M-ideals and split faces in matrix ordered spaces

Anindya Ghatak Joint work with Anil Kumar Karn

13.12.2018

(ロ) (四) (E) (E) (E)

1/25

This talk is based on the following papers:

- A. Ghatak, A. Karn, *M-ideals and splits faces of the quasi state space of a non-unital ordered Banach space*, (To appear in **Positivity**.
- A. Ghatak, A. Karn, *CM-ideals and matricial split faces in ordered operator spaces*, (Under preparation).

2 CM-ideals and split faces in ordered operator spaces

Annihilator of W: $W^{\perp} = \{f \in V^* : f(x) = 0 \ \forall x \in W\}.$

Annihilator of W: $W^{\perp} = \{f \in V^* : f(x) = 0 \ \forall x \in W\}.$

M-ideal

A closed subspace W of a Banach space V is said to be an M-ideal if

 $V^* = W^{\perp} \oplus_1 W^{\perp'}.$

Annihilator of W: $W^{\perp} = \{f \in V^* : f(x) = 0 \ \forall x \in W\}.$

M-ideal

A closed subspace W of a Banach space V is said to be an M-ideal if

 $V^* = W^{\perp} \oplus_1 W^{\perp'}.$

Example

 Let K be a locally compact Hausdorff space. Then W ⊂ C₀(K) is an M-ideal iff

$$W = \{ f \in C_0(K) : f_{|_D} = 0 \}$$

for some **closed set** $D \subset K$.

4 / 25

Annihilator of W: $W^{\perp} = \{f \in V^* : f(x) = 0 \ \forall x \in W\}.$

M-ideal

A closed subspace W of a Banach space V is said to be an M-ideal if

 $V^* = W^{\perp} \oplus_1 W^{\perp'}.$

Example

 Let K be a locally compact Hausdorff space. Then W ⊂ C₀(K) is an M-ideal iff

$$W = \{ f \in C_0(K) : f_{|_D} = 0 \}$$

for some **closed set** $D \subset K$.

(Alfsen-Effros, 72) Let A be a C*-algebra. Then W is an M-ideal in A iff W is closed two sided ideal.

4 / 25

Split faces

• Let $F \subset K$ be two convex sets. Then F is a *face* of K if $u, v \in K$, and $\lambda \in (0, 1)$ such that

$$\lambda u + (1 - \lambda) v \in F \implies u, v \in F.$$

• Let $u \in K$. Then

 $\mathsf{face}_{\mathcal{K}}(u) = \{ v \in \mathcal{K} : u = \lambda v + (1 - \lambda)w, w \in \mathcal{K}, \lambda \in (0, 1) \}.$

Split faces

• Let $F \subset K$ be two convex sets. Then F is a *face* of K if $u, v \in K$, and $\lambda \in (0, 1)$ such that

$$\lambda u + (1 - \lambda)v \in F \implies u, v \in F.$$

• Let $u \in K$. Then

 $\mathsf{face}_{\mathcal{K}}(\mathbf{u}) = \{\mathbf{v} \in \mathcal{K} : \mathbf{u} = \lambda \mathbf{v} + (1 - \lambda)\mathbf{w}, \mathbf{w} \in \mathcal{K}, \lambda \in (0, 1)\}.$

• F is a face, $F_K^C := \cup \{ \mathsf{face}_K(v) : v \in K \text{ and } \mathsf{face}_K(v) \cap F = \emptyset \}.$

Split faces

• Let $F \subset K$ be two convex sets. Then F is a *face* of K if $u, v \in K$, and $\lambda \in (0, 1)$ such that

$$\lambda u + (1 - \lambda) v \in F \implies u, v \in F.$$

• Let $u \in K$. Then

 $\mathsf{face}_{\mathcal{K}}(u) = \{v \in \mathcal{K} : u = \lambda v + (1 - \lambda)w, w \in \mathcal{K}, \lambda \in (0, 1)\}.$

• F is a face, $F_K^C := \cup \{ \mathsf{face}_K(v) : v \in K \text{ and } \mathsf{face}_K(v) \cap F = \emptyset \}.$

• A proper face $F \subset K$ is a **split face** of K if F_K^C is a proper face of K such that $K = F \oplus_c F_K^C$. That is

$$v \in K \implies v = \lambda u + (1 - \lambda)w$$

for unique $u \in F, w \in F_K^C$ and $\lambda \in [0, 1]$.

