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Motivation

• Let Sn be the symmetric group on n symbols. Let us define the
action of Sn on Cn by σ · z = (zσ−1(1), . . . ,zσ−1(n)) for σ ∈Sn

and z ∈ Cn.

• Consider a polynomial f : Cn −→ C. Let Sn act on f by
σ(f )(z) = f (σ−1 · z) for σ ∈Sn and z ∈ Cn.

• C[z1, . . . ,zn]
Sn := {f ∈ C[z1, . . . ,zn] : σ(f ) = f for all σ ∈Sn}.

• Note that
si(z) = ∑

1≤k1<k2<...<ki≤n
zk1 · · ·zki ,

is the elementary symmetric polynomial of degree i in n
variables.
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Proposition

C[z1, . . . ,zn]
Sn = C[s1, . . . ,sn].

Proposition

C[z1, . . . ,zn] is a free module over the ring of symmetric polynomials,
C[s1, . . . ,sn] of rank n!.
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For n=2

Let f : C2 −→ C be a polynomial map. Note that polynomial f can be
decomposed as follows:

f (z1,z2) =
f (z1,z2)+ f (z2,z1)

2
+

f (z1,z2)− f (z2,z1)

2
. (0.1)

Let g(z1,z2) =
f (z1,z2)−f (z2,z1)

2 . Clearly, g(z1,z2) =−g(z2,z1), that is, g
is an anti-symmetric function.

Thus there exists a symmetric polynomial h such that
g(z1,z2) = (z1− z2)h(z1,z2).
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For n=2

Equality ( 0.1 ) can be re-written as

f (z1,z2) =
f (z1,z2)+ f (z2,z1)

2
+(z1− z2)h(z1,z2).

Thus any element of C[z1,z2] can be expressed as a linear sum of 1

and z1− z2 over the ring of symmetric polynomials C[z1,z2]
S2 .

In other words, C[z1,z2] is a free module of rank 2 over C[z1,z2]
S2

with {1,z1− z2} as one choice of basis.
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Questions:
• For which kind of groups, we can expect a similar result?

• How the rank of the module is related to the order of the group?

• What happens if we replace polynomials by holomorphic
functions?
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Pseudo-reflection Group

Definition
A pseudo-reflection on Cn is a linear endomorphism ρ : Cn→ Cn

such that the rank of 1−ρ is 1. Equivalently, ρ is not the identity map
and it fixes a hyperplane pointwise.

Let G be a finite group generated by pseudo-reflections. Then G also
acts on the set of functions on Cn by ρ(f )(z) = f (ρ−1 · z).

Let A = C[z1, . . . ,zn] be the ring of polynomial functions on Cn and
let B = AG be the ring of G-invariant elements of A.
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Chevalley-Shephard-Todd Theorem

Theorem
B = C[θ1, . . . ,θn], where θi are algebraically independent
homogeneous polynomials, that is, B is itself a polynomial algebra in
n variables.

Theorem
A is a free B module of rank d, where d is the order of G. Further, one
can choose a basis of A consisting of homogeneous polynomials.
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Next we want to generalize Chevalley-Shephard-Todd theorem to the
setting of holomorphic functions on Cn.

Let θ : Cn→ Cn be the function defined by

θ(z) =
(
θ1(z), . . . ,θn(z)

)
, z ∈ Cn.
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Analytic CST Theorem

Theorem
For a G-invariant holomorphic function f on Cn, there exists a unique
holomorphic function g on Cn such that f = g◦θ .

Let q1, . . . ,qd (where d = |G|) be a basis of A as a B module.

Theorem
Let f be a holomorphic function on Cn. Then there exist unique
G-invariant holomorphic functions f1, . . . , fd such that
f = f1q1 + · · ·+ fdqd.
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Some discussion

• Let the polynomials q1,q2, · · · ,qd form a basis of A as a B
module.

• Let us take a holomorphic function f : Cn −→ C. Then the
previous theorem ensures that there exist G-invariant
holomorphic functions f1, f2, · · · , fd such that

f = f1q1 + · · ·+ fdqd.

• Let G = {ρ1, . . . ,ρd}.
Applying ρi to the above equation gives

ρi(f ) = f1ρi(q1)+ · · ·+ fdρi(qd),1≤ i≤ d.
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Some discussion

• Let y be the column vector (f1, . . . , fd)t and let
x =

(
ρ1(f ), . . . ,ρd(f )

)t
.

• Note that My = x and hence

(detM)y = (adj M)x,

where
M =

((
ρi(qj)

))d
i,j=1.

• Next lemma ensures unique solution of the above system of
equations.

Lemma
detM is not identically zero.
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Determinantal formula for M

• We call a hyperplane H of Cn reflecting if there exists a
pseudo-reflection in G fixes H pointwise.

• Let H1, . . . ,Ht be the distinct reflecting hyperplanes associated to
G.

• Let Ki be the subgroup generated by the pseudo-reflections of G
those fix Hi pointwise.

• Let m1, . . . ,mt be the orders of the corresponding subgroups
K1, . . . ,Kt.

• Let Li be the nonzero linear function on Cn defining Hi, that is,
Hi = {z ∈ Cn : Li(z) = 0}.
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Determinantal formula for M

Proposition

det(M) = c
t

∏
i=1

Ld(mi−1)/2
i ,

where c is a nonzero constant.
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On G-invariant domain

Theorem
Let G be a finite pseudo-reflection group. For a G-invariant
holomorphic function f on a G-invariant domain Ω, there exists a
unique holomorphic function g on θ(Ω) such that f = g◦θ , where
θ = (θ1, . . . ,θn).

Let q1, . . . ,qd (recall that d = |G|) be a basis of A as a B module.

Theorem
Let f be a holomorphic function on a G-invariant domain Ω. Then
there exist unique G-invariant holomorphic functions f1, . . . , fd such
that f = f1q1 + · · ·+ fdqd.
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Thank You!
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