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Dariusz Cichoń An operator theory approach to OPs in several variables



Notations

N = {0, 1, 2, . . .}

Measure on RN = Borel measure on RN (with all moments finite,
i.e.
∫
RN ‖x‖ndµ(x) <∞ for all n > 1).

PN – space of all complex polynomials in N variables.

Pk
N – space of all complex polynomials in N variables of degree at

most k .

A measure µ on RN orthonormalizes a sequence of real
polynomials {pk}∞k=0 if

∫
RN pkpldµ = δkl .
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Favard’s theorem

Theorem (Favard)

If {pk}∞k=0 is a sequence of real polynomials in one variable such
that p0 = 1 and deg pk = k for all k ∈ N, then the following two
conditions are equivalent:

(i) there exists a measure µ on R which orthonormalizes {pk}∞k=0,

(ii) for every k ∈ N, there exist ak ∈ R and bk ∈ R such that

Xpk = akpk+1+bkpk+ak−1pk−1, where a−1
def
= 1 and p−1

def
= 0.

If (i) holds, then suppµ is infinite.

The condition (2) is called the three term recurrence relation.

How can we make a several variable version?
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Background

The succesful attempts were made by Kowalski (1982) and Xu
(1994), but they formulated their versions for full polynomial bases
of PN .

This clearly excludes some “decent” measures, e.g. the Lebesgue
measure on the unit circle in R2.

Reason: every polynomial is orthogonal to x2 + y2 − 1 with respect
to this measure.

The idea is to replace the equality in the three term recurrence
relation by “equality modulo an ideal”, which in the above case is
the ideal of all polynomials vanishing on the unit circle.
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Notations

Let V ⊂ PN be an ideal and ΠV : PN → PN/V be the canonical
embedding. An ideal V is called a ∗-ideal if p ∈ V whenever
p ∈ V (p – the coefficients are complex conjugates).

For simplicity we consider only the case dimPN/V =∞, though
the theory also works if dimPN/V is finite.

Let dV (k) = dim ΠV (Pk
N)− dim ΠV (Pk−1

N ), k > 1 and dV (0) = 1.

A sequence {Qk}∞k=0 is called a rigid V -basis of PN if every Qk is
a column polynomial of size dV (k), i.e.

Qk =


q

(k)
1
...

q
(k)
dV (k)

 , q
(k)
j ∈ PN ,

all polynomials in Qk are of degree k and the set

{q + V : q is an entry of some Qk}
is a basis of PN/V . Such bases always exist.
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Notations

V ⊂ PN - an ideal. If p, q ∈ PN , then the notations p
V
= q means

that p + V = q + V (or p − q ∈ V ).

If P and Q are column polynomials, then P
V
=Q means that the

columns are of the same size and entries of P − Q are in V .

If L : PN → C is a linear functional, then we write

L([pk,l ]
m
k=0

n
l=0) = [L(pk,l)]mk=0

n
l=0,

where pk,l ∈ PN .

This way we can make sense of L(PQᵀ), where P and Q are
column polynomials (not necessarily of the same size!).

Finally we say that L orthonormalizes the rigid V -basis {Qk}∞k=0, if
L(QkQ

ᵀ
l ) = 0 when k 6= l , and L(QkQ

ᵀ
k ) = I , k > 1.
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Generalized Favard’s Theorem

A linear functional L : PN → C is called positive definite if
L(pp) > 0 for all p ∈ PN .