5/25

Let E be a locally convex space, and $K \subset E$ be a compact convex set. Let

 $A(K) = \{a : K \to \mathbb{R}, a \text{ is continuous and affine}\}.$

Let E be a locally convex space, and $K \subset E$ be a compact convex set. Let

 $A(K) = \{ a : K \to \mathbb{R}, a \text{ is continuous and affine} \}.$

(Alfsen, Effros, 72)

Let $W \subset A(K)$ be a closed subspace. Then W is an M-ideal in A(K)

Let E be a locally convex space, and $K \subset E$ be a compact convex set. Let

 $A(K) = \{a : K \to \mathbb{R}, a \text{ is continuous and affine}\}.$

(Alfsen, Effros, 72)

Let $W \subset A(K)$ be a closed subspace. Then W is an M-ideal in A(K) iff $W^{\perp} \cap K$ is a closed split face of K.

Let (V, V^+) be a real ordered vector space, V^+ is **proper** $(V^+ \cap -V^+ = 0)$, **generating** $(V = V^+ - V^+)$ and let ||.|| be a norm on V such that V^+ is closed.

Let (V, V^+) be a real ordered vector space, V^+ is **proper** $(V^+ \cap -V^+ = 0)$, **generating** $(V = V^+ - V^+)$ and let ||.|| be a norm on V such that V^+ is closed. Consider the following geometric conditions on V:

Let (V, V^+) be a real ordered vector space, V^+ is **proper** $(V^+ \cap -V^+ = 0)$, **generating** $(V = V^+ - V^+)$ and let ||.|| be a norm on V such that V^+ is closed. Consider the following geometric conditions on V:

Order Smooth ∞ -Normed Space

•
$$(O.\infty.1)$$
 If $u, v, w \in V$ with $u \le v \le w$, then

 $||v|| \le \max(||u||, ||w||);$

Let (V, V^+) be a real ordered vector space, V^+ is **proper** $(V^+ \cap -V^+ = 0)$, **generating** $(V = V^+ - V^+)$ and let ||.|| be a norm on V such that V^+ is closed. Consider the following geometric conditions on V:

Order Smooth ∞ -Normed Space

•
$$(O.\infty.1)$$
 If $u, v, w \in V$ with $u \le v \le w$, then

 $||v|| \le \max(||u||, ||w||);$

(0.∞.2) For v ∈ V and ε > 0, there exist v₁, v₂ ∈ V⁺ such that

 $v = v_1 - v_2$ and $\max(||v_1||, ||v_2||) < ||v|| + \epsilon$.

Let (V, V^+) be a real ordered vector space, V^+ is **proper** $(V^+ \cap -V^+ = 0)$, **generating** $(V = V^+ - V^+)$ and let ||.|| be a norm on V such that V^+ is closed. Consider the following geometric conditions on V:

Order Smooth ∞ -Normed Space

•
$$(O.\infty.1)$$
 If $u, v, w \in V$ with $u \le v \le w$, then

 $||v|| \le \max(||u||, ||w||);$

(0.∞.2) For v ∈ V and ε > 0, there exist v₁, v₂ ∈ V⁺ such that

 $v = v_1 - v_2$ and $\max(||v_1||, ||v_2||) < ||v|| + \epsilon$.

(OS.∞.2) For $v \in V$, there exist $v_1, v_2 \in V^+$ such that $v = v_1 - v_2$ and $\max(||v_1||, ||v_2||) \leq ||\overline{v}||$.

Examples of Order Smooth ∞ -Normed Spaces

• The self-adjoint part of C^* -algebra \mathcal{A}_{sa} ;

2 An order unit space
$$(A, A^+, e)$$

 $[a \in A \implies -re \leq a \leq re$, for some $r \geq 0]$;

■ An approximate order unit space $(A, A^+, \{e_\lambda\})$ $[-re_\lambda \le a \le re_\lambda \text{ for some } e_\lambda, r \ge 0];$

Examples of Order Smooth ∞ -Normed Spaces

• The self-adjoint part of C^* -algebra \mathcal{A}_{sa} ;

2 An order unit space
$$(A, A^+, e)$$

 $[a \in A \implies -re \leq a \leq re$, for some $r \geq 0]$;

