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Introduction and Motivation Best approximation

Let (X , ‖.‖) be normed space, x ∈ X and Y ⊂ X .

Recall the notion of distance between x and Y : d(x ,Y ) = infy∈Y ‖x − y‖.

If there exists y0 ∈ Y such that ‖x − y0‖ = d(x ,Y ), then y0 is called a best
approximation to x out of Y .
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Introduction and Motivation Motivation: Hilbert Space

Let H be Hilbert space with orthonormal basis (en).

If x ∈ H then x =
∑

< x ,en > en and ‖x‖2 =
∑
| < x ,en > |2.

Rearrange (| < x ,ei > |) into (| < x ,eρ(i) > |) according to size, that is,

| < x ,eρ(1) > | ≥ | < x ,eρ(2) > | ≥ | < x ,eρ(3) > | ≥ ...

Let Λm(x) = {ρ(1), · · · , ρ(m)} (m-th greedy set).

For each m ∈ N consider non linear operator Gm : H −→ H defined by
Gm(x) =

∑
i∈Λm(x) < x ,eρ(i) > eρ(i) (Gm is m-th greedy projection).

Consider Ym = {
∑

j∈B αjej : |B| = m, B ⊂ N, αj ∈ R, j ∈ B}.
Then

‖x −Gm(x)‖ = (
∑
i 6∈Λm

| < x ,ei >
2)

1
2 = d(x ,Ym).
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Introduction and Motivation Set up in Banach spaces: Schauder basis

Schauder basis: Let X be an infinite-dimensional separable Banach
space. (en)∞1 ⊂ X is said to be Schauder basis for X if for each x ∈ X
there exists a unique representation x =

∑
n anen, an ∈ R, that is, there

exists a unique sequence of scalars (ai ) such that∑m
n=1 anen → x , m→∞.

For a basis (en) in a Banach space we can associate a sequence
(e∗n) ⊂ X ∗ such that e∗n(en) = 1 and e∗n(em) = 0 for all m 6= n.

Any element x ∈ X can be represented uniquely as x =
∑

n e∗n(x)en.
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Greedy algorithm Greedy basis

Let X be a Banach space with Schauder basis (en) and x ∈ X . Then
x =

∑
i e∗i (x)ei .

Rearrange (|e∗i (x)|) into (|e∗ρ(i)(x)|) according to size, that is,

|e∗ρ(1)(x)| ≥ |e∗ρ(2)(x)| ≥ |e∗ρ(3)(x)| ≥ ...

Let Λm(x) = {ρ(1), · · · , ρ(m)}, Gm(x) =
∑

i∈Λm(x) e∗ρ(i)(x)eρ(i) and

Ym = {
∑
j∈B

αjej : |B| = m, B ⊂ N, αj ∈ R, j ∈ B}.

Definition (Temlyakov and Konyagin)

A basis (en) is said to be greedy basis if there exists a constant C such that

‖x −Gm(x)‖ ≤ C inf
y∈Ym

‖x − y‖

for all x ∈ X and m ∈ N.
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Greedy algorithm Greedy basis

Theorem (Temlyakov and Konyagin)

Any basis (en) is greedy if and only if it is unconditional and democratic.

Democratic basis: A basis (en) is said to be democratic if there exists a
constant C ≥ 1 such that ‖

∑
i∈A ei‖ ≤ C‖

∑
i∈B ei‖ for any finite sets

A,B ⊂ N with |A| ≤ |B|.

Unconditional basis: A basis (en) is said to be unconditional if
∑

anen
exists then

∑
aπ(n)eπ(n) exists for any permutation π of N (in fact for

unconditional basis
∑

anen =
∑

aπ(n)eπ(n)).
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Relatives of greedy basis Quasi-greedy basis

L1[0,1] doesn’t embeds into any Banach space with unconditional basis
(Pelczynski). Thus L1[0,1] and C[0,1] fail to have unconditional basis.

Quasi-greedy basis:(Wojtaszczyk) Any basis (en) is quasi-greedy if
x =

∑
e∗i (x)ei =

∑
e∗ρ(i)(x)eρ(i) for all greedy orderings ρ, that is, for

every greedy ordering ρ,
∑m

1 e∗ρ(i)(x)eρ(i) −→ x as m −→∞.
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Relatives of greedy basis Almost greedy basis

‖x −Gm(x)‖ ≤ Cd(x ,Ym) where

Ym = {
∑

j∈B αjej : |B| = m, B ⊂ N, αj ∈ R, j ∈ B}. (Greedy basis)

For x =
∑

e∗j (x)ej , let

Y A
m(x) = {

∑
j∈B e∗j (x)ej : |B| ≤ m, B ⊂ N, j ∈ B}.

