On analytic Chevalley-Shephard-Todd Theorem

Gargi Ghosh

(Joint work with Shibananda Biswas, Swarnendu Datta and Subrata Shyam Roy)

Indian Institute of Science Education and Research Kolkata

OTOA 2018

December 13, 2018

- Let \mathfrak{S}_n be the symmetric group on n symbols. Let us define the action of \mathfrak{S}_n on \mathbb{C}^n by $\sigma \cdot z = (z_{\sigma^{-1}(1)}, \dots, z_{\sigma^{-1}(n)})$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- Consider a polynomial $f : \mathbb{C}^n \longrightarrow \mathbb{C}$. Let \mathfrak{S}_n act on f by $\sigma(f)(z) = f(\sigma^{-1} \cdot z)$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- $\mathbb{C}[z_1,\ldots,z_n]^{\mathfrak{S}_n} := \{f \in \mathbb{C}[z_1,\ldots,z_n] : \sigma(f) = f \text{ for all } \sigma \in \mathfrak{S}_n\}.$
- Note that

$$s_i(z) = \sum_{1 \le k_1 < k_2 < \ldots < k_i \le n} z_{k_1} \cdots z_{k_i},$$

- Let \mathfrak{S}_n be the symmetric group on n symbols. Let us define the action of \mathfrak{S}_n on \mathbb{C}^n by $\sigma \cdot z = (z_{\sigma^{-1}(1)}, \dots, z_{\sigma^{-1}(n)})$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- Consider a polynomial $f : \mathbb{C}^n \longrightarrow \mathbb{C}$. Let \mathfrak{S}_n act on f by $\sigma(f)(z) = f(\sigma^{-1} \cdot z)$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- $\mathbb{C}[z_1,\ldots,z_n]^{\mathfrak{S}_n} := \{f \in \mathbb{C}[z_1,\ldots,z_n] : \sigma(f) = f \text{ for all } \sigma \in \mathfrak{S}_n\}.$
- Note that

$$s_i(z) = \sum_{1 \le k_1 < k_2 < \ldots < k_i \le n} z_{k_1} \cdots z_{k_i},$$

- Let \mathfrak{S}_n be the symmetric group on n symbols. Let us define the action of \mathfrak{S}_n on \mathbb{C}^n by $\sigma \cdot z = (z_{\sigma^{-1}(1)}, \dots, z_{\sigma^{-1}(n)})$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- Consider a polynomial $f : \mathbb{C}^n \longrightarrow \mathbb{C}$. Let \mathfrak{S}_n act on f by $\sigma(f)(z) = f(\sigma^{-1} \cdot z)$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- $\mathbb{C}[z_1,\ldots,z_n]^{\mathfrak{S}_n} := \{f \in \mathbb{C}[z_1,\ldots,z_n] : \sigma(f) = f \text{ for all } \sigma \in \mathfrak{S}_n\}.$
- Note that

$$s_i(z) = \sum_{1 \le k_1 < k_2 < \dots < k_i \le n} z_{k_1} \cdots z_{k_i},$$

- Let \mathfrak{S}_n be the symmetric group on n symbols. Let us define the action of \mathfrak{S}_n on \mathbb{C}^n by $\sigma \cdot z = (z_{\sigma^{-1}(1)}, \dots, z_{\sigma^{-1}(n)})$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- Consider a polynomial $f : \mathbb{C}^n \longrightarrow \mathbb{C}$. Let \mathfrak{S}_n act on f by $\sigma(f)(z) = f(\sigma^{-1} \cdot z)$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- $\mathbb{C}[z_1,\ldots,z_n]^{\mathfrak{S}_n} := \{f \in \mathbb{C}[z_1,\ldots,z_n] : \boldsymbol{\sigma}(f) = f \text{ for all } \boldsymbol{\sigma} \in \mathfrak{S}_n\}.$

• Note that

$$s_i(z) = \sum_{1 \le k_1 < k_2 < \dots < k_i \le n} z_{k_1} \cdots z_{k_i},$$

- Let \mathfrak{S}_n be the symmetric group on n symbols. Let us define the action of \mathfrak{S}_n on \mathbb{C}^n by $\sigma \cdot z = (z_{\sigma^{-1}(1)}, \dots, z_{\sigma^{-1}(n)})$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- Consider a polynomial $f : \mathbb{C}^n \longrightarrow \mathbb{C}$. Let \mathfrak{S}_n act on f by $\sigma(f)(z) = f(\sigma^{-1} \cdot z)$ for $\sigma \in \mathfrak{S}_n$ and $z \in \mathbb{C}^n$.
- $\mathbb{C}[z_1,\ldots,z_n]^{\mathfrak{S}_n} := \{f \in \mathbb{C}[z_1,\ldots,z_n] : \boldsymbol{\sigma}(f) = f \text{ for all } \boldsymbol{\sigma} \in \mathfrak{S}_n\}.$
- Note that

$$s_i(\mathbf{z}) = \sum_{1 \le k_1 < k_2 < \dots < k_i \le n} z_{k_1} \cdots z_{k_i},$$

