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This talk is based on the following papers:

A. Ghatak, A. Karn, M-ideals and splits faces of the quasi
state space of a non-unital ordered Banach space, (To appear
in Positivity.

A. Ghatak, A. Karn, CM-ideals and matricial split faces in
ordered operator spaces, (Under preparation).
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Outline

1 M-ideals in (non-unital) ordered Banach spaces

2 CM-ideals and split faces in ordered operator spaces
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Let V be a Banach space and let W be a closed subspace of V .

Annihilator of W : W⊥ = {f ∈ V ∗ : f (x) = 0 ∀x ∈W }.

M-ideal

A closed subspace W of a Banach space V is said to be an
M-ideal if

V ∗ = W⊥ ⊕1 W
⊥′
.

Example

1 Let K be a locally compact Hausdorff space. Then
W ⊂ C0(K ) is an M-ideal iff

W = {f ∈ C0(K ) : f|D = 0}

for some closed set D ⊂ K .

2 (Alfsen-Effros, 72) Let A be a C ∗-algebra. Then W is an
M-ideal in A iff W is closed two sided ideal.
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Split faces

• Let F ⊂ K be two convex sets. Then F is a face of K if
u, v ∈ K , and λ ∈ (0, 1) such that

λu + (1− λ)v ∈ F =⇒ u, v ∈ F .

• Let u ∈ K . Then

faceK (u) = {v ∈ K : u = λv + (1− λ)w ,w ∈ K , λ ∈ (0, 1)}.

•F is a face , FC
K := ∪{faceK (v) : v ∈ K and faceK (v)∩ F = ∅}.

• A proper face F ⊂ K is a split face of K if FC
K is a proper face

of K such that K = F ⊕c F
C
K . That is

v ∈ K =⇒ v = λu + (1− λ)w

for unique u ∈ F ,w ∈ FC
K and λ ∈ [0, 1].
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M-ideals in A(K ) spaces

Let E be a locally convex space, and K ⊂ E be a compact convex
set. Let

A(K ) = {a : K → R, a is continuous and affine}.

(Alfsen, Effros, 72)

Let W ⊂ A(K ) be a closed subspace. Then W is an M-ideal in
A(K ) iff W⊥ ∩ K is a closed split face of K .
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Ordered Normed Spaces

Let (V ,V+) be a real ordered vector space, V+ is proper
(V+ ∩ −V+ = 0), generating (V = V+ − V+) and let ‖.‖ be a
norm on V such that V+ is closed.

Consider the following geometric conditions on V :

Order Smooth ∞-Normed Space

(O.∞.1) If u, v ,w ∈ V with u ≤ v ≤ w , then

‖v‖ ≤ max(‖u‖, ‖w‖);

(O.∞.2) For v ∈ V and ε > 0, there exist v1, v2 ∈ V+ such
that

v = v1 − v2 and max(‖v1‖, ‖v2‖) < ‖v‖+ ε.

(OS .∞.2) For v ∈ V , there exist v1, v2 ∈ V+ such that

v = v1 − v2 and max(‖v1‖, ‖v2‖) ≤ ‖v‖.
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Examples of Order Smooth ∞-Normed Spaces

1 The self-adjoint part of C ∗-algebra Asa;

2 An order unit space (A,A+, e)

[a ∈ A =⇒ −re ≤ a ≤ re, for some r ≥ 0];

3 An approximate order unit space (A,A+, {eλ})
[−reλ ≤ a ≤ reλ for some eλ, r ≥ 0];

4 A(K ) with A(K )+ = {a ∈ A(K ) : a(k) ≥ 0 ∀k ∈ K}.

8 / 25



Examples of Order Smooth ∞-Normed Spaces

1 The self-adjoint part of C ∗-algebra Asa;

2 An order unit space (A,A+, e)

[a ∈ A =⇒ −re ≤ a ≤ re, for some r ≥ 0];

3 An approximate order unit space (A,A+, {eλ})
[−reλ ≤ a ≤ reλ for some eλ, r ≥ 0];

4 A(K ) with A(K )+ = {a ∈ A(K ) : a(k) ≥ 0 ∀k ∈ K}.

8 / 25



Ordered Normed Spaces

Order Smooth 1-Normed Space

Consider the following geometric conditions:

(O.1.1) If u, v ,w ∈ V with u ≤ v ≤ w , then

‖v‖ ≤ ‖u‖+ ‖w‖;

(O.1.2) For v ∈ V and ε > 0, there are v1, v2 ∈ V+ such that

v = v1 − v2 and ‖v1‖+ ‖v2‖ < ‖v‖+ ε.

