The analogue of the Hardy space H^1 for a complete Pick space

Michael Hartz joint work with Alexandru Aleman, John M^cCarthy and Stefan Richter

FernUniversität in Hagen

OTOA 2018

H^2 and its relatives

The Hardy space is

$$H^2 = \Big\{ f \in \mathcal{O}(\mathbb{D}) : \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{it})|^2 \frac{dt}{2\pi} < \infty \Big\}.$$

H^2 and its relatives

The Hardy space is

$$H^2 = \Big\{ f \in \mathcal{O}(\mathbb{D}) : \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{it})|^2 \frac{dt}{2\pi} < \infty \Big\}.$$

and

$$H^{\infty} = \{\varphi \in \mathcal{O}(\mathbb{D}) : \sup_{z \in \mathbb{D}} |\varphi(z)| < \infty\},\$$

$$H^{1} = \Big\{ f \in \mathcal{O}(\mathbb{D}) : \sup_{0 < r < 1} \int_{0}^{2\pi} |f(re^{it})| \frac{dt}{2\pi} < \infty \Big\}.$$

H^2 and its relatives

The Hardy space is

$$H^2 = \Big\{ f \in \mathcal{O}(\mathbb{D}) : \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{it})|^2 \frac{dt}{2\pi} < \infty \Big\}.$$

 $H^{\infty} = \{\varphi \in \mathcal{O}(\mathbb{D}) : \sup_{z \in \mathbb{D}} |\varphi(z)| < \infty\},\$

and

$$H^{1} = \Big\{ f \in \mathcal{O}(\mathbb{D}) : \sup_{0 < r < 1} \int_{0}^{2\pi} |f(re^{it})| \frac{dt}{2\pi} < \infty \Big\}.$$

The Smirnov class is

$$N^+ = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in H^\infty, \overline{\psi H^2} = H^2 \Big\}.$$

Fact

 $H^\infty \subset H^2 \subset H^1 \subset N^+.$

H^2 as an RKHS

 H^2 is a reproducing kernel Hilbert space on \mathbb{D} , i.e. for $w \in \mathbb{D}$, there exists $k_w \in H^2$ with

$$\langle f, k_w \rangle = f(w) \quad (f \in H^2).$$

Here, $k_w(z) = \frac{1}{1-z\overline{w}}$.

H^2 as an RKHS

 H^2 is a reproducing kernel Hilbert space on \mathbb{D} , i.e. for $w \in \mathbb{D}$, there exists $k_w \in H^2$ with

$$\langle f, k_w \rangle = f(w) \quad (f \in H^2).$$

Here, $k_w(z) = \frac{1}{1-z\overline{w}}$. Moreover,

$$H^{\infty} = \mathsf{Mult}(H^2) = \{\varphi : \mathbb{D} \to \mathbb{C} : \varphi \cdot f \in H^2 \text{ for all } f \in H^2\}$$

and

$$||\varphi||_{\infty} = ||\varphi||_{\mathsf{Mult}(H^2)}.$$

Goal

Find analogues of H^1 and N^+ for more general RKHS.

Let \mathcal{H} be a RKHS of functions on a set X with kernel k.

Standing assumption

Assume k normalized at $x_0 \in X$, i.e. $k_{x_0}(x) = 1$ for all $x \in X$.

Let \mathcal{H} be a RKHS of functions on a set X with kernel k.

Standing assumption

Assume k normalized at $x_0 \in X$, i.e. $k_{x_0}(x) = 1$ for all $x \in X$.

Recall that

$$N^+ = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in H^\infty : \overline{\psi H^2} = H^2 \Big\}.$$

Let \mathcal{H} be a RKHS of functions on a set X with kernel k.

Standing assumption

Assume k normalized at $x_0 \in X$, i.e. $k_{x_0}(x) = 1$ for all $x \in X$.

