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Construction - JW (2005)

Weakly Monotone Fock Space

Consider Hilbert space H with orthonormal basis {en : n ∈ N} ⊂ H.

By Fwm(H) we denote the subspace of the full Fock space on H
spanned by the vacuum vector Ω and the simple tensors of the form

ein ⊗ ein−1
⊗ · · · ⊗ ei1 , where in ≥ in−1 ≥ · · · ≥ i1.

scalar product:

〈ekr ⊗ · · · ⊗ ek1 , ejs ⊗ · · · ⊗ ej1〉 =

{
1 if r=s, k1 = j1, . . . , kr = jr
0 otherwise

Remark
The indexes are weakly decreasing, hence weakly monotone Fock
space.
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Creation and Annihilation Operators

Creation

Creation A†j := A†(ej) by the basis vector ej is de�ned by

A†j Ω = ej ,

A†j (ein ⊗ ein−1
⊗ · · · ⊗ ei1) = ej ⊗ ein ⊗ ein−1

⊗ · · · ⊗ ei1
if j ≥ in

A†j (ein ⊗ ein−1
⊗ · · · ⊗ ei1) = 0 if j < in.

Annihilation
Annihilation Aj by the basis vector ej is de�ned by

Aj(ei) = δjiΩ, Aj(ein ⊗ ein−1
⊗ · · · ⊗ ei1) = δjinein−1

⊗ · · · ⊗ ei1
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Partial isometries

The operators AjA
†
j and A†jAj are orthogonal projections, hence the

creation operators A†j and the annilhilation operators Aj are partial
isometries

Orthogonal projections A†jAj

map Fwm(H) onto the subspace Fwm(H)=j spanned by the vacuum
and simple tensors of the form (starting with ej)

ej ⊗ eik ⊗ · · · ⊗ ei1 where j ≥ ik ≥ . . . ≥ i1

Orthogonal projections AjA
†
j

map Fwm(H) onto the subspace Fwm(H)≤j spanned by the vacuum
and simple tensors of the form (starting with eik for any ik ≤ j)

eik ⊗ · · · ⊗ ei1 with j ≥ ik ≥ . . . ≥ i1
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Relations

Creation and annihilation operators are bounded and mutually
adjoint: (Aj)

∗ = A†j and satisfy relations:

Relations

AkAj = 0 if j < k

A†kA
†
j = 0 if j > k

AjA
†
k = 0 if k 6= j

More relations (j ,m ∈ N)

AjA
†
j = (Aj)

m(A†j )
m,
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Commutation relations

Commutation relations

I − AjA
†
j =

∑
k>j

A†kAk , n = dim(H) =∞

In − PΩ =
n∑

k=1

A†kAk , n = dim(H) <∞

Problem

Describe C ∗({A†j ,Aj : j ≤ n = dim(H) ≤ ∞}), i.e. the C ∗-algebra
generated by the weakly monotone creation and annihilation
operators (i.e. by partial isometries).
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Monotone independence of algebras

Monotone independence - N. MURAKI 2001

Let (A, ϕ) be a non-commutative probability space, i.e. A is a unital
*-algebra and ϕ is a state on A. We say that a family {Aj : j ∈ N}
of subalgebras of A is monotone independent in (A, ϕ) if the
following two condition hold:

[M1]

If i < j > k and a ∈ Ai , b ∈ Aj , c ∈ Ak then abc = ϕ(b)ac (local
index maxima get out)

[M2]

If j1 > . . . > jk < . . . < jn and ai ∈ Aji then

ϕ(a1a2 . . . an) =
n∏

i=1

ϕ(ai)
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Monotone independence of position operators

Let B be the unital ∗-algebra of all bounded operators on the weakly
monotone Fock space Fwm(H) and let ϕ be the vacuum state:
ϕ(b) := 〈bΩ,Ω〉 for b ∈ B.

For each j ∈ N consider the ∗-subalgebra
Bj := alg{Aj , A

†
j } ⊂ B generated by the creation A†j and annihilation

Aj operators.

Monotone independence

The algebras {Bj : j ∈ N} are monotone independent in the
non-commutative probability space (B, ϕ).

Corollary

For j ∈ N the position operators Gj := Aj + A†j are monotone
independent in (B, ϕ).