(OS .1.2) For v ∈ V , there are v1, v2 ∈ V+ such that

v = v1 − v2 and ‖v1‖+ ‖v2‖ ≤ ‖v‖.
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(Karn, 10)

Let (V ,V+, ‖.‖) be an ordered normed space, V+ is proper,
generating and normed closed.

Then (O.∞.1) on V ⇐⇒ (OS .1.2) on V ∗.
Also (O.∞.2) on V ⇐⇒ (O.1.1) on V ∗.

Hence

V is an order smooth ∞-normed space if and only if
V ∗ is an order smooth 1-normed space satisfying the condition
(OS .1.2).
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Complementary set of a cone

Let V be a normed linear space.

• If S is a convex subset of V , then cone(S) = ∪λ≥0λS .

• Let V1 = {v ∈ V : ‖v‖ ≤ 1} and v ∈ V ,

C (v) =

{
cone(faceV1( v

‖v‖)) if v 6= 0

0 otherwise

• For a cone C in V , we write

C ′ := {v ∈ V : C ∩ C (v) = {0}}.
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Motivation

(Alfsen-Effros, 72)

Let V be a Banach space, and let W be a closed subspace of V .
Then W is an M-ideal in V if and only if W⊥′

is convex.

Question

Let (V ,V+, ‖.‖) be an order smooth ∞-normed space, and let W
be closed subspace of V . Does W⊥+′

is convex =⇒ W is an
M-ideal in V .

12 / 25



Motivation

(Alfsen-Effros, 72)

Let V be a Banach space, and let W be a closed subspace of V .
Then W is an M-ideal in V if and only if W⊥′

is convex.

Question

Let (V ,V+, ‖.‖) be an order smooth ∞-normed space, and let W
be closed subspace of V . Does W⊥+′

is convex =⇒ W is an
M-ideal in V .

12 / 25



Motivation

(Alfsen-Effros, 72)

Let V be a Banach space, and let W be a closed subspace of V .
Then W is an M-ideal in V if and only if W⊥′

is convex.

Question

Let (V ,V+, ‖.‖) be an order smooth ∞-normed space, and let W
be closed subspace of V . Does W⊥+′

is convex =⇒ W is an
M-ideal in V .

12 / 25



Technique

(G.-Karn, 18)

Let (V ,V+, ‖.‖) be a complete order smooth 1-normed space
satisfying (OS .1.2). Then

1 If u ∈ V+, then

faceV1(
u

||u||
) = faceV+

1
(

u

||u||
) (V+

1 := V1 ∩ V+)

2 (−V+)′ = V+, (V+)′ = −V+.
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Let V be an order smooth 1-normed space, and C ,D ⊂ V+. We
write

V+ := C ⊕1 D,

if

v ∈ C ,w ∈ D =⇒ ‖v + w‖ = ‖v‖+ ‖w‖;

and u ∈ V+ =⇒ u = v + w for some unique v ∈ C and w ∈ D.

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞-normed space and let W
be a closed subspace of V .
Then W is an M-ideal in V if and only if

W satisfies the following conditions:

1 W⊥′+ is convex.

2 V ∗+ = W⊥+ ⊕1 W
⊥′+.
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Splits face of quasi-state

Let V be an order smooth ∞-normed space. Let G be a face of
Q(V ) and 0 ∈ G . We define

G ′Q(V ) := (cone(G ))′ ∩ Q(V ).

Definition (G.- Karn, 18)

Then G is a split face of Q(V ) if G ′Q(V ) is also a face of Q(V )

and if every element in Q(V ) has a unique representation in
G ⊕c,1 G

′
Q(V ), where

G⊕c,1G
′
Q(V ) := {λg+(1−λ)h : g ∈ G , h ∈ G ′

Q(V ), ‖g‖ = ‖h‖, λ ∈ [0, 1]}.