Recall that

$$N^+ = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in H^\infty : \overline{\psi H^2} = H^2 \Big\}.$$

Definition

$$N^{+}(\mathcal{H}) = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in \mathsf{Mult}(\mathcal{H}), \overline{\psi\mathcal{H}} = \mathcal{H} \Big\}.$$

Let \mathcal{H} be a RKHS of functions on a set X with kernel k.

Standing assumption

Assume k normalized at $x_0 \in X$, i.e. $k_{x_0}(x) = 1$ for all $x \in X$.

Recall that

$$N^+ = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in H^\infty : \overline{\psi H^2} = H^2 \Big\}.$$

Definition

$$N^{+}(\mathcal{H}) = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in \mathsf{Mult}(\mathcal{H}), \overline{\psi\mathcal{H}} = \mathcal{H} \Big\}.$$

Question

Is $\mathcal{H} \subset N^+(\mathcal{H})$?

Let \mathcal{H} be a RKHS of functions on a set X with kernel k.

Standing assumption

Assume k normalized at $x_0 \in X$, i.e. $k_{x_0}(x) = 1$ for all $x \in X$.

Recall that

$$N^+ = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in H^\infty : \overline{\psi H^2} = H^2 \Big\}.$$

Definition

$$N^{+}(\mathcal{H}) = \Big\{ \frac{\varphi}{\psi} : \varphi, \psi \in \mathsf{Mult}(\mathcal{H}), \overline{\psi\mathcal{H}} = \mathcal{H} \Big\}.$$

Question

Is $\mathcal{H} \subset N^+(\mathcal{H})$?

No, if $\mathcal{H} = L^2_a = \mathcal{O}(\mathbb{D}) \cap L^2(\mathbb{D})$.

Nevanlinna–Pick interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in H^{\infty}$ with

 $f(z_i) = \lambda_i \text{ for } 1 \le i \le n \text{ and } ||f||_{\infty} \le 1$

if and only if the matrix

$$\Big[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\Big]_{i,j=1}^n$$

is positive.

Nevanlinna–Pick interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in Mult(H^2)$ with

 $f(z_i) = \lambda_i \text{ for } 1 \le i \le n \text{ and } ||f||_{\mathsf{Mult}(H^2)} \le 1$

if and only if the matrix

$$\left[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n$$

is positive.

Nevanlinna–Pick interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, \ldots, z_n \in \mathbb{D}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. There exists $f \in Mult(H^2)$ with

 $f(z_i) = \lambda_i \text{ for } 1 \le i \le n \text{ and } ||f||_{Mult(H^2)} \le 1$

if and only if the matrix

$$\left[\frac{1-\lambda_i\overline{\lambda_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n = \left[\left(1-\lambda_i\overline{\lambda_j}\right)k_{z_j}(z_i)\right]_{i,j=1}^n$$

is positive. Here $k_w(z) = (1 - z\overline{w})^{-1}$ is the reproducing kernel of H^2 .

Complete Pick spaces

Let \mathcal{H} be an RKHS on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, does there exist $f \in Mult(\mathcal{H})$ with

 $f(z_i) = \lambda_i$ for $1 \le i \le n$ and $||f||_{\mathsf{Mult}(\mathcal{H})} \le 1$?

Complete Pick spaces

Let \mathcal{H} be an RKHS on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, does there exist $f \in Mult(\mathcal{H})$ with

 $f(z_i) = \lambda_i$ for $1 \le i \le n$ and $||f||_{\mathsf{Mult}(\mathcal{H})} \le 1$?

A necessary condition is that the matrix

$$\left[k_{z_j}(z_i)(1-\lambda_i\overline{\lambda_j})\right]_{i,j=1}^n$$

is positive.

Definition

 \mathcal{H} is called a Pick space if this condition is sufficient. \mathcal{H} is called a complete Pick space if the analogue of this condition for matrix valued functions is sufficient.

• The Hardy space H^2 is a complete Pick space.