Proposition

$$\mathbb{C}[z_1,\ldots,z_n]^{\mathfrak{S}_n}=\mathbb{C}[s_1,\ldots,s_n].$$

Proposition

 $\mathbb{C}[z_1,...,z_n]$ is a free module over the ring of symmetric polynomials, $\mathbb{C}[s_1,...,s_n]$ of rank n!.

Let $f : \mathbb{C}^2 \longrightarrow \mathbb{C}$ be a polynomial map. Note that polynomial f can be decomposed as follows:

$$f(z_1, z_2) = \frac{f(z_1, z_2) + f(z_2, z_1)}{2} + \frac{f(z_1, z_2) - f(z_2, z_1)}{2}.$$
 (0.1)

Let $g(z_1, z_2) = \frac{f(z_1, z_2) - f(z_2, z_1)}{2}$. Clearly, $g(z_1, z_2) = -g(z_2, z_1)$, that is, g is an anti-symmetric function.

Thus there exists a symmetric polynomial *h* such that $g(z_1, z_2) = (z_1 - z_2)h(z_1, z_2)$.

Let $f : \mathbb{C}^2 \longrightarrow \mathbb{C}$ be a polynomial map. Note that polynomial f can be decomposed as follows:

$$f(z_1, z_2) = \frac{f(z_1, z_2) + f(z_2, z_1)}{2} + \frac{f(z_1, z_2) - f(z_2, z_1)}{2}.$$
 (0.1)

Let $g(z_1, z_2) = \frac{f(z_1, z_2) - f(z_2, z_1)}{2}$. Clearly, $g(z_1, z_2) = -g(z_2, z_1)$, that is, *g* is an anti-symmetric function.

Thus there exists a symmetric polynomial *h* such that $g(z_1, z_2) = (z_1 - z_2)h(z_1, z_2).$

Let $f : \mathbb{C}^2 \longrightarrow \mathbb{C}$ be a polynomial map. Note that polynomial f can be decomposed as follows:

$$f(z_1, z_2) = \frac{f(z_1, z_2) + f(z_2, z_1)}{2} + \frac{f(z_1, z_2) - f(z_2, z_1)}{2}.$$
 (0.1)

Let $g(z_1, z_2) = \frac{f(z_1, z_2) - f(z_2, z_1)}{2}$. Clearly, $g(z_1, z_2) = -g(z_2, z_1)$, that is, *g* is an anti-symmetric function.

Thus there exists a symmetric polynomial *h* such that $g(z_1, z_2) = (z_1 - z_2)h(z_1, z_2)$.

Equality (0.1) can be re-written as

$$f(z_1, z_2) = \frac{f(z_1, z_2) + f(z_2, z_1)}{2} + (z_1 - z_2)h(z_1, z_2).$$

Thus any element of $\mathbb{C}[z_1, z_2]$ can be expressed as a linear sum of 1 and $z_1 - z_2$ over the ring of symmetric polynomials $\mathbb{C}[z_1, z_2]^{\mathfrak{S}_2}$.

In other words, $\mathbb{C}[z_1, z_2]$ is a free module of rank 2 over $\mathbb{C}[z_1, z_2]^{\mathfrak{S}_2}$ with $\{1, z_1 - z_2\}$ as one choice of basis.

Equality (0.1) can be re-written as

$$f(z_1, z_2) = \frac{f(z_1, z_2) + f(z_2, z_1)}{2} + (z_1 - z_2)h(z_1, z_2).$$

Thus any element of $\mathbb{C}[z_1, z_2]$ can be expressed as a linear sum of 1 and $z_1 - z_2$ over the ring of symmetric polynomials $\mathbb{C}[z_1, z_2]^{\mathfrak{S}_2}$.

In other words, $\mathbb{C}[z_1, z_2]$ is a free module of rank 2 over $\mathbb{C}[z_1, z_2]^{\mathfrak{S}_2}$ with $\{1, z_1 - z_2\}$ as one choice of basis.