V. Crismale, M. Griseta, J. Wysocza«ski (To appear in Journal of Theoretical Probability)Sum of position operators
OTOA, ISI Bangalore, December 13�19, 2018 9

/ 23



Monotone independence of position operators

Let B be the unital ∗-algebra of all bounded operators on the weakly
monotone Fock space Fwm(H) and let ϕ be the vacuum state:
ϕ(b) := 〈bΩ,Ω〉 for b ∈ B. For each j ∈ N consider the ∗-subalgebra
Bj := alg{Aj , A

†
j } ⊂ B generated by the creation A†j and annihilation

Aj operators.

Monotone independence

The algebras {Bj : j ∈ N} are monotone independent in the
non-commutative probability space (B, ϕ).

Corollary

For j ∈ N the position operators Gj := Aj + A†j are monotone
independent in (B, ϕ).

V. Crismale, M. Griseta, J. Wysocza«ski (To appear in Journal of Theoretical Probability)Sum of position operators
OTOA, ISI Bangalore, December 13�19, 2018 9

/ 23



Monotone independence of position operators

Let B be the unital ∗-algebra of all bounded operators on the weakly
monotone Fock space Fwm(H) and let ϕ be the vacuum state:
ϕ(b) := 〈bΩ,Ω〉 for b ∈ B. For each j ∈ N consider the ∗-subalgebra
Bj := alg{Aj , A

†
j } ⊂ B generated by the creation A†j and annihilation

Aj operators.

Monotone independence

The algebras {Bj : j ∈ N} are monotone independent in the
non-commutative probability space (B, ϕ).

Corollary

For j ∈ N the position operators Gj := Aj + A†j are monotone
independent in (B, ϕ).

V. Crismale, M. Griseta, J. Wysocza«ski (To appear in Journal of Theoretical Probability)Sum of position operators
OTOA, ISI Bangalore, December 13�19, 2018 9

/ 23



Monotone independence of position operators

Let B be the unital ∗-algebra of all bounded operators on the weakly
monotone Fock space Fwm(H) and let ϕ be the vacuum state:
ϕ(b) := 〈bΩ,Ω〉 for b ∈ B. For each j ∈ N consider the ∗-subalgebra
Bj := alg{Aj , A

†
j } ⊂ B generated by the creation A†j and annihilation

Aj operators.

Monotone independence

The algebras {Bj : j ∈ N} are monotone independent in the
non-commutative probability space (B, ϕ).

Corollary

For j ∈ N the position operators Gj := Aj + A†j are monotone
independent in (B, ϕ).

V. Crismale, M. Griseta, J. Wysocza«ski (To appear in Journal of Theoretical Probability)Sum of position operators
OTOA, ISI Bangalore, December 13�19, 2018 9

/ 23



Main object of our study

Sums of position operators
We study the distributions

ϕ((Sp)m), m ∈ N

of the sums

Sp := G1 + G2 + · · ·+ Gp =

p∑
j=1

(
Aj + A†j

)
of position operators, for p ∈ N.

Since all Gj 's have the same distribution, hence the law of Sp will be
the p-fold monotone convolution of the single distribution of G1.
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Distribution of sums of position operators

Distribution of a single position operator

The distribution of each position operator Gj := Aj + A†j is the

Wigner semicircle law W (x) :=

√
4− x2

2π
on [−2, 2], since

ϕ((Gj)
2m) = Cm =

1

m + 1

(
2m

m

)
, ϕ((Gj)

2m+1) = 0, m ≥ 0.

Monotone convolution of semicirlce law

The distribution of the sum Sp :=

p∑
j=1

Gj of p position operators is

the p-th monotone convolution power of the semicircle law:
Wp := W . · · · .W︸ ︷︷ ︸

p
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Distribution of sum of two position operators

Theorem: distribution of S2 = G1 + G2

The distribution of S2 is absolutely continuous with density

W2(x) =


1
4π

(√√
100− 16x2 − x2 + 10−

√
4− x2

)
|x | ≤ 2

1
4π

√
−2x2 − 2|x |

√
x2 − 4 + 20, 2 < |x | ≤ 5

2

0 |x | ≥ 5
2

In particular, at the distinguished points W2(±2) = 2
√
3 and

W2(±5
2
) = 0.
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Distribution of sum of p position operators

Theorem: distribution Wp of Sp := G1 + G2 + · · ·+ Gp

The distribution of Sp is an absolutely continuous probability measure
with density Wp := W .p.