- An approximate order unit space $(A, A^+, \{e_\lambda\})$ $[-re_\lambda \le a \le re_\lambda \text{ for some } e_\lambda, r \ge 0];$
- A(K) with $A(K)^+ = \{a \in A(K) : a(k) \ge 0 \ \forall k \in K\}.$

Order Smooth 1-Normed Space

Consider the following geometric conditions:

• (0.1.1) If $u, v, w \in V$ with $u \leq v \leq w$, then

 $||v|| \le ||u|| + ||w||;$

• (0.1.2) For $v \in V$ and $\epsilon > 0$, there are $v_1, v_2 \in V^+$ such that

 $v = v_1 - v_2$ and $||v_1|| + ||v_2|| < ||v|| + \epsilon$.

Order Smooth 1-Normed Space

Consider the following geometric conditions:

• (0.1.1) If $u, v, w \in V$ with $u \leq v \leq w$, then

 $||v|| \le ||u|| + ||w||;$

• (0.1.2) For $v \in V$ and $\epsilon > 0$, there are $v_1, v_2 \in V^+$ such that

 $v = v_1 - v_2$ and $||v_1|| + ||v_2|| < ||v|| + \epsilon$.

(*OS*.1.2) For $v \in V$, there are $v_1, v_2 \in V^+$ such that

 $v = v_1 - v_2$ and $||v_1|| + ||v_2|| \le ||v||$.

(Karn, 10)

Let $(V, V^+, \|.\|)$ be an ordered normed space, V^+ is proper, generating and normed closed.

Then $(O.\infty.1)$ on $V \iff (OS.1.2)$ on V^* . Also $(O.\infty.2)$ on $V \iff (O.1.1)$ on V^* .

Hence

(Karn, 10)

Let $(V, V^+, \|.\|)$ be an ordered normed space, V^+ is proper, generating and normed closed.

Then $(O.\infty.1)$ on $V \iff (OS.1.2)$ on V^* . Also $(O.\infty.2)$ on $V \iff (O.1.1)$ on V^* .

Hence V is an order smooth ∞ -normed space if and only if

(Karn, 10)

Let $(V, V^+, ||.||)$ be an ordered normed space, V^+ is proper, generating and normed closed.

Then
$$(0.\infty.1)$$
 on $V \iff (OS.1.2)$ on V^* .
Also $(0.\infty.2)$ on $V \iff (O.1.1)$ on V^* .

Hence V is an order smooth ∞ -normed space if and only if V^* is an order smooth 1-normed space satisfying the condition (OS.1.2).

Complementary set of a cone

Let V be a normed linear space.

• If S is a convex subset of V, then $\operatorname{cone}(S) = \bigcup_{\lambda \ge 0} \lambda S$.

Complementary set of a cone

Let V be a normed linear space.

- If S is a convex subset of V, then $\operatorname{cone}(S) = \bigcup_{\lambda \ge 0} \lambda S$.
- Let $V_1 = \{v \in V : \|v\| \le 1\}$ and $v \in V$,

$$C(v) = \begin{cases} \operatorname{cone}(\operatorname{face}_{V_1}(\frac{v}{\|v\|})) & \text{if } v \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Complementary set of a cone

Let V be a normed linear space.

- If S is a convex subset of V, then $\operatorname{cone}(S) = \bigcup_{\lambda \ge 0} \lambda S$.
- Let $V_1 = \{v \in V : \|v\| \le 1\}$ and $v \in V$,

$$C(v) = \begin{cases} \operatorname{cone}(\operatorname{face}_{V_1}(\frac{v}{\|v\|})) & \text{if } v \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

• For a cone C in V, we write

$$C' := \{ v \in V : C \cap C(v) = \{0\} \}.$$

(Alfsen-Effros, 72)

Let V be a Banach space, and let W be a closed subspace of V. Then W is an M-ideal in V if and only if $W^{\perp'}$ is convex.

(Alfsen-Effros, 72)

Let V be a Banach space, and let W be a closed subspace of V. Then W is an M-ideal in V if and only if $W^{\perp'}$ is convex.

(Alfsen-Effros, 72)

Let V be a Banach space, and let W be a closed subspace of V. Then W is an M-ideal in V if and only if $W^{\perp'}$ is convex.

Question

Let $(V, V^+, \|.\|)$ be an order smooth ∞ -normed space, and let W be closed subspace of V. Does $W^{\perp+'}$ is convex $\implies W$ is an M-ideal in V.