Questions:

- For which kind of groups, we can expect a similar result?
- How the rank of the module is related to the order of the group?
- What happens if we replace polynomials by holomorphic functions?

Definition

A pseudo-reflection on \mathbb{C}^n is a linear endomorphism $\rho : \mathbb{C}^n \to \mathbb{C}^n$ such that the rank of $1 - \rho$ is 1. Equivalently, ρ is not the identity map and it fixes a hyperplane pointwise.

Let *G* be a finite group generated by pseudo-reflections. Then *G* also acts on the set of functions on \mathbb{C}^n by $\rho(f)(z) = f(\rho^{-1} \cdot z)$.

Let $A = \mathbb{C}[z_1, ..., z_n]$ be the ring of polynomial functions on \mathbb{C}^n and let $B = A^G$ be the ring of *G*-invariant elements of *A*.

Definition

A pseudo-reflection on \mathbb{C}^n is a linear endomorphism $\rho : \mathbb{C}^n \to \mathbb{C}^n$ such that the rank of $1 - \rho$ is 1. Equivalently, ρ is not the identity map and it fixes a hyperplane pointwise.

Let *G* be a finite group generated by pseudo-reflections. Then *G* also acts on the set of functions on \mathbb{C}^n by $\rho(f)(z) = f(\rho^{-1} \cdot z)$.

Let $A = \mathbb{C}[z_1, ..., z_n]$ be the ring of polynomial functions on \mathbb{C}^n and let $B = A^G$ be the ring of *G*-invariant elements of *A*.

Definition

A pseudo-reflection on \mathbb{C}^n is a linear endomorphism $\rho : \mathbb{C}^n \to \mathbb{C}^n$ such that the rank of $1 - \rho$ is 1. Equivalently, ρ is not the identity map and it fixes a hyperplane pointwise.

Let *G* be a finite group generated by pseudo-reflections. Then *G* also acts on the set of functions on \mathbb{C}^n by $\rho(f)(z) = f(\rho^{-1} \cdot z)$.

Let $A = \mathbb{C}[z_1, ..., z_n]$ be the ring of polynomial functions on \mathbb{C}^n and let $B = A^G$ be the ring of *G*-invariant elements of *A*.

 $B = \mathbb{C}[\theta_1, \dots, \theta_n]$, where θ_i are algebraically independent homogeneous polynomials, that is, B is itself a polynomial algebra in n variables.

Theorem

A is a free B module of rank d, where d is the order of G. Further, one can choose a basis of A consisting of homogeneous polynomials.

 $B = \mathbb{C}[\theta_1, \dots, \theta_n]$, where θ_i are algebraically independent homogeneous polynomials, that is, B is itself a polynomial algebra in n variables.

Theorem

A is a free B module of rank d, where d is the order of G. Further, one can choose a basis of A consisting of homogeneous polynomials.

Next we want to generalize Chevalley-Shephard-Todd theorem to the setting of holomorphic functions on \mathbb{C}^n .

Let $\theta : \mathbb{C}^n \to \mathbb{C}^n$ be the function defined by

$$oldsymbol{ heta}(z) = ig(oldsymbol{ heta}_1(z), \dots, oldsymbol{ heta}_n(z) ig), \, z \in \mathbb{C}^n$$

Next we want to generalize Chevalley-Shephard-Todd theorem to the setting of holomorphic functions on \mathbb{C}^n .

Let $\theta : \mathbb{C}^n \to \mathbb{C}^n$ be the function defined by

$$oldsymbol{ heta}(z) = ig(oldsymbol{ heta}_1(z), \dots, oldsymbol{ heta}_n(z)ig), \, z \in \mathbb{C}^n.$$

For a *G*-invariant holomorphic function f on \mathbb{C}^n , there exists a unique holomorphic function g on \mathbb{C}^n such that $f = g \circ \theta$.

Let q_1, \ldots, q_d (where d = |G|) be a basis of A as a B module.

Theorem

Let f be a holomorphic function on \mathbb{C}^n . Then there exist unique G-invariant holomorphic functions f_1, \ldots, f_d such that $f = f_1q_1 + \cdots + f_dq_d$.

For a G-invariant holomorphic function f on \mathbb{C}^n , there exists a unique holomorphic function g on \mathbb{C}^n such that $f = g \circ \theta$.

Let q_1, \ldots, q_d (where d = |G|) be a basis of A as a B module.

