Greedy Approximations

Divya Khurana Weizmann Institute of Science

joint with

Stephen J. Dilworth

University of South Carolina

December 18, 2018

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $(X, \|.\|)$ be normed space, $x \in X$ and $Y \subset X$.

Recall the notion of distance between x and Y: $d(x, Y) = \inf_{y \in Y} ||x - y||$.

If there exists $y_0 \in Y$ such that $||x - y_0|| = d(x, Y)$, then y_0 is called a best approximation to x out of Y.

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($|\langle x, e_i \rangle|$) into ($|\langle x, e_{\rho(i)} \rangle|$) according to size, that is,

 $|\langle x, e_{\rho(1)} \rangle| \ge |\langle x, e_{\rho(2)} \rangle| \ge |\langle x, e_{\rho(3)} \rangle| \ge ...$

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($| \langle x, e_i \rangle |$) into ($| \langle x, e_{\rho(i)} \rangle |$) according to size, that is,

 $|\langle x, e_{\rho(1)} \rangle| \ge |\langle x, e_{\rho(2)} \rangle| \ge |\langle x, e_{\rho(3)} \rangle| \ge ...$

Let $\Lambda_m(x) = \{\rho(1), \cdots, \rho(m)\}$ (*m*-th greedy set).

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($|\langle x, e_i \rangle|$) into ($|\langle x, e_{\rho(i)} \rangle|$) according to size, that is,

 $|\langle x, e_{\rho(1)} \rangle| \ge |\langle x, e_{\rho(2)} \rangle| \ge |\langle x, e_{\rho(3)} \rangle| \ge ...$

Let $\Lambda_m(x) = \{\rho(1), \cdots, \rho(m)\}$ (*m*-th greedy set).

For each $m \in \mathbb{N}$ consider non linear operator $G_m : H \longrightarrow H$ defined by

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($|\langle x, e_i \rangle|$) into ($|\langle x, e_{\rho(i)} \rangle|$) according to size, that is,

 $|\langle x, e_{\rho(1)} \rangle| \ge |\langle x, e_{\rho(2)} \rangle| \ge |\langle x, e_{\rho(3)} \rangle| \ge ...$

Let $\Lambda_m(x) = \{\rho(1), \cdots, \rho(m)\}$ (*m*-th greedy set).

For each $m \in \mathbb{N}$ consider non linear operator $G_m : H \longrightarrow H$ defined by $G_m(x) = \sum_{i \in \Lambda_m(x)} \langle x, e_{\rho(i)} \rangle \langle e_{\rho(i)} \rangle \langle G_m$ is *m*-th greedy projection).

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($|\langle x, e_i \rangle|$) into ($|\langle x, e_{\rho(i)} \rangle|$) according to size, that is,

 $|\langle x, e_{\rho(1)} \rangle| \ge |\langle x, e_{\rho(2)} \rangle| \ge |\langle x, e_{\rho(3)} \rangle| \ge ...$

Let $\Lambda_m(x) = \{\rho(1), \cdots, \rho(m)\}$ (*m*-th greedy set).

For each $m \in \mathbb{N}$ consider non linear operator $G_m : H \longrightarrow H$ defined by $G_m(x) = \sum_{i \in \Lambda_m(x)} \langle x, e_{\rho(i)} \rangle \langle e_{\rho(i)} \rangle \langle G_m$ is *m*-th greedy projection).

Consider $Y_m = \{\sum_{j \in B} \alpha_j e_j : |B| = m, B \subset \mathbb{N}, \alpha_j \in \mathbb{R}, j \in B\}.$

If $x \in H$ then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($|\langle x, e_i \rangle|$) into ($|\langle x, e_{\rho(i)} \rangle|$) according to size, that is,

 $|\langle x, e_{\rho(1)} \rangle| \ge |\langle x, e_{\rho(2)} \rangle| \ge |\langle x, e_{\rho(3)} \rangle| \ge ...$

Let $\Lambda_m(x) = \{\rho(1), \cdots, \rho(m)\}$ (*m*-th greedy set).

For each $m \in \mathbb{N}$ consider non linear operator $G_m : H \longrightarrow H$ defined by $G_m(x) = \sum_{i \in \Lambda_m(x)} \langle x, e_{\rho(i)} \rangle \langle e_{\rho(i)} \rangle \langle G_m \text{ is } m\text{-th greedy projection} \rangle$.