(G.-Karn, 18)

Let $(V, V^+, \|.\|)$ be a complete order smooth 1-normed space satisfying (OS.1.2). Then

• If
$$u \in V^+$$
, then

$$face_{V_1}(\frac{u}{||u||}) = face_{V_1^+}(\frac{u}{||u||}) \quad (V_1^+ := V_1 \cap V^+)$$

2 (−V⁺)' = V⁺, (V⁺)' = −V⁺.

13/25

$$V^+ := C \oplus_{\mathbf{1}} D,$$

if

$$V^+ := C \oplus_1 D,$$

if

$$v \in C, w \in D \implies ||v + w|| = ||v|| + ||w||;$$

and $u \in V^+ \implies u = v + w$ for some **unique** $v \in C$ and $w \in D$.

$$V^+ := C \oplus_{\mathbf{1}} D,$$

if

$$v \in C, w \in D \implies ||v + w|| = ||v|| + ||w||;$$

and $u \in V^+ \implies u = v + w$ for some **unique** $v \in C$ and $w \in D$.

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞ -normed space and let W be a closed subspace of V. Then W is an M-ideal in V if and only if

$$V^+ := C \oplus_{\mathbf{1}} D,$$

if

$$v \in C, w \in D \implies ||v + w|| = ||v|| + ||w||;$$

and $u \in V^+ \implies u = v + w$ for some **unique** $v \in C$ and $w \in D$.

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞ -normed space and let W be a closed subspace of V. Then W is an M-ideal in V if and only if W satisfies the following conditions: $W^{\perp'+}$ is convex.

2 $V^{*+} = W^{\perp +} \oplus_1 W^{\perp'+}$.

Let V be an order smooth ∞ -normed space. Let G be a face of Q(V) and $0 \in G$. We define

 $G'_{Q(V)} := (\operatorname{cone}(G))' \cap Q(V).$

Let V be an order smooth ∞ -normed space. Let G be a face of Q(V) and $0 \in G$. We define

 $G'_{Q(V)} := (\operatorname{cone}(G))' \cap Q(V).$

Definition (G.- Karn, 18)

Then G is a **split face** of Q(V) if

Let V be an order smooth ∞ -normed space. Let G be a face of Q(V) and $0 \in G$. We define

 $G'_{Q(V)} := (\operatorname{cone}(G))' \cap Q(V).$

Definition (G.- Karn, 18)

Then G is a **split face** of Q(V) if $G'_{Q(V)}$ is also a face of Q(V)

Let V be an order smooth ∞ -normed space. Let G be a face of Q(V) and $0 \in G$. We define

 $G'_{Q(V)} := (\operatorname{cone}(G))' \cap Q(V).$

Definition (G.- Karn, 18)

Then G is a **split face** of Q(V) if $G'_{Q(V)}$ is also a face of Q(V)and if every element in Q(V) has a unique representation in $G \oplus_{c,1} G'_{Q(V)}$,

Let V be an order smooth ∞ -normed space. Let G be a face of Q(V) and $0 \in G$. We define

 $G'_{Q(V)} := (\operatorname{cone}(G))' \cap Q(V).$

Definition (G.- Karn, 18)

Then G is a **split face** of Q(V) if $G'_{Q(V)}$ is also a face of Q(V)and if every element in Q(V) has a unique representation in $G \oplus_{c,1} G'_{Q(V)}$, where

 $G \oplus_{c,1} G'_{Q(V)} := \{ \lambda g + (1-\lambda)h : g \in G, h \in G'_{Q(V)}, \|g\| = \|h\|, \lambda \in [0,1] \}.$

Let V be an order smooth ∞ -normed space. Let G be a face of Q(V) and $0 \in G$. We define

 $G'_{Q(V)} := (\operatorname{cone}(G))' \cap Q(V).$

Definition (G.- Karn, 18)

Then G is a **split face** of Q(V) if $G'_{Q(V)}$ is also a face of Q(V)and if every element in Q(V) has a unique representation in $G \oplus_{c,1} G'_{Q(V)}$, where

 $G \oplus_{c,1} G'_{Q(V)} := \{ \lambda g + (1-\lambda)h : g \in G, h \in G'_{Q(V)}, \|g\| = \|h\|, \lambda \in [0,1] \}.$

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞ -normed space and let W be a closed subspace of V. Then W is an M-ideal in V iff $W^{\perp} \cap Q(V)$ is a split face of Q(V).

