculations

Here are some examples of the moment sequences d{P) := ((S,)?")
forp=1,2...,n=0,1,2,...
dY = 1, 1, 2 s 14, 42, 132, (Catalan)
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Moments of S, = G1 + Go + -+ - + G,

Examples - Franz Lehner’'s computer calculations

Here are some examples of the moment sequences d{P) := ((S,)?")
forp=1,2...,n=0,1,2,...
dV = 1, 1, 2, 5 14, 42, 132, (Catalan)
d® = 1, 2, 7, 20, 131, 625 3099, (A007852)
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Moments of S, = G1 + Go + -+ - + G,

Examples - Franz Lehner’'s computer calculations

Here are some examples of the moment sequences d{P) := ((S,)?")
forp=1,2...,n=0,1,2,...

dV = 1, 1, 2, 5 14, 42, 132, (Catalan)
d$? 1, 2, 7, 29, 131, 625, 3099, (A007852)
d$® 1, 3, 15, 87, 544, 3566, 24165,

d$ 1, 4, 26, 194, 1551, 12044, 111313,

d® 1, 5, 40, 365, 3555, 36045, 375797,

d® — 1 6, 57, 615, 7064, 84307, 1033089,

d¥ = 1, 7, 77, 959, 12691, 174265, 2454221,
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Moments of S, = G1 + Go + -+ - + G,

Examples - Franz Lehner’'s computer calculations

Here are some examples of the moment sequences d{P) := ((S,)?")
forp=1,2...,n=0,1,2,...

dV = 1, 1, 2, 5 14, 42, 132, (Catalan)
d? 1, 2, 7, 29, 131, 625, 3099, (A007852)
d$® 1, 3, 15, 87, 544, 3566, 24165,

d$ 1, 4, 26, 194, 1551, 12044, 111313,

d® 1, 5, 40, 365, 3555, 36045, 375797,

d® — 1 6, 57, 615, 7064, 84307, 1033089,

d¥ = 1, 7, 77, 959, 12691, 174265, 2454221,

d'?): A007852 (Sloan) Antichains (totally disordered subsets) in
rooted plane trees on n nodes.
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Properties of the moment sequences

Theorem: polynomials

For fixed n € N the numbers (d,(,”))p>1 are polynomials in the
variable p of degree n. -
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Properties of the moment sequences

Theorem: polynomials

For fixed n € N the numbers (d,(,”))p>1 are polynomials in the

variable p of degree n.

| A

Remark
Proof by using Hasebe's monotone cumulants of Wigner law
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Properties of the moment sequences

Theorem: polynomials

For fixed n € N the numbers (d,(,”))p>1 are polynomials in the
variable p of degree n. -

Proof by using Hasebe's monotone cumulants of Wigner law or by
the Faulhaber formula (r-h.s. is polynomial of degree n in p)

n—1 I

¢ ‘n— 1 ifn n—i_p
i o= ;Z(—l) (I.)B;p =+

j=1 i=0
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Properties of the moment sequences

Theorem: polynomials

For fixed n € N the numbers (d,(,”))p>1 are polynomials in the
variable p of degree n. -

| A

Remark
Proof by using Hasebe's monotone cumulants of Wigner law or by
the Faulhaber formula (r-h.s. is polynomial of degree n in p)

p n—1 n
St = %Z(—1>’(7)pr"_i:p7+""

j=1 i=0

oo Zj .
= Z Bi—, Bj — Bernoulli numbers
: J!

J=0
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Properties of the moment sequences

Examples - Franz Lehner’'s computer calculations

dP =1=p°
d(p):p:pl
3 1
d(P)_ 2
2P TP
5 1
d:gp) §p3 + 2p2 + §P
35 71 25 7
dP) — 224 _
=g P Tt P
(p)_g 5 ﬂ 4 E 3 2
ds” = 2P 2p+24p+5p+3p
231 3043 2135 429
d(P):_6 5 4 T2 3
o ~ 6P T g P T g P TeP T

91
12

2

13

20"
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Sum of position operators




Non-crossing partitions

Partial order on blocks

For m € N'C(n) with blocks 7 = {Bx, ..., B¢} define partial order

B; <x Bj if  min B; < min Bj < max Bj < max B;

(block B; is inside B;).
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Non-crossing partitions

Partial order on blocks

For m € N'C(n) with blocks 7 = {Bx, ..., B¢} define partial order

B; <x Bj if  min B; < min Bj < max Bj < max B;

(block B; is inside B;). Since blocks are disjoint, we have either the
strict order B; <, B; (i.e. min B; < min B; and max B; < max B;) or
B,' = Bj i.e. I:_j
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Non-crossing partitions

Partial order on blocks
For m € N'C(n) with blocks 7 = {By, ..., By} define partial order

B; <x Bj if  min B; < min Bj < max Bj < max B;

(block B; is inside B;). Since blocks are disjoint, we have either the
strict order B; <, B; (i.e. min B; < min B; and max B; < max B;) or
B,' = Bj i.e. I:_j

Labels on blocks

For a partition m = {By, ..., Bk} € N'C(n) and the set
[p] :={1,2,..., p} consider the label functions L : m — [p] so that
L(B;) € [p] for each 1 <j < k.
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Weakly monotone ordered non-crossing pair

partitions

We say that a non-crossing partition m € N'C(n) is weakly monotone

ordered by a label function L : m — [p] if the function is weakly
monotone with respect to the partial orders:

B; <» Bj = L(B;) < L(B;))
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Weakly monotone ordered non-crossing pair

partitions

We say that a non-crossing partition ™ € N'C(n) is weakly monotone

ordered by a label function L : m — [p] if the function is weakly
monotone with respect to the partial orders:

B; <» Bj = L(B;) < L(B;))

Notation: N CoWMO([p], 2n)

For positive integers p,n € N we denote by N C, WMO([p], 2n) the
set of all non-crossing pair partitions on [n] weakly monotone ordered
by label functions with values in[p] i.e. all pairs (7, L) where

m € NCy(2n) and L : m — [p] is weakly monotone.
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Combinatorial interpretation

Theorem: moments are the cardinalities

If d$? = o((Gy + - - - + G,)?") and |N CoWMO([p], 2n)| is the
cardinality, then

d{P) = |N CWMO([p], 2n)|.

V. Crismale, M. Griseta, J. Wysoczanski Sum of position operators



Combinatorial interpretation

Theorem: moments are the cardinalities

If d$? = o((Gy + - - - + G,)?") and |N CoWMO([p], 2n)| is the
cardinality, then

d{P) = |N CWMO([p], 2n)|.

This gives the main tool to prove the recursion for the moments.
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