Consider $Y_m = \{\sum_{j \in B} \alpha_j e_j : |B| = m, B \subset \mathbb{N}, \alpha_j \in \mathbb{R}, j \in B\}.$ Then

$$||x - G_m(x)|| = (\sum_{i \notin \Lambda_m} | < x, e_i >^2)^{\frac{1}{2}} = d(x, Y_m).$$

Schauder basis: Let *X* be an infinite-dimensional separable Banach space. $(e_n)_1^{\infty} \subset X$ is said to be Schauder basis for *X* if for each $x \in X$ there exists a unique representation $x = \sum_n a_n e_n$, $a_n \in \mathbb{R}$, that is, there exists a unique sequence of scalars (a_i) such that $\sum_{n=1}^{m} a_n e_n \to x, \ m \to \infty$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Schauder basis: Let *X* be an infinite-dimensional separable Banach space. $(e_n)_1^{\infty} \subset X$ is said to be Schauder basis for *X* if for each $x \in X$ there exists a unique representation $x = \sum_n a_n e_n$, $a_n \in \mathbb{R}$, that is, there exists a unique sequence of scalars (a_i) such that $\sum_{n=1}^{m} a_n e_n \to x, m \to \infty$.

For a basis (e_n) in a Banach space we can associate a sequence $(e_n^*) \subset X^*$ such that $e_n^*(e_n) = 1$ and $e_n^*(e_m) = 0$ for all $m \neq n$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Schauder basis: Let *X* be an infinite-dimensional separable Banach space. $(e_n)_1^{\infty} \subset X$ is said to be Schauder basis for *X* if for each $x \in X$ there exists a unique representation $x = \sum_n a_n e_n$, $a_n \in \mathbb{R}$, that is, there exists a unique sequence of scalars (a_i) such that $\sum_{n=1}^m a_n e_n \to x, \ m \to \infty$.

For a basis (e_n) in a Banach space we can associate a sequence $(e_n^*) \subset X^*$ such that $e_n^*(e_n) = 1$ and $e_n^*(e_m) = 0$ for all $m \neq n$.

Any element $x \in X$ can be represented uniquely as $x = \sum_{n} e_{n}^{*}(x)e_{n}$.

・ロン ・四 と ・ 回 と ・ 回 と

If
$$x \in H$$
 then $x = \sum \langle x, e_n \rangle e_n$ and $||x||^2 = \sum |\langle x, e_n \rangle |^2$.

Rearrange ($|\langle x, e_i \rangle|$) into ($|\langle x, e_{\rho(i)} \rangle|$) according to size, that is,

$$|<$$
 x, $e_{
ho(1)}>|\geq|<$ x, $e_{
ho(2)}>|\geq|<$ x, $e_{
ho(3)}>|\geq...$

Let $\Lambda_m(x) = \{\rho(1), \cdots, \rho(m)\}$ (*m*-th greedy set)

 $G_m(x) = \sum_{i \in \Lambda_m(x)} \langle x, e_{
ho(i)} \rangle e_{
ho(i)}$ (*m*-th greedy sum) and

 $Y_m = \{\sum_{j \in B} \alpha_j e_j : |B| = m, B \subset \mathbb{N}, \alpha_j \in \mathbb{R}, j \in B\}.$ Then

$$\|x - G_m(x)\| = (\sum_{i \notin \Lambda_m} |\langle x, e_i \rangle^2)^{\frac{1}{2}} = d(x, Y_m).$$
 (*)

Let X be a Banach space with Schauder basis (e_n) and $x \in X$. Then $x = \sum_i e_i^*(x)e_i$.

Rearrange $(|e_i^*(x)|)$ into $(|e_{\rho(i)}^*(x)|)$ according to size, that is,

 $|m{e}^*_{
ho(1)}(x)|\geq |m{e}^*_{
ho(2)}(x)|\geq |m{e}^*_{
ho(3)}(x)|\geq ...$

Let $\Lambda_m(x) = \{\rho(1), \dots, \rho(m)\}, \ G_m(x) = \sum_{i \in \Lambda_m(x)} e^*_{\rho(i)}(x) e_{\rho(i)}$ and

$$Y_m = \{\sum_{j\in B} \alpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ j \in B\}.$$

Definition (Temlyakov and Konyagin)

A basis (e_n) is said to be greedy basis if there exists a constant C such that

$$\|x-G_m(x)\| \leq C \inf_{y\in Y_m} \|x-y\|$$

for all $x \in X$ and $m \in \mathbb{N}$.