Theorem

Let V ⊂ PN be an ∗-ideal and {Qk}∞k=0 be a rigid V -basis of real
polynomials with Q0 = 1. Then the following conditions are
equivalent:

(A) there exists positive definite L : PN → C which
orthonormalizes {Qk}∞k=0 and such that V ⊂ ker L;

(B) there exists systems of scalar matrices {Ak,j}∞k=0
N
j=1 and

{Bk,j}∞k=0
N
j=1 of appropriate sizes such that

XjQk
V
=Ak,jQk+1 + Bk,jQk + Aᵀ

k−1,jQk−1,

for all j = 1, . . . ,N, k ∈ N (A−1,j = 1, Q−1 = 0).
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Christoffel-Darboux kernel

Theorem (Christoffel-Darboux kernel)

Let {Qk}∞k=0 be a rigid V -basis of real polynomials with Q0 = 1
satisfying the three term recurrence relation (B). Fix
j ∈ {1, . . . ,N}. Then

Kn(x , y)
def
=

n∑
k=0

Qᵀ
k (x)Qk(y)

is equivalent to

K̃n,j(x , y) =
[An,jQn+1(x)]ᵀQn(y)− Qn(x)ᵀ[An,jQn+1(y)]

xj − yj

modulo the ideal V ⊗ PN + PN ⊗ V .

The converse is also true, i.e. if Kn and K̃n,j are defined as above
and are equal up to the ideal, then (B) holds.
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Remarks

The proof of these theorems can be carried out with the help of
pure linear algebra.

Once (B) is assumed, L may be defined via L(Q0) = 1, L(Qk) = 0,
k ∈ N, and L|V = 0. This the only possible choice. Moreover, V is
equal to VL, the largest ∗-ideal contained in ker L

Contrary to the original Favard’s theorem we have a functional L
instead of a measure. This is due to the fact that every positive
definite functional L : P1 → C is a moment functional, i.e. there
exists a measure on R such that

L(p) =

∫
R
pdµ for all p ∈ P1.

Sadly, if N > 2, then not all positive definite functional are
moment functionals.
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Criteria for moment functionals
Necessary condition.

Assume (B) holds and L is a moment functional given by measure
µ on RN . Then VL is the set ideal of suppµ, i.e.

I(suppµ)
def
= {q ∈ PN : q|suppµ = 0}.

Reason:
q ∈ VL ⇒

∫
RN |q|2dµ = 0 ⇒ q|suppµ = 0 ⇒ q ∈ I(suppµ).

(The reverse is even more obvious.)

In turn, I(suppµ) = I(∆), where ∆ is Zariski closure of suppµ,
i.e. the smallest real algebraic set containing suppµ.

This means that we may find polynomial p such that VL = I(Zp),
where Zp = {x ∈ RN : p(x) = 0}.
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Reason:
q ∈ VL ⇒

∫
RN |q|2dµ = 0 ⇒ q|suppµ = 0 ⇒ q ∈ I(suppµ).

(The reverse is even more obvious.)

In turn, I(suppµ) = I(∆), where ∆ is Zariski closure of suppµ,
i.e. the smallest real algebraic set containing suppµ.

This means that we may find polynomial p such that VL = I(Zp),
where Zp = {x ∈ RN : p(x) = 0}.
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Criteria for moment functionals
Sufficient conditions

Fix p ∈ PN and assume that V = I(Zp) and (B) holds.

Assume that p satisfies the following condition:

(A0) for every inner product space D and every N-tuple
S = (S1, . . . ,SN) of commuting linear operators D → D such that
〈Sj f , g〉 = 〈f ,Sjg〉 (j = 1, . . . ,N, f , g ∈ D) and p(S) = 0 there
exists a Hilbert space K ⊃ D and N-tuple T = (T1, . . . ,TN) of
spectrally commuting selfadjoint operators in K such that Tj is an
extension of Sj .

It can be shown that the condition (A0) implies that L is a
moment functional.

Looks horrible. But it works!
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Examples

1 p(x , y) = x2 + y2 − 1 – the case of the unit circle in R2. If we
take a pair S = (S1, S2) of commuting symmetric operators on D,
then p(S) = 0 means that S2

1 + S2
2 = I , so

‖S1f ‖2 + ‖S2f ‖2 = ‖f ‖2, f ∈ D, which implies that S1 and S2 are
bounded, and can be extended to K, the completion of D.
Commutativity is preserved, so (A0) holds.