- The Hardy space H^2 is a complete Pick space.
- The Bergman space $L^2_a = \mathcal{O}(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.

- The Hardy space H^2 is a complete Pick space.
- The Bergman space $L^2_a = \mathcal{O}(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- The Dirichlet space

$$\mathcal{D} = \{ f \in \mathcal{O}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}$$

is a complete Pick space (Agler, 1988).

- The Hardy space H^2 is a complete Pick space.
- The Bergman space $L^2_a = \mathcal{O}(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- The Dirichlet space

$$\mathcal{D} = \{ f \in \mathcal{O}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}$$

is a complete Pick space (Agler, 1988).

▶ The Drury-Arveson space H_d^2 (a.k.a. symmetric Fock space) is the RKHS on \mathbb{B}_d , the open unit ball in \mathbb{C}^d , with kernel

$$k_w(z) = \frac{1}{1 - \langle z, w \rangle}$$

This is a complete Pick space.

Recall that

$$N^{+}(\mathcal{H}) = \left\{ \frac{\varphi}{\psi} : \varphi, \psi \in \mathsf{Mult}(\mathcal{H}), \overline{\psi\mathcal{H}} = \mathcal{H} \right\}.$$

Theorem (Aleman–H.–McCarthy–Richter)

Let \mathcal{H} be a complete Pick space on X. Then $\mathcal{H} \subset N^+(\mathcal{H})$.

For the Drury-Arveson space H_d^2 with $d < \infty$, this was shown by Alpay, Bolotnikov and Kaptanoğlu.

Recall that

$$N^{+}(\mathcal{H}) = \left\{ \frac{\varphi}{\psi} : \varphi, \psi \in \mathsf{Mult}(\mathcal{H}), \overline{\psi}\overline{\mathcal{H}} = \mathcal{H} \right\}.$$

Theorem (Aleman-H.-McCarthy-Richter)

Let \mathcal{H} be a complete Pick space on X. Then $\mathcal{H} \subset N^+(\mathcal{H})$.

For the Drury-Arveson space H_d^2 with $d < \infty$, this was shown by Alpay, Bolotnikov and Kaptanoğlu.

Concrete formula

If $f \in \mathcal{H}$ with ||f|| = 1, define $V_f(z) = 2\langle f, k_z f \rangle - 1$,

$$\psi = \frac{1}{V_f + 1}, \quad \varphi = \frac{f}{V_f + 1}.$$

Then $\varphi, \psi \in Mult(\mathcal{H}), \overline{\psi\mathcal{H}} = \mathcal{H} \text{ and } f = \frac{\varphi}{\psi}.$

An application to zero sets

Let S be a set of functions on X. A subset $Z \subset X$ is called a zero set for S if there exists $f \in S$ with $Z = f^{-1}(0)$.

Corollary

Let $\mathcal H$ be a complete Pick space on X. Then the zero sets for $\mathcal H$ and for ${\rm Mult}(\mathcal H)$ agree.

For the Dirichlet space, this is a theorem Marshall and Sundberg.

An application to zero sets

Let S be a set of functions on X. A subset $Z \subset X$ is called a zero set for S if there exists $f \in S$ with $Z = f^{-1}(0)$.

Corollary

Let $\mathcal H$ be a complete Pick space on X. Then the zero sets for $\mathcal H$ and for ${\rm Mult}(\mathcal H)$ agree.

For the Dirichlet space, this is a theorem Marshall and Sundberg.

Proof.

Since $\operatorname{Mult}(\mathcal{H}) \subset \mathcal{H}$, every zero set for $\operatorname{Mult}(\mathcal{H})$ is a zero set for \mathcal{H} . Conversely, let $f \in \mathcal{H}$. By the theorem, write $f = \frac{\varphi}{\psi}$ with $\varphi, \psi \in \operatorname{Mult}(\mathcal{H})$ and ψ non-vanishing. Then $f^{-1}(0) = \varphi^{-1}(0)$.