・ロン ・四 と ・ 回 と ・ 回 と

Theorem (Temlyakov and Konyagin)

Any basis (e_n) is greedy if and only if it is unconditional and democratic.

(D) (A) (A) (A)

Greedy basis

Theorem (Temlyakov and Konyagin)

Any basis (e_n) is greedy if and only if it is unconditional and democratic.

Democratic basis: A basis (e_n) is said to be democratic if there exists a constant $C \ge 1$ such that $\|\sum_{i \in A} e_i\| \le C \|\sum_{i \in B} e_i\|$ for any finite sets $A, B \subset \mathbb{N}$ with |A| < |B|.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Temlyakov and Konyagin)

Any basis (e_n) is greedy if and only if it is unconditional and democratic.

Democratic basis: A basis (*e_n*) is said to be democratic if there exists a constant $C \ge 1$ such that $\|\sum_{i \in A} e_i\| \le C \|\sum_{i \in B} e_i\|$ for any finite sets $A, B \subset \mathbb{N}$ with $|A| \le |B|$.

Unconditional basis: A basis (e_n) is said to be unconditional if $\sum a_n e_n$ exists then $\sum a_{\pi(n)}e_{\pi(n)}$ exists for any permutation π of \mathbb{N} (in fact for unconditional basis $\sum a_n e_n = \sum a_{\pi(n)}e_{\pi(n)}$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $L_1[0, 1]$ doesn't embeds into any Banach space with unconditional basis (Pelczynski). Thus $L_1[0, 1]$ and C[0, 1] fail to have unconditional basis.

(D) (A) (A) (A)

 $L_1[0, 1]$ doesn't embeds into any Banach space with unconditional basis (Pelczynski). Thus $L_1[0, 1]$ and C[0, 1] fail to have unconditional basis.

Quasi-greedy basis:(Wojtaszczyk) Any basis (e_n) is quasi-greedy if $x = \sum e_i^*(x)e_i = \sum e_{\rho(i)}^*(x)e_{\rho(i)}$ for all greedy orderings ρ , that is, for every greedy ordering ρ , $\sum_{1}^{m} e_{\rho(i)}^*(x)e_{\rho(i)} \longrightarrow x$ as $m \longrightarrow \infty$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\|x - G_m(x)\| \leq Cd(x, Y_m)$ where

 $Y_m = \{\sum_{j \in B} \alpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ j \in B\}.$ (Greedy basis)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

 $\|x - G_m(x)\| \leq Cd(x, Y_m)$ where

 $Y_m = \{\sum_{j \in B} \alpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ j \in B\}.$ (Greedy basis)

For $x = \sum e_j^*(x)e_j$, let

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

$$\begin{split} \|x - G_m(x)\| &\leq Cd(x, Y_m) ext{ where } \ Y_m &= \{\sum_{j \in B} lpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ lpha_j \in \mathbb{R}, \ j \in B \}. ext{ (Greedy basis)} \ For \ x &= \sum e_j^*(x) e_j, ext{ let } \ Y_m^A(x) &= \{\sum_{j \in B} e_j^*(x) e_j : |B| \leq m, \ B \subset \mathbb{N}, \ j \in B \}. \end{split}$$

 $\begin{aligned} \|x - G_m(x)\| &\leq Cd(x, Y_m) \text{ where} \\ Y_m &= \{\sum_{j \in B} \alpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ j \in B\}. \text{ (Greedy basis)} \\ \text{For } x &= \sum e_j^*(x) e_j, \text{ let} \\ Y_m^A(x) &= \{\sum_{j \in B} e_j^*(x) e_j : |B| \leq m, \ B \subset \mathbb{N}, \ j \in B\}. \end{aligned}$

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is said to be almost-greedy basis if there exists a constant *C* such that

$$\|x-G_m(x)\| \leq Cd(x, Y_m^A(x)).$$

for all $x \in X$ and $m \in \mathbb{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

 $\begin{aligned} \|x - G_m(x)\| &\leq Cd(x, Y_m) \text{ where} \\ Y_m &= \{\sum_{j \in B} \alpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ j \in B\}. \text{ (Greedy basis)} \\ \text{For } x &= \sum e_j^*(x) e_j, \text{ let} \\ Y_m^A(x) &= \{\sum_{j \in B} e_j^*(x) e_j : |B| \leq m, \ B \subset \mathbb{N}, \ j \in B\}. \end{aligned}$