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (en) is said to be almost-greedy basis if there exists a constant C
such that

‖x −Gm(x)‖ ≤ Cd(x ,Y A
m(x)).

for all x ∈ X and m ∈ N.

Theorem (Dilworth, Kalton, Kutzarova, Temlyakov)

Any basis (en) is almost greedy if and only if it is quasi-greedy and
democratic.
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Relatives of greedy basis Partially greedy basis

Definition (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (en) is partially greedy if there exists a constant C such that

‖x −Gm(x)‖ ≤ C‖
∞∑

m+1

e∗i (x)ei (x)‖

for all x ∈ X and m ∈ N.

Theorem (Dilworth, Kalton, Kutzarova, Temlyakov)

A basis (en) is partially greedy if and only if it is quasi-greedy and
conservative.

Conservative basis: A basis (en) is said to be conservative if there
exists a constant C ≥ 1 such that ‖

∑
i∈A ei‖ ≤ C‖

∑
i∈B ei‖ for any finite

sets A,B ⊂ N with |A| ≤ |B| and A < B.
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Results New characterizations of partially greedy basis

‖x −Gm(x)‖ ≤ C inf{‖x −
∑

j∈B αjej‖ : |B| = m, B ⊂ N, αj ∈ R} (G)

‖x −Gm(x)‖ ≤ C inf{‖x −
∑

j∈B e∗j (x)ej‖ : |B| ≤ m, B ⊂ N} (AG)

‖x −Gm(x)‖ ≤ C‖
∑∞

m+1 e∗i (x)ei (x)‖ (PG)

Theorem

Any basis (en) is partially greedy if and only if

‖x −Gm(x)‖ ≤ C inf{‖x −
∑
j∈B

e∗j (x)ej‖ : |B| ≤ m, B ⊂ N,B < Λm}

for all x ∈ X and m ∈ N.
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Results Reverse partially greedy basis

Definition

A basis (en) is said to be reverse partially greedy if there exists a constant C
such that

‖x −Gm(x)‖ ≤ C inf{‖x −
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Theorem

A basis (en) is reverse partially greedy if and only if it is quasi-greedy and
reverse conservative.
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Results New characterizations of almost greedy basis

Corollary

Any basis (en) is almost greedy if and only if

‖x −Gm(x)‖ ≤ C inf{‖x −
∑
j∈B

αiej‖ : |B| ≤ m, αi ∈ R, B > Λm or B < Λm}.

for all x ∈ X and m ∈ N.

Theorem

Let (en) be a bounded Markushevich basis for a Banach space X. Then (en)
is almost greedy if and only if there exists a constant C such that for any
x ∈ X, B ⊂ N with |B| ≤ m, 0 ≥ λ < 1 and |B ∩ Λm(x)| ≤ λm, and any αi ∈ R,
i ∈ B, we have

‖x −Gm(x)‖ ≤ C‖x −
∑
i∈B

αiei‖.
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Results New characterizations of almost greedy basis (weak and branch algorithms)

Theorem

Let (en) be almost greedy Markushevich basis of a Banach space X. Let
0 < τ < 1 and 0 ≤ λ < 1 be any scalar. Then exists a constant C such that for
any x ∈ X, B ⊂ N with |B ∩ Λτ

m(x)| ≤ λm, |B| ≤ m and αi ∈ R, i ∈ B, we have

‖x −Gτ
m(x)‖ ≤ C‖x −

∑
i∈B

αiei‖.

Theorem

Let 0 < τ < 1. Suppose that (ei )
N
i=1 is a basis of X and there exists a constant

C such that

‖x − Gτm(x)‖ ≤ C‖x − PB(x)‖

where x ∈ X, B ⊂ N with |B| ≤ m, and either B < Λτ (x) or B > Λτ (x). Then
(ei )

N
i=1 is almost greedy.
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Applications of new characterizations Special case when C = 1

• Characterizations of greedy and almost greedy basis are known when
constant C = 1.

• New characterizations of partially greedy basis helped us to prove a
characterization for partially greedy basis when C = 1.

• Property A: A basis (en) is said to have Property A if
‖x + t

∑
i∈A ei‖ ≤ C‖x + t

∑
i∈B ei‖ where A,B are disjoint finite subsets

and disjoint from the support of x , |A| = |B| and t ≥ max |e∗j (x)|.
• Characterizations of greedy and almost greedy basis are known in terms

of Property A.
• Original definition of partial greedy basis doesn’t provides any connection

with variants of Property A.
• Using new characterizations of partially greedy basis we proved a new

characterization in terms of some variant of Property A
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Thank You!
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