2 p(x , y) = x2y2(x2 + y2 − 1) + 1 – the case of positive
polynomial (on R2) which is not a sum of squares of real
polynomials. In this case Zp = ∅ and VL = PN (formally excluded
by our assumption dimPN/V =∞). It can be shown to satisfy
(A0).

3 p(x , y) = 0 – the case in which VL = {0}. It is not of type
(A0), however p(x) = 0 is! What is more, there exists a positive
definite linear functional on P2 which is not a moment functional.
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Property (A0)

Theorem (Schmüdgen’s theorem adapted to our settings)

If p ∈ PN is such that Zp is compact, then p satisfies (A0).

Property (A0) is preserved under

freezing variables:
p(x1, . . . , xN) ∈ (A0) ⇒ p(x1, . . . , xk , λk+1, . . . , λN) ∈ (A0);

substitution of a polynomial automorphism:
p ∈ (A0) ⇒ p ◦ ϕ ∈ (A0);

taking divisors:
p ∈ (A0) and q|p ⇒ q ∈ (A0);

multiplying by
∑N

j=1(xj − aj)
2.
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Carleman type conditions

Theorem

Assume that the condition (B) of the generalized Favard’s theorem
is satisfied and there is a sequence {cn}∞n=0 of positive numbers
such that

∑∞
n=0

1√
cn

=∞, and

cn > max
{∥∥∥ N∑

j=1

An−1,jAn,j

∥∥∥,∥∥∥ N∑
j=1

An,jAn+1,j

∥∥∥,
∥∥∥ N∑

j=1

(
Bn,jAn,j + An,jBn+1,j

)∥∥∥}.
Then there exists a moment functional which orthonormalizes
{Qk}∞k=0.
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Carleman type conditions

This is a consequence of the Nelson criterion applied to the
N-tuple operators (S1, . . . ,SN) assuring their spectral
commutativity by means of S2

1 + . . .+ S2
N .

Operator Sj is an operator of multiplication by Xj , its matrix
representation in the basis {Qk}∞k=0 is given by the system of
matrices {Ak,j}∞k=0

N
j=1 and {Bk,j}∞k=0

N
j=1, and the expressions

appearing above under “max” are related to matrix representation
of S2

1 + . . .+ S2
N .
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Orthogonal polynomials on the sphere

We now focus on the normalized Lebesgue measure on the unit
sphere SN in RN+1. We may consider orthonormal basis of PN
with respect to the following two weights defined on the unit ball
BN ⊂ RN :

W1(x) =
1√

1− ‖x‖2
and W2(x) =

√
1− ‖x‖2

They can be written in the form of rigid bases for PN (with ideal
understood to be the zero ideal), denote them by {Pk}∞k=1 and
{Qk}∞k=1, respectively, interpreted as dependent on
x̂ = (x1, . . . , xN).

Then the sequence defined by

Y0 = 1 and Yn(x) =

[
Pk(x̂)

xN+1Qk−1(x̂)

]
, where x = (x̂ , xN+1).

forms a rigid V -basis of PN+1, where V = I(SN).
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Orthogonal polynomials on the sphere

It can be shown that each polynomial in the column Yk is equal to
a homogeneous polynomial modulo V = I(SN). Reason: they are
sums of monomials of degree always odd or always even. Example
for N = 1:

x1 + x3
2

V
= (x2

1 + x2
2 )x1 + x3

2 .

Since the lengths of columns Yk in the rigid V -basis depends only
on the ideal V , we see that the structure of any other rigid V -basis
(i.e. the lengths of consecuting columns) will be the same if the
Lebesgue measure on SN is replaced by any other measure with
“sufficiently big” support.

In the case N = 1 the basis {Yk}∞k=0 can be written in terms of
Chebyshev polynomials of the first and the second kind.
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