5 / 25

Let V be an order smooth $\infty\text{-normed space and}$

let $\tilde{V} = V \oplus \mathbb{R}$ be an **order unit space** by adjoining an order unit to V.

Let V be an order smooth $\infty\text{-normed space and}$

let $\tilde{V} = V \oplus \mathbb{R}$ be an **order unit space** by adjoining an order unit to V.

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞ -normed space. Then V is an *M*-ideal in \tilde{V} iff V is an approximate order unit space.

CM-ideals in matrix ordered spaces

A vector space V together with normed linear space $(M_n(V), \|.\|_n)$ for each *n*, is called an (abstract)**operator space** if

A vector space V together with normed linear space $(M_n(V), \|.\|_n)$ for each *n*, is called an (abstract)**operator space** if (i) $\|\alpha v\beta\|_n \leq \|\alpha\| \|v\|_n \|\beta\|$ for all $\alpha, \beta \in \mathbb{M}_n, v \in M_n(V)$.

A vector space V together with normed linear space $(M_n(V), \|.\|_n)$ for each *n*, is called an (abstract)**operator space** if (i) $\|\alpha v\beta\|_n \le \|\alpha\| \|v\|_n \|\beta\|$ for all $\alpha, \beta \in \mathbb{M}_n, v \in M_n(V)$. (ii) $\|v \oplus w\|_{m+n} = \max\{\|v\|, \|w\|\}$ for all

 $v \in M_m(V), w \in M_n(V).$ (L^{∞}-condition)

A vector space V together with normed linear space $(M_n(V), \|.\|_n)$ for each *n*, is called an (abstract)**operator space** if (i) $\|\alpha v\beta\|_n \leq \|\alpha\| \|v\|_n \|\beta\|$ for all $\alpha, \beta \in \mathbb{M}_n, v \in M_n(V)$. (ii) $\|v \oplus w\|_{m+n} = \max\{\|v\|, \|w\|\}$ for all $v \in M_m(V), w \in M_n(V)$. (L^{∞} -condition)

Let V be an operator space. Then its **matrix dual** V^* is a **matrix normed space**, and thus $(M_n(V^*), \|.\|_n)$ is a Banach space for each n, where the action is given by

$$\langle [\mathbf{v}_{i,j}], [f_{i,j}] \rangle = \sum_{i,j=1}^n f_{i,j}(\mathbf{v}_{i,j})$$

for all $[v_{i,j}] \in M_n(V), [f_{i,j}] \in M_n(V^*).$

Let V be an operator space.

- Then its matricial dual $(V^*, \{\|.\|_n\})$ is an L^1 -matrically normed space, i.e.
- (i) $\|\alpha v\beta\|_n \le \|\alpha\| \|v\|_n \|\beta\|$ for all $\alpha, \beta \in \mathbb{M}_n, v \in M_n(V)$.

Let V be an operator space.

• Then its matricial dual $(V^*, \{\|.\|_n\})$ is an L^1 -matrically normed space, i.e.

(i)
$$\|\alpha v\beta\|_n \le \|\alpha\|\|v\|_n\|\beta\|$$
 for all $\alpha, \beta \in \mathbb{M}_n, v \in M_n(V)$.
and

(ii) $\|v \oplus w\|_{m+n} = \|v\|_m + \|w\|_n$ for all $v \in M_m(V)$, $w \in M_n(V)$. (*L*¹-condition).

• Then its matricial double dual V^{**} is an operator space.

A projection P of an operator space V is called a CM-projection if

 $\|v\|_n = \max\{\|P_n(v)\|_n, \|(I-P)_n(v)\|_n\} \quad \forall v \in M_n(V).$

Let V be an operator space and W be a closed subspace of V. Then W is called a CM-summand if W = P(V) for some CM-projection P of V. A projection P of an operator space V is called a *CM*-projection if

 $\|v\|_n = \max\{\|P_n(v)\|_n, \|(I-P)_n(v)\|_n\} \quad \forall v \in M_n(V).$

Let V be an operator space and W be a closed subspace of V. Then W is called a CM-summand if W = P(V) for some CM-projection P of V.