The Cauchy transform of Wp de�ned by

Gp(z) :=

∫ +∞

−∞

Wp(x) dx

z − x
,

satis�es the recursion

G2p(z) + Gp(z) · (Kp−1(z)− z) + 1 = 0,

where

p−1∑
k=1

Gk(z) =: Kp−1(z).
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Distribution of sum of p position operators

Theorem: support of the distribution Wp

The support of the measure Wp is a symmetric interval [− ap, ap]
where the right-end points satisfy the recursion

ap+1 = ap +
1

ap
.

Tools for proof

Consider Zhukovsky map Z (w) := w +
1

w
, its p-fold compositions Zp

and the reciprocal Cauchy transforms Fp(z) :=
1

Gp(z)
of Wp. Then

we have

Zp(Fp(z)) = z , and Fp(ap) = 1, Fp(− ap) = −1.
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Distribution of sum of p position operators

Estimate for the support of Wp

In particular, we have the estimate (supp(Wp) = [−ap, ap])√
p +

√
p(p + 1) ≤ ap ≤

√
2p +

√
2p

hence
ap√
p
≥
√
2 and lim

p→∞

ap√
p

=
√
2.

Therefore the scaled supports

[
− ap√

p
,

ap√
p

]
form an ascending

sequence of intervals with intersection [−
√
2,
√
2]:

ap+1√
p + 1

<
ap√
p
⇐⇒

√
p +

√
p(p + 1) ≤ ap.
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Moments of S2 = G1 + G2

Since the odd moments vanish, we consider only the even ones.

Recursion for p = 2

The (even) moment sequence d (2)
n := ϕ((S2)2n) satis�es d

(2)
0 = 1 and

d (2)
n =

n∑
k=1

d
(2)
n−k

(
d

(2)
k−1 + Ck−1

)
,

Ck :=
1

k + 1

(
2k

k

)
Catalan numbers.
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Moments of Sp = G1 + G2 + · · · + Gp

Theorem: recursion for arbitrary p ∈ N
The (even) moment sequences d (p)

n := ϕ((Sp)2n), de�ned for
p, n ∈ N (p ≥ 1, n ≥ 0), satisfy the recursion

d
(p)
0 = 1, (n = 0),

d (1)
n = Cn, (p = 1),

d (p)
n =

n∑
k=1

d
(p)
n−k ·

(
p∑

j=1

d
(j)
k−1

)
.
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Moments of Sp = G1 + G2 + · · · + Gp

Examples - Franz Lehner's computer calculations

Here are some examples of the moment sequences d (p)
n := ϕ((Sp)2n)

for p = 1, 2, . . . , n = 0, 1, 2, . . .:

d
(1)
n = 1, 1, 2, 5, 14, 42, 132, (Catalan)

d
(2)
n = 1, 2, 7, 29, 131, 625, 3099, (A007852)

d
(3)
n = 1, 3, 15, 87, 544, 3566, 24165, . . .

d
(4)
n = 1, 4, 26, 194, 1551, 12944, 111313, . . .

d
(5)
n = 1, 5, 40, 365, 3555, 36045, 375797, . . .

d
(6)
n = 1, 6, 57, 615, 7064, 84307, 1033089, . . .

d
(7)
n = 1, 7, 77, 959, 12691, 174265, 2454221, . . .

d
(2)
n : A007852 (Sloan) Antichains (totally disordered subsets) in

rooted plane trees on n nodes.
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Properties of the moment sequences

Theorem: polynomials

For �xed n ∈ N the numbers
(
d (p)
n

)
p≥1 are polynomials in the

variable p of degree n.