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is said to be almost-greedy basis if there exists a constant *C* such that

$$\|x-G_m(x)\| \leq Cd(x, Y_m^A(x)).$$

for all $x \in X$ and $m \in \mathbb{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

 $\begin{aligned} \|x - G_m(x)\| &\leq Cd(x, Y_m) \text{ where} \\ Y_m &= \{\sum_{j \in B} \alpha_j e_j : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ j \in B\}. \text{ (Greedy basis)} \end{aligned}$ For $x = \sum e_j^*(x)e_j$, let $Y_m^A(x) &= \{\sum_{i \in B} e_i^*(x)e_i : |B| \leq m, \ B \subset \mathbb{N}, \ j \in B\}. \end{aligned}$

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is said to be almost-greedy basis if there exists a constant *C* such that

$$\|x-G_m(x)\| \leq Cd(x, Y_m^A(x)).$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem (Dilworth, Kalton, Kutzarova, Temlyakov)

Any basis (e_n) is almost greedy if and only if it is quasi-greedy and democratic.

Divya Khurana (Weizmann Institute)

イロン イヨン イヨン -

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is partially greedy if there exists a constant C such that

$$\|oldsymbol{x}-oldsymbol{G}_m(oldsymbol{x})\|\leq oldsymbol{C}\|\sum_{m+1}^\inftyoldsymbol{e}_i^*(oldsymbol{x})oldsymbol{e}_i(oldsymbol{x})\|$$

for all $x \in X$ and $m \in \mathbb{N}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is partially greedy if there exists a constant C such that

$$\|oldsymbol{x}-oldsymbol{G}_m(oldsymbol{x})\|\leq C\|\sum_{m+1}^\infty oldsymbol{e}_i^*(oldsymbol{x})oldsymbol{e}_i(oldsymbol{x})\|$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is partially greedy if and only if it is quasi-greedy and conservative.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is partially greedy if there exists a constant C such that

$$\|oldsymbol{x}-oldsymbol{G}_m(oldsymbol{x})\|\leq oldsymbol{C}\|\sum_{m+1}^\inftyoldsymbol{e}_i^*(oldsymbol{x})oldsymbol{e}_i(oldsymbol{x})\|$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (e_n) is partially greedy if and only if it is quasi-greedy and conservative.

Conservative basis: A basis (e_n) is said to be conservative if there exists a constant $C \ge 1$ such that $\|\sum_{i \in A} e_i\| \le C \|\sum_{i \in B} e_i\|$ for any finite sets $A, B \subset \mathbb{N}$ with $|A| \le |B|$ and A < B.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > の < @

$$\begin{aligned} \|x - G_m(x)\| &\leq C \inf\{\|x - \sum_{j \in B} \alpha_j e_j\| : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}\} \ (G) \\ \|x - G_m(x)\| &\leq C \inf\{\|x - \sum_{j \in B} e_j^*(x) e_j\| : |B| \leq m, \ B \subset \mathbb{N}\} \ (AG) \\ \|x - G_m(x)\| &\leq C \|\sum_{m+1}^{\infty} e_i^*(x) e_i(x)\| \ (PG) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{aligned} \|x - G_m(x)\| &\leq C \inf\{\|x - \sum_{j \in B} \alpha_j e_j\| : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}\} \ (G) \\ \|x - G_m(x)\| &\leq C \inf\{\|x - \sum_{j \in B} e_j^*(x) e_j\| : |B| \leq m, \ B \subset \mathbb{N}\} \ (AG) \\ \|x - G_m(x)\| &\leq C \|\sum_{m+1}^{\infty} e_i^*(x) e_i(x)\| \ (PG) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{aligned} \|x - G_m(x)\| &\leq C \inf\{\|x - \sum_{j \in B} \alpha_j e_j\| : |B| = m, \ B \subset \mathbb{N}, \ \alpha_j \in \mathbb{R}\} \ (G) \\ \|x - G_m(x)\| &\leq C \inf\{\|x - \sum_{j \in B} e_j^*(x) e_j\| : |B| \leq m, \ B \subset \mathbb{N}\} \ (AG) \\ \|x - G_m(x)\| &\leq C \|\sum_{m+1}^{\infty} e_i^*(x) e_i(x)\| \ (PG) \end{aligned}$$