Theorem

Let f be a holomorphic function on \mathbb{C}^n . Then there exist unique G-invariant holomorphic functions f_1, \ldots, f_d such that $f = f_1q_1 + \cdots + f_dq_d$.

For a *G*-invariant holomorphic function f on \mathbb{C}^n , there exists a unique holomorphic function g on \mathbb{C}^n such that $f = g \circ \theta$.

Let q_1, \ldots, q_d (where d = |G|) be a basis of A as a B module.

Theorem

Let f be a holomorphic function on \mathbb{C}^n . Then there exist unique G-invariant holomorphic functions f_1, \ldots, f_d such that $f = f_1q_1 + \cdots + f_dq_d$.

- Let the polynomials q_1, q_2, \cdots, q_d form a basis of *A* as a *B* module.
- Let us take a holomorphic function *f* : Cⁿ → C. Then the previous theorem ensures that there exist *G*-invariant holomorphic functions *f*₁,*f*₂, · · · ,*f*_d such that

$$f = f_1 q_1 + \dots + f_d q_d.$$

• Let $G = \{\rho_1, \dots, \rho_d\}$. Applying ρ_i to the above equation gives

 $\rho_i(f) = f_1 \rho_i(q_1) + \dots + f_d \rho_i(q_d), 1 \le i \le d.$

- Let the polynomials q_1, q_2, \dots, q_d form a basis of *A* as a *B* module.
- Let us take a holomorphic function *f* : Cⁿ → C. Then the previous theorem ensures that there exist *G*-invariant holomorphic functions *f*₁, *f*₂, ..., *f_d* such that

$$f = f_1 q_1 + \dots + f_d q_d.$$

• Let $G = \{\rho_1, \dots, \rho_d\}$. Applying ρ_i to the above equation gives

 $\rho_i(f) = f_1 \rho_i(q_1) + \dots + f_d \rho_i(q_d), 1 \le i \le d.$

- Let the polynomials q_1, q_2, \dots, q_d form a basis of *A* as a *B* module.
- Let us take a holomorphic function *f* : Cⁿ → C. Then the previous theorem ensures that there exist *G*-invariant holomorphic functions *f*₁,*f*₂, · · · ,*f*_d such that

$$f=f_1q_1+\cdots+f_dq_d.$$

• Let
$$G = \{\rho_1, \dots, \rho_d\}$$
.
Applying ρ_i to the above equation gives

 $\rho_i(f) = f_1 \rho_i(q_1) + \dots + f_d \rho_i(q_d), 1 \le i \le d.$

- Let the polynomials q_1, q_2, \dots, q_d form a basis of *A* as a *B* module.
- Let us take a holomorphic function *f* : Cⁿ → C. Then the previous theorem ensures that there exist *G*-invariant holomorphic functions *f*₁,*f*₂, · · · ,*f*_d such that

$$f=f_1q_1+\cdots+f_dq_d.$$

• Let
$$G = \{\rho_1, \dots, \rho_d\}$$
.
Applying ρ_i to the above equation gives

$$\boldsymbol{\rho}_i(f) = f_1 \boldsymbol{\rho}_i(q_1) + \dots + f_d \boldsymbol{\rho}_i(q_d), 1 \le i \le d.$$

• Let y be the column vector $(f_1, \ldots, f_d)^t$ and let $\mathbf{x} = (\rho_1(f), \ldots, \rho_d(f))^t$.

• Note that My = x and hence

 $(\det M)\mathbf{y} = (\operatorname{adj} \mathbf{M})\mathbf{x},$

where

$$M = \left(\!\!\left(\rho_i(q_j)\right)\!\!\right)_{i,j=1}^d.$$

• Next lemma ensures unique solution of the above system of equations.

Lemma

- Let y be the column vector $(f_1, \ldots, f_d)^t$ and let $\mathbf{x} = (\rho_1(f), \ldots, \rho_d(f))^t$.
- Note that My = x and hence

$$(\det M)\mathbf{y} = (\operatorname{adj} \mathbf{M})\mathbf{x},$$

where

$$M = \left(\left(\rho_i(q_j) \right) \right)_{i,j=1}^d.$$

• Next lemma ensures unique solution of the above system of equations.

Lemma

- Let y be the column vector $(f_1, \ldots, f_d)^t$ and let $\mathbf{x} = (\rho_1(f), \ldots, \rho_d(f))^t$.
- Note that My = x and hence

$$(\det M)\mathbf{y} = (\operatorname{adj} \mathbf{M})\mathbf{x},$$

where

$$M = \left(\left(\rho_i(q_j) \right) \right)_{i,j=1}^d.$$

• Next lemma ensures unique solution of the above system of equations.

