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The Model

∆ =
d∑

i=1

∂2

∂x2
i

, d dimensional Laplacian,

Vω is the multiplication operator on L2(Rd ),

(Vωf )(x) = Vω(x)f (x), Vω(x) = Q(x)
∑
n∈Zd

ωnχn+(0,1]d
(x).

Q(x) = O(|x |−α), α > 0 for large x and {ωn}n are iid
random variables with common distribution by µ,
dµ
dx (x) = O(|x |−(1+δ)), δ > 0, |x | → ∞.

Consider the probability space
(
Ω = RZd

, BΩ, P = ⊗µ
)
.

Define the random operator Hω as

Hω = −∆ + Vω, ω = (ωn)n∈Zd ∈ Ω.
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The spectrum of −∆

It is well known that −∆ is essential self-adjoint and

F(−∆)F−1 = Mϕ(x), ϕ(x) =
d∑

i=1

|xi |2, x ∈ Rd .

F is the Fourier transform on L2(Rd ).
Now we have σ(−∆) = σac(−∆) = [0,∞).
Let −∆L is the restriction of −∆ to the domain (−L,L)d

with Neumann boundary condition.

σ(−∆L) = σdis(−∆L) =

{(
π

2L

)2 d∑
i=1

n2
i : ni ∈ N ∪ {0}

}
.
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Results (Spectrum of Hω)

For αδ ≤ d we have σ(Hω) = σess(Hω) = R a.e ω.
For αδ > d we have σess(Hω) = [0,∞) and
σ(Hω) ∩ (−∞,0) is discrete a.e ω.
In above case 0 may be the limit point for negative
eigenvalues. But for (α− 2)δ > d we have
#
{
σ(Hω) ∩ (−∞,0)

}
<∞.

For δ > 2 and α > 1 we have [0,∞) ⊂ σac(Hω) a.e ω.
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The negative spectrum (Anderson localization)

The negative spectrum of Hω always exhibits exponential
localization (Anderson Localization), independent of the
choice of α and δ.
The negative part of the spectrum always pure point i.e
(−∞,0) ∩ σ(Hω) ⊂ σpp(Hω), a.e ω.

Hωψω = Eψω, ψω(x) ≤ cωe−dω |x−ηω |,E < 0, a.e ω.

ηω is the localization center, ψω attain its maximum at ηω.
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Out line of the proof

Using Weyl’s criterion together with Borel-Cantelli lemma
we get (for any choice of α and δ)

[0,∞) ⊂ σess(Hω), a.e ω.

For αδ > d the Dirichlet Neumann bracketing(
⊕n∈Zd Hω

n,N ≤ Hω ≤ ⊕n∈Zd Hω
n,D

)
will give

#{(−∞,−ε) ∩ σ(Hω)
}
<∞, a.e ω, ∀ ε > 0.

For αδ > d we have [0,∞) is the essential spectrum and
below zero there is the discrete spectrum a.e ω.
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For αδ > d still 0 may be the limit point for the negatives
eigenvalues.
But for (α− 2)δ > d we can show

Hω ≥ −∆− Mω

1 + |x |ε
, ε > 2, a.e ω.

Let H = −∆− V with V (x) = O(|x |ε), ε > 2. The number
of negative eigenvalues of H is finite.
Now we get

#{(−∞,0) ∩ σ(Hω)
}
<∞, a.e ω.
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Using min-max principle we can show that⋃
λ∈R

σ
(
−∆ + λχ

(0,1]d

)
= R.

For αδ ≤ d⋃
λ∈R

σ
(
−∆ + λχ

(0,1]d

)
⊆ σess(Hω), a.e ω.

The above two will imply

σ(Hω) = σess(Hω) = R, a.e ω, for αδ ≤ d .
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Absolutely continuous spectrum

If the potential decay fast enough, δ > 2 and α > 1 then we
verified the following:∫

Rd
(1 + |x |)−2m(Vω(x)

)2dx <∞, a.e ω, for some m > 0,

∫ ∞
1

(∫
a<|x |<v

(
Vω(xt)

)2dx
)

dt <∞, a.e ω, 0 < a < b <∞.

With above two estimation (Cook’s Method, scattering
theory, existence of wave operators) will ensure that
[0,∞) ⊂ σac(Hω), a.e ω.
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Negative part of the spectrum (Wegner estimate)

Let Hω
ΛL(x) be the restriction of Hω to the cube ΛL(x) with

center at x and side length L. Set

ΩL = {ω : |Vω(n)| < La, n ∈ ΛL(0)},a > 0, |Vω(n)| ' ωn

|n|α
.

Wegner estimate for E < 0

sup
n∈Zd

P
(

dist
(
σ
(
Hω

ΛL(n)

)
,E
)
< η

∣∣∣∣ ΩL

)
≤ C ηsLd+γa.

The above estimate follows from

E
(

Tr
(
EHω

ΛL(n)
(I)
))
≤ C |I|sLd+γa, C, γ, a > 0, s ∈ (0,1].
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Initial Scale estimate

The Initial scale estimate for E < 0 is given by (c,m,b > 0)

P
(∥∥∥∥χ∂ΛL

(
Hω

ΛL(n) − E
)−1

χ
Λ L

3 (0)

∥∥∥∥ ≤ ce−mL
)
≥ 1− 1

Lb .

Once we have Wegner estimate and Initial scale estimate
we can use Bootstrap Multiscale analysis (Germinet-Klein)
and show that (−∞,0) exhibits exponential localization.
This Bootstrap Multiscale analysis is an induction method
and to start the induction all we need the Wegner estimate
and the Initial scale estimate.
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Essenstial self-adjontness of Hω

We can see that Hω is densely define with domain C∞c (Rd )
a.e ω.
For (2 + α)δ > d we have essential self-adjointness of Hω.
The above choice of α and δ we can show that

Vω
−(x) ≤ Mω(1 + |x |)2−ε, ε > 0, a.e ω.

It is known that if V−(x) = o(|x |2−ε) then −∆ + V is
essential self-adjoint on L2(Rd ). Here
V−(x) = min{0,V (x)}.
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The reason to study the spectrum of Hω

In Mathematical Physics there is a phenomenal called
existence of extended states in low disorder.
Define Hω

λ on L2(Rd ) by

Hω
λ = −∆ + λ

∑
n∈Zd

ωn u(x − n),

u is compactly supported and u ∈ L∞(Rd ), {ωn} are iid
random variables and λ > 0.
It is expected that for small enough λ

∅ 6= σac(Hω
λ ) ⊂ [0,∞), a.e ω.
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Thank You

Dhriti Ranjan Dolai. Indian statistical institute, Bangalore, India
Spectrum of random Schrödinger operators with decaying randomness