Definition (Effros-Ruan, 93)

Let V be an operator space and W be a closed subspace of V. Then W is called a CM-ideal in V if $W^{\perp\perp}$ is a CM-summand in V^{**} .

(Effros-Ruan, 93)

Let V be an operator space and let W be a closed subspace of V. Then following are equivalent:

- W is a *CM*-ideal in *V*;
- 2 $M_n(W)$ is an *M*-ideal in $M_n(V)$ for each *n*;
- $M_n(W^{\perp\perp})$ is an *M*-summand in $M_n(V^{**})$ for each *n*.

Theorem (G.- Karn)

Let $(V, \{ \| \cdot \|_n \})$ be an operator space and let W be a closed subspace of V. Then W is a *CM*-ideal in V if and only if there exist a *CL*-projection from V^* onto W^{\perp} .

Let V be a complex *-vector space. Then V is called **matrix** ordered space if there is a cone $M_n(V)^+ \subset M_n(V)_{sa}$ for each n such that $\gamma^* M_m(V)^+ \gamma \subset M_n(V)^+$ whenever $\gamma \in \mathbb{M}_{m,n}$. Let V be a complex *-vector space. Then V is called **matrix** ordered space if there is a cone $M_n(V)^+ \subset M_n(V)_{sa}$ for each n such that $\gamma^* M_m(V)^+ \gamma \subset M_n(V)^+$ whenever $\gamma \in \mathbb{M}_{m,n}$.

Let $(V, \{M_n(V)^+\}, \{\|.\|_n\})$ be a matrix order operator space. Then V is called matricially order smooth ∞ -normed space if $M_n(V)_{sa}$ is an order smooth ∞ -normed space for each n. Let V be a complex *-vector space. Then V is called **matrix** ordered space if there is a cone $M_n(V)^+ \subset M_n(V)_{sa}$ for each n such that $\gamma^* M_m(V)^+ \gamma \subset M_n(V)^+$ whenever $\gamma \in \mathbb{M}_{m,n}$.

Let $(V, \{M_n(V)^+\}, \{\|.\|_n\})$ be a matrix order operator space. Then V is called matricially order smooth ∞ -normed space if $M_n(V)_{sa}$ is an order smooth ∞ -normed space for each n.

Theorem (G.- Karn)

Let $(V, \{\|\cdot\|_n\}, \{M_n(V)^+\})$ be a matricially order smooth ∞ -normed space and let W be a closed **self-adjoint subspace** of V. Then W is a *CM*-**ideal** in V if and only if $M_n(W)_{sa}$ is an *M*-ideal in $M_n(V)_{sa}$ for each $n \in \mathbb{N}$.

Definition (G.-Karn)

Let V be a matricially order smooth ∞ -normed space. Then an L^1 -matricial convex set $\{D_n\}$ is called an L^1 -matricial split face of $\{Q_n(V)\}$ if D_n is a split face of $Q_n(V)$ for each n.

Definition (G.-Karn)

Let V be a matricially order smooth ∞ -normed space. Then an L^1 -matricial convex set $\{D_n\}$ is called an L^1 -matricial split face of $\{Q_n(V)\}$ if D_n is a split face of $Q_n(V)$ for each n.

Theorem (G.-Karn)

Let V be a matricially order smooth ∞ -normed space, and W be a self-adjoint subspace of V. If W is an CM-ideal in V iff

- $\{M_n(W^{\perp}) \cap Q_n(V)\}$ is an L^1 -matrix convex set of V^* ;
- 3 $M_n(W^{\perp}) \cap Q_n(V)$ is a split face of $Q_n(V)$ for each n.

Other references

- E. M. Alfsen and E. G. Effros, *Structure in real Banach spaces-I, II*, Ann. of Math. **96** (1972), 98–173.
- M. D. Choi, E. G. Effros, *Injectivity and operator spaces*, J. Funct. Anal. **24** (1977), 156–209.
- E. G. Effors, Z. J. Ruan, *On the abstract characterization of operator spaces*, Proc. Amer. Math. Soc. **119** (1993), 579–584.
- E. G. Edward. Z. J. Ruan, Mapping spaces and liftings for operator spaces, Proc. Lond. Math. Soc. **69** (1994), 171–197.
- A. K. Karn, *A p-theory of ordered normed spaces*, Positivity **14** (2010), 441–458.

THANK YOU!