Lemma

- Let y be the column vector $(f_1, \ldots, f_d)^t$ and let $\mathbf{x} = (\rho_1(f), \ldots, \rho_d(f))^t$.
- Note that My = x and hence

$$(\det M)\mathbf{y} = (\operatorname{adj} M)\mathbf{x},$$

where

$$M = \left(\left(\rho_i(q_j) \right) \right)_{i,j=1}^d.$$

• Next lemma ensures unique solution of the above system of equations.

Lemma

- We call a hyperplane *H* of \mathbb{C}^n *reflecting* if there exists a pseudo-reflection in *G* fixes *H* pointwise.
- Let H_1, \ldots, H_t be the distinct reflecting hyperplanes associated to G.
- Let *K_i* be the subgroup generated by the pseudo-reflections of *G* those fix *H_i* pointwise.
- Let m_1, \ldots, m_t be the orders of the corresponding subgroups K_1, \ldots, K_t .
- Let L_i be the nonzero linear function on \mathbb{C}^n defining H_i , that is, $H_i = \{z \in \mathbb{C}^n : L_i(z) = 0\}.$

- We call a hyperplane *H* of \mathbb{C}^n *reflecting* if there exists a pseudo-reflection in *G* fixes *H* pointwise.
- Let H_1, \ldots, H_t be the distinct reflecting hyperplanes associated to G.
- Let *K_i* be the subgroup generated by the pseudo-reflections of *G* those fix *H_i* pointwise.
- Let m_1, \ldots, m_t be the orders of the corresponding subgroups K_1, \ldots, K_t .
- Let L_i be the nonzero linear function on \mathbb{C}^n defining H_i , that is, $H_i = \{z \in \mathbb{C}^n : L_i(z) = 0\}.$

- We call a hyperplane *H* of \mathbb{C}^n *reflecting* if there exists a pseudo-reflection in *G* fixes *H* pointwise.
- Let H_1, \ldots, H_t be the distinct reflecting hyperplanes associated to G.
- Let *K_i* be the subgroup generated by the pseudo-reflections of *G* those fix *H_i* pointwise.
- Let m_1, \ldots, m_t be the orders of the corresponding subgroups K_1, \ldots, K_t .
- Let L_i be the nonzero linear function on \mathbb{C}^n defining H_i , that is, $H_i = \{z \in \mathbb{C}^n : L_i(z) = 0\}.$

- We call a hyperplane *H* of \mathbb{C}^n *reflecting* if there exists a pseudo-reflection in *G* fixes *H* pointwise.
- Let H_1, \ldots, H_t be the distinct reflecting hyperplanes associated to G.
- Let *K_i* be the subgroup generated by the pseudo-reflections of *G* those fix *H_i* pointwise.
- Let m_1, \ldots, m_t be the orders of the corresponding subgroups K_1, \ldots, K_t .
- Let L_i be the nonzero linear function on \mathbb{C}^n defining H_i , that is, $H_i = \{z \in \mathbb{C}^n : L_i(z) = 0\}.$

- We call a hyperplane *H* of \mathbb{C}^n *reflecting* if there exists a pseudo-reflection in *G* fixes *H* pointwise.
- Let H_1, \ldots, H_t be the distinct reflecting hyperplanes associated to G.
- Let *K_i* be the subgroup generated by the pseudo-reflections of *G* those fix *H_i* pointwise.
- Let m_1, \ldots, m_t be the orders of the corresponding subgroups K_1, \ldots, K_t .
- Let L_i be the nonzero linear function on \mathbb{C}^n defining H_i , that is, $H_i = \{z \in \mathbb{C}^n : L_i(z) = 0\}.$

Proposition

$$\det(M) = c \prod_{i=1}^{t} L_i^{d(m_i-1)/2},$$

where c is a nonzero constant.

Let G be a finite pseudo-reflection group. For a G-invariant holomorphic function f on a G-invariant domain Ω , there exists a unique holomorphic function g on $\theta(\Omega)$ such that $f = g \circ \theta$, where $\theta = (\theta_1, \dots, \theta_n)$.

Let q_1, \ldots, q_d (recall that d = |G|) be a basis of A as a B module.

Theorem

Let f be a holomorphic function on a G-invariant domain Ω . Then there exist unique G-invariant holomorphic functions f_1, \ldots, f_d such that $f = f_1q_1 + \cdots + f_dq_d$.

Thank You!