The analogue of H^1

Fact

 $H^1=\{fg:f,g\in H^2\}.$

The analogue of H^1

Fact

 $H^1=\{fg:f,g\in H^2\}.$

Definition

Let ${\mathcal H}$ be an RKHS. The weak product of ${\mathcal H}$ is

$$\mathcal{H} \odot \mathcal{H} = \left\{ f = \sum_{n=0}^{\infty} g_n h_n : g_n, h_n \in \mathcal{H} \text{ and } \sum_{n=0}^{\infty} ||f_n|| \, ||g_n|| < \infty \right\}.$$

Weak products and the Smirnov class

Recall that $H^1 \subset N^+$.

Theorem (Aleman–H.–M^cCarthy–Richter)

Let \mathcal{H} be a complete Pick space that satisfies the column-row property. Then $\mathcal{H} \odot \mathcal{H} \subset N^+(\mathcal{H})$.

This applies to the Drury–Arveson space H_d^2 for $d < \infty$ and the Dirichlet space.

Weak products and the Smirnov class

Recall that $H^1 \subset N^+$.

Theorem (Aleman–H.–M^cCarthy–Richter)

Let \mathcal{H} be a complete Pick space that satisfies the column-row property. Then $\mathcal{H} \odot \mathcal{H} \subset N^+(\mathcal{H})$.

This applies to the Drury–Arveson space H_d^2 for $d < \infty$ and the Dirichlet space.

Theorem (Aleman–H.–M^cCarthy–Richter)

Let \mathcal{H} be a complete Pick space that satisfies the column-row property. Then multiplier invariant subspaces of \mathcal{H} and of $\mathcal{H} \odot \mathcal{H}$ are in bijection via

$$\mathcal{M} \mapsto \overline{\mathcal{M}}^{\mathcal{H} \odot \mathcal{H}}$$
$$\mathcal{N} \cap \mathcal{H} \nleftrightarrow \mathcal{N}.$$

Hankel forms on H^2

Definition

A Hankel form on H^2 with symbol $b \in H^2$ is a densely defined bilinear form

 $H_b: H^2 \times H^2 \to \mathbb{C}, \quad (\varphi, f) \mapsto \langle \varphi f, b \rangle \quad (\varphi \in H^\infty, f \in H^2).$

Let $\mathcal{X} = \{ b \in H^2 : H_b \text{ is bounded} \}.$

Hankel forms on H^2

Definition

A Hankel form on H^2 with symbol $b \in H^2$ is a densely defined bilinear form

$$H_b: H^2 \times H^2 \to \mathbb{C}, \quad (\varphi, f) \mapsto \langle \varphi f, b \rangle \quad (\varphi \in H^\infty, f \in H^2).$$

Let $\mathcal{X} = \{ b \in H^2 : H_b \text{ is bounded} \}.$

Theorem (Nehari, 1957)

 $(H^1)^*=\mathcal{X}.$

Fefferman 1971: Function theoretic characterization of $\mathcal X$ as BMOA.

Hankel forms on complete Pick spaces

Definition

Let \mathcal{H} be a complete Pick space. A Hankel form on \mathcal{H} with symbol $b \in \mathcal{H}$ is a densely defined bilinear form

 $H_b: \mathcal{H} \times \mathcal{H} \to \mathbb{C}, \quad (\varphi, f) \mapsto \langle \varphi f, b \rangle \quad (\varphi \in \mathsf{Mult}(\mathcal{H}), f \in \mathcal{H}).$

Let $\mathcal{X}(\mathcal{H}) = \{b \in \mathcal{H} : H_b \text{ is bounded}\}.$

Hankel forms on complete Pick spaces

Definition

Let \mathcal{H} be a complete Pick space. A Hankel form on \mathcal{H} with symbol $b \in \mathcal{H}$ is a densely defined bilinear form