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞-normed space and let W be
a closed subspace of V . Then W is an M-ideal in V iff
W⊥ ∩ Q(V ) is a split face of Q(V ).
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W⊥ ∩ Q(V ) is a split face of Q(V ).
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M-ideals and adjoining an order unit

Let V be an order smooth ∞-normed space and

let Ṽ = V ⊕ R be an order unit space by adjoining an order unit
to V .

Theorem (G.-Karn, 18)

Let V be a complete order smooth ∞-normed space. Then V is an

M-ideal in Ṽ iff V is an approximate order unit space.
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CM-ideals in matrix ordered spaces
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Definition

A vector space V together with normed linear space (Mn(V ), ‖.‖n)
for each n, is called an (abstract)operator space if

(i) ‖αvβ‖n ≤ ‖α‖‖v‖n‖β‖ for all α, β ∈Mn, v ∈ Mn(V ).

(ii) ‖v ⊕ w‖m+n = max{‖v‖, ‖w‖} for all
v ∈ Mm(V ),w ∈ Mn(V ). (L∞-condition)

Let V be an operator space. Then its matrix dual V ∗ is a matrix
normed space, and thus (Mn(V ∗), ‖.‖n) is a Banach space for
each n, where the action is given by

〈[vi ,j ], [fi ,j ]〉 =
n∑

i ,j=1

fi ,j(vi ,j)

for all [vi ,j ] ∈ Mn(V ), [fi ,j ] ∈ Mn(V ∗).
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Let V be an operator space.

• Then its matricial dual (V ∗, {‖.‖n}) is an L1-matrically normed
space, i.e.

(i) ‖αvβ‖n ≤ ‖α‖‖v‖n‖β‖ for all α, β ∈Mn, v ∈ Mn(V ).

and

(ii) ‖v ⊕ w‖m+n = ‖v‖m + ‖w‖n for all v ∈ Mm(V ),w ∈ Mn(V ).
(L1-condition).

• Then its matricial double dual V ∗∗ is an operator space.
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A projection P of an operator space V is called a CM-projection if

‖v‖n = max{‖Pn(v)‖n, ‖(I − P)n(v)‖n} ∀v ∈ Mn(V ).

Let V be an operator space and W be a closed subspace of V .
Then W is called a CM-summand if W = P(V ) for some
CM-projection P of V .

Definition (Effros-Ruan, 93)

Let V be an operator space and W be a closed subspace of V .
Then W is called a CM-ideal in V if W⊥⊥ is a CM-summand in
V ∗∗.
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(Effros-Ruan, 93)

Let V be an operator space and let W be a closed subspace of V .
Then following are equivalent:

1 W is a CM-ideal in V ;

2 Mn(W ) is an M-ideal in Mn(V ) for each n;

3 Mn(W⊥⊥) is an M-summand in Mn(V ∗∗) for each n.

Theorem (G.- Karn)

Let (V , {‖ · ‖n}) be an operator space and let W be a closed
subspace of V . Then W is a CM-ideal in V if and only if there
exist a CL-projection from V ∗ onto W⊥.
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Let V be a complex ∗-vector space. Then V is called matrix
ordered space if there is a cone Mn(V )+ ⊂ Mn(V )sa for each n
such that γ∗Mm(V )+γ ⊂ Mn(V )+ whenever γ ∈Mm,n.

Let (V , {Mn(V )+}, {‖.‖n}) be a matrix order operator space.
Then V is called matricially order smooth ∞-normed space if
Mn(V )sa is an order smooth ∞-normed space for each n.

Theorem (G.- Karn)

Let (V , {‖ · ‖n}, {Mn(V )+}) be a matricially order smooth
∞-normed space and let W be a closed self-adjoint subspace of
V .
Then W is a CM-ideal in V if and only if Mn(W )sa is an M-ideal
in Mn(V )sa for each n ∈ N.
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CM-ideals and L1-matricial split faces

Definition (G.-Karn)

Let V be a matricially order smooth ∞-normed space. Then an
L1-matricial convex set {Dn} is called an L1-matricial split face
of {Qn(V )} if Dn is a split face of Qn(V ) for each n.

Theorem (G.-Karn)

Let V be a matricially order smooth ∞-normed space, and W be a
self-adjoint subspace of V . If W is an CM-ideal in V iff

1 {Mn(W⊥) ∩ Qn(V )} is an L1-matrix convex set of V ∗;

2 Mn(W⊥) ∩ Qn(V ) is a split face of Qn(V ) for each n.
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