Remark
Proof by using Hasebe's monotone cumulants of Wigner law or by
the Faulhaber formula (r-h.s. is polynomial of degree n in p)

p∑
j=1

jn−1 =
1

n

n−1∑
i=0

(−1)i
(
n

i

)
Bip

n−i =
pn

n
+ . . . ,

z

ez − 1
=

∞∑
j=0

Bj

z j

j !
, Bj − Bernoulli numbers
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Properties of the moment sequences

Examples - Franz Lehner's computer calculations

d
(p)
0 ≡ 1 = p0

d
(p)
1 = p = p1

d
(p)
2 =

3

2
p2 +

1

2
p

d
(p)
3 =

5

2
p3 + 2p2 +

1

2
p

d
(p)
4 =

35

8
p4 +

71

12
p3 +

25

8
p2 +

7

12
p

d
(p)
5 =

63

8
p5 +

31

2
p4 +

311

24
p3 + 5p2 +

2

3
p

d
(p)
6 =

231

16
p6 +

3043

80
p5 +

2135

48
p4 +

429

16
p3 +

91

12
p2 +

13

20
p
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Non-crossing partitions

Partial order on blocks
For π ∈ NC (n) with blocks π = {B1, . . . ,Bk} de�ne partial order

Bi �π Bj if minBi ≤ minBj ≤ maxBj ≤ maxBi

(block Bj is inside Bi).

Since blocks are disjoint, we have either the
strict order Bi ≺π Bj (i.e. minBi < minBj and maxBj < maxBi) or
Bi = Bj i.e. i = j .

Labels on blocks
For a partition π = {B1, . . . ,Bk} ∈ NC (n) and the set
[p] := {1, 2, . . . , p} consider the label functions L : π → [p] so that
L(Bj) ∈ [p] for each 1 ≤ j ≤ k .
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For π ∈ NC (n) with blocks π = {B1, . . . ,Bk} de�ne partial order

Bi �π Bj if minBi ≤ minBj ≤ maxBj ≤ maxBi

(block Bj is inside Bi). Since blocks are disjoint, we have either the
strict order Bi ≺π Bj (i.e. minBi < minBj and maxBj < maxBi) or
Bi = Bj i.e. i = j .

Labels on blocks
For a partition π = {B1, . . . ,Bk} ∈ NC (n) and the set
[p] := {1, 2, . . . , p} consider the label functions L : π → [p] so that
L(Bj) ∈ [p] for each 1 ≤ j ≤ k .

V. Crismale, M. Griseta, J. Wysocza«ski (To appear in Journal of Theoretical Probability)Sum of position operators
OTOA, ISI Bangalore, December 13�19, 2018 21

/ 23



Non-crossing partitions

Partial order on blocks
For π ∈ NC (n) with blocks π = {B1, . . . ,Bk} de�ne partial order

Bi �π Bj if minBi ≤ minBj ≤ maxBj ≤ maxBi

(block Bj is inside Bi). Since blocks are disjoint, we have either the
strict order Bi ≺π Bj (i.e. minBi < minBj and maxBj < maxBi) or
Bi = Bj i.e. i = j .

Labels on blocks
For a partition π = {B1, . . . ,Bk} ∈ NC (n) and the set
[p] := {1, 2, . . . , p} consider the label functions L : π → [p] so that
L(Bj) ∈ [p] for each 1 ≤ j ≤ k .

V. Crismale, M. Griseta, J. Wysocza«ski (To appear in Journal of Theoretical Probability)Sum of position operators
OTOA, ISI Bangalore, December 13�19, 2018 21

/ 23



Weakly monotone ordered non-crossing pair

partitions

De�nition
We say that a non-crossing partition π ∈ NC (n) is weakly monotone
ordered by a label function L : π → [p] if the function is weakly
monotone with respect to the partial orders:

Bi ≺π Bj =⇒ L(Bi) ≤ L(Bj)

Notation: NC 2WMO([p], 2n)

For positive integers p, n ∈ N we denote by NC 2WMO([p], 2n) the
set of all non-crossing pair partitions on [n] weakly monotone ordered
by label functions with values in[p] i.e. all pairs (π, L) where
π ∈ NC 2(2n) and L : π → [p] is weakly monotone.
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Combinatorial interpretation

Theorem: moments are the cardinalities

If d
(p)
n := ϕ((G1 + · · ·+ Gp)2n) and |NC 2WMO([p], 2n)| is the

cardinality, then

d (p)
n = |NC 2WMO([p], 2n)|.

This gives the main tool to prove the recursion for the moments.
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