 $H_b: \mathcal{H} \times \mathcal{H} \to \mathbb{C}, \quad (\varphi, f) \mapsto \langle \varphi f, b \rangle \quad (\varphi \in \mathsf{Mult}(\mathcal{H}), f \in \mathcal{H}).$

Let $\mathcal{X}(\mathcal{H}) = \{b \in \mathcal{H} : H_b \text{ is bounded}\}.$

Theorem (Aleman–H.–M^cCarthy–Richter)

Let \mathcal{H} be a complete Pick space that satisfies the column-row property. Then $(\mathcal{H} \odot \mathcal{H})^* = \mathcal{X}(\mathcal{H})$.

Hankel forms on complete Pick spaces

Definition

Let \mathcal{H} be a complete Pick space. A Hankel form on \mathcal{H} with symbol $b \in \mathcal{H}$ is a densely defined bilinear form

 $H_b: \mathcal{H} \times \mathcal{H} \to \mathbb{C}, \quad (\varphi, f) \mapsto \langle \varphi f, b \rangle \quad (\varphi \in \mathsf{Mult}(\mathcal{H}), f \in \mathcal{H}).$

Let $\mathcal{X}(\mathcal{H}) = \{b \in \mathcal{H} : H_b \text{ is bounded}\}.$

Theorem (Aleman–H.–M^cCarthy–Richter)

Let \mathcal{H} be a complete Pick space that satisfies the column-row property. Then $(\mathcal{H} \odot \mathcal{H})^* = \mathcal{X}(\mathcal{H})$.

Similar results for other classes of spaces:

- Coiffman–Rochberg-Weis (1976)
- Arcozzi–Rochberg-Sawyer–Wick (2010)
- Richter–Sundberg (2014).

Factorization in weak products

Theorem (Jury–Martin)

Let \mathcal{H} be a complete Pick space that satisfies the column-row property. Then every $f \in \mathcal{H} \odot \mathcal{H}$ can be factored as f = gh with $g, h \in \mathcal{H}$.

The column-row property

Definition

 ${\mathcal H}$ has the column-row property if for all sequences (φ_n) in ${
m Mult}({\mathcal H})$,

$$\begin{bmatrix} M_{\varphi_1} \\ M_{\varphi_2} \\ \vdots \end{bmatrix} \text{ bounded } \Rightarrow \begin{bmatrix} M_{\varphi_1} & M_{\varphi_2} & \cdots \end{bmatrix} \text{ bounded.}$$

The column-row property

Definition

 ${\mathcal H}$ has the column-row property if for all sequences (φ_n) in ${
m Mult}({\mathcal H})$,

$$\begin{bmatrix} M_{\varphi_1} \\ M_{\varphi_2} \\ \vdots \end{bmatrix} \text{ bounded } \Rightarrow \begin{bmatrix} M_{\varphi_1} & M_{\varphi_2} & \cdots \end{bmatrix} \text{ bounded.}$$

Examples of spaces with the column-row property

- ► H² (easy)
- Dirichlet space (Trent)
- Drury–Arveson space H_d^2 for $d < \infty$ (Aleman–H.–M^cCarthy–Richter).

The column-row property

Definition

 ${\mathcal H}$ has the column-row property if for all sequences (φ_n) in ${
m Mult}({\mathcal H})$,

$$\begin{bmatrix} M_{\varphi_1} \\ M_{\varphi_2} \\ \vdots \end{bmatrix} \text{ bounded } \Rightarrow \begin{bmatrix} M_{\varphi_1} & M_{\varphi_2} & \cdots \end{bmatrix} \text{ bounded.}$$

Examples of spaces with the column-row property

- ► H² (easy)
- Dirichlet space (Trent)
- ▶ Drury–Arveson space H_d^2 for $d < \infty$ (Aleman–H.–M^cCarthy–Richter).

Question

Does every complete Pick space have the column-row property?

Thank you!