Theorem

Any basis (e_n) is partially greedy if and only if

$$\|x - G_m(x)\| \leq C \inf\{\|x - \sum_{j \in B} e_j^*(x)e_j\| : |B| \leq m, \ B \subset \mathbb{N}, B < \Lambda_m\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem

Any basis (e_n) is partially greedy if and only if

$$\|x - G_m(x)\| \le C \inf\{\|x - \sum_{j \in B} \alpha_i e_j\| : |B| \le m, \ B \subset \mathbb{N}, B < \Lambda_m, \ \alpha_j \in \mathbb{R}, j \in B\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

A basis (e_n) is said to be reverse partially greedy if there exists a constant C such that

$$\|x - G_m(x)\| \leq C \inf\{\|x - \sum_{j \in B} e_j^*(x)e_j\| : |B| \leq m, \ B \subset \mathbb{N}, B > \Lambda_m\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

Definition

A basis (e_n) is said to be reverse partially greedy if there exists a constant *C* such that

$$\|x - G_m(x)\| \leq C \inf\{\|x - \sum_{j \in B} e_j^*(x)e_j\| : |B| \leq m, \ B \subset \mathbb{N}, B > \Lambda_m\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem

Any basis (e_n) is reverse partially greedy if and only if

$$\|x - G_m(x)\| \le C \inf\{\|x - \sum_{j \in B} \alpha_i e_j\| : |B| \le m, \ B \subset \mathbb{N}, B > \Lambda_m, \ \alpha_j \in \mathbb{R}, j \in B\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

A basis (e_n) is said to be reverse partially greedy if there exists a constant *C* such that

$$\|x - G_m(x)\| \leq C \inf\{\|x - \sum_{j \in B} e_j^*(x)e_j\| : |B| \leq m, \ B \subset \mathbb{N}, B > \Lambda_m\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem

Any basis (e_n) is reverse partially greedy if and only if

$$\|x - G_m(x)\| \le C \inf\{\|x - \sum_{j \in B} \alpha_i e_j\| : |B| \le m, \ B \subset \mathbb{N}, B > \Lambda_m, \ \alpha_j \in \mathbb{R}, j \in B\}$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem

A basis (e_n) is reverse partially greedy if and only if it is quasi-greedy and reverse conservative.

Divya Khurana (Weizmann Institute)

Corollary

Any basis (e_n) is almost greedy if and only if

$$\|x - G_m(x)\| \le C \inf\{\|x - \sum_{j \in B} \alpha_i e_j\| : |B| \le m, \alpha_i \in \mathbb{R}, B > \Lambda_m \text{ or } B < \Lambda_m\}.$$

for all $x \in X$ and $m \in \mathbb{N}$.

イロト イヨト イヨト イヨト

Corollary

Any basis (e_n) is almost greedy if and only if

$$\|x - G_m(x)\| \le C \inf\{\|x - \sum_{j \in B} \alpha_j e_j\| : |B| \le m, \alpha_i \in \mathbb{R}, B > \Lambda_m \text{ or } B < \Lambda_m\}.$$

for all $x \in X$ and $m \in \mathbb{N}$.

Theorem

Let (e_n) be a bounded Markushevich basis for a Banach space X. Then (e_n) is almost greedy if and only if there exists a constant C such that for any $x \in X$, $B \subset \mathbb{N}$ with $|B| \leq m$, $0 \geq \lambda < 1$ and $|B \cap \Lambda_m(x)| \leq \lambda m$, and any $\alpha_i \in \mathbb{R}$, $i \in B$, we have

$$\|\mathbf{x} - \mathbf{G}_m(\mathbf{x})\| \leq \|\mathbf{C}\| \mathbf{x} - \sum_{i \in B} \alpha_i \mathbf{e}_i\|.$$

イロト イヨト イヨト イヨト

Theorem

Let (e_n) be almost greedy Markushevich basis of a Banach space X. Let $0 < \tau < 1$ and $0 \le \lambda < 1$ be any scalar. Then exists a constant C such that for any $x \in X$, $B \subset \mathbb{N}$ with $|B \cap \Lambda_m^{\tau}(x)| \le \lambda m$, $|B| \le m$ and $\alpha_i \in \mathbb{R}$, $i \in B$, we have

$$\|\mathbf{x} - \mathbf{G}_m^{\tau}(\mathbf{x})\| \leq C \|\mathbf{x} - \sum_{i \in B} \alpha_i \mathbf{e}_i\|.$$

Theorem

Let (e_n) be almost greedy Markushevich basis of a Banach space X. Let $0 < \tau < 1$ and $0 \le \lambda < 1$ be any scalar. Then exists a constant C such that for any $x \in X$, $B \subset \mathbb{N}$ with $|B \cap \Lambda_m^{\tau}(x)| \le \lambda m$, $|B| \le m$ and $\alpha_i \in \mathbb{R}$, $i \in B$, we have

$$\|\mathbf{x} - \mathbf{G}_{\mathbf{m}}^{\mathsf{T}}(\mathbf{x})\| \leq C \|\mathbf{x} - \sum_{i \in \mathbf{B}} \alpha_i \mathbf{e}_i\|.$$

Theorem

Let $0 < \tau < 1$. Suppose that $(e_i)_{i=1}^N$ is a basis of X and there exists a constant C such that

$$\|x-\mathcal{G}_m^{\tau}(x)\|\leq C\|x-P_B(x)\|$$

where $x \in X$, $B \subset \mathbb{N}$ with $|B| \leq m$, and either $B < \Lambda^{\tau}(x)$ or $B > \Lambda^{\tau}(x)$. Then $(e_i)_{i=1}^N$ is almost greedy.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

• Characterizations of greedy and almost greedy basis are known when constant *C* = 1.

3

- Characterizations of greedy and almost greedy basis are known when constant *C* = 1.
- New characterizations of partially greedy basis helped us to prove a characterization for partially greedy basis when C = 1.

- Characterizations of greedy and almost greedy basis are known when constant C = 1.
- New characterizations of partially greedy basis helped us to prove a characterization for partially greedy basis when C = 1.
- Property A: A basis (e_n) is said to have Property A if
 ||x + t∑_{i∈A} e_i|| ≤ C||x + t∑_{i∈B} e_i|| where A, B are disjoint finite subsets
 and disjoint from the support of x, |A| = |B| and t ≥ max |e_i^{*}(x)|.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Characterizations of greedy and almost greedy basis are known when constant C = 1.
- New characterizations of partially greedy basis helped us to prove a characterization for partially greedy basis when C = 1.
- **Property** *A*: A basis (e_n) is said to have Property *A* if $||x + t \sum_{i \in A} e_i|| \le C ||x + t \sum_{i \in B} e_i||$ where *A*, *B* are disjoint finite subsets and disjoint from the support of *x*, |A| = |B| and $t \ge \max |e_i^*(x)|$.
- Characterizations of greedy and almost greedy basis are known in terms of Property *A*.

- Characterizations of greedy and almost greedy basis are known when constant C = 1.
- New characterizations of partially greedy basis helped us to prove a characterization for partially greedy basis when C = 1.
- **Property** *A*: A basis (e_n) is said to have Property *A* if $||x + t \sum_{i \in A} e_i|| \le C ||x + t \sum_{i \in B} e_i||$ where *A*, *B* are disjoint finite subsets and disjoint from the support of *x*, |A| = |B| and $t \ge \max |e_i^*(x)|$.
- Characterizations of greedy and almost greedy basis are known in terms of Property *A*.
- Original definition of partial greedy basis doesn't provides any connection with variants of Property *A*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Characterizations of greedy and almost greedy basis are known when constant *C* = 1.
- New characterizations of partially greedy basis helped us to prove a characterization for partially greedy basis when C = 1.
- **Property** *A*: A basis (e_n) is said to have Property *A* if $||x + t \sum_{i \in A} e_i|| \le C ||x + t \sum_{i \in B} e_i||$ where *A*, *B* are disjoint finite subsets and disjoint from the support of *x*, |A| = |B| and $t \ge \max |e_i^*(x)|$.
- Characterizations of greedy and almost greedy basis are known in terms of Property *A*.
- Original definition of partial greedy basis doesn't provides any connection with variants of Property *A*.
- Using new characterizations of partially greedy basis we proved a new characterization in terms of some variant of Property *A*

<ロ> <同> <同> < 回> < 回> < 回> = 三

Thank You!

æ

・ロト ・回 ト ・ヨト ・ヨト