On some extension of pairs of commuting isometries.

Zbigniew Burdak

Department of Applied Mathematics, Kraków

18 December 2018, OTOA Bangalore

(4) 臣() (4) 臣()

- B(H) the algebra of bounded linear operators on a separable, complex Hilbert space H,
- Lat(S) the lattice of S invariant subspaces, $S \in \mathcal{B}(H)$,
- L²_H(T) the space of square integrable, H valued functions, where H is a complex Hilbert space,
- $H^2_{\mathcal{H}}(\mathbb{T})$ Hardy space of \mathcal{H} valued functions,
- *M_z* ∈ B(*L*²_H(T)), *T_z* ∈ B(*H*²_H(T)) operators of multiplication by the independent variable "*z*",

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

$T_z \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ is a model of a unilateral shift of multiplicity dim \mathcal{H} .

 $\phi : \mathbb{T} \mapsto \mathcal{B}(\mathcal{H})$ is an inner function iff $\phi(z)$ are partial isometries with the same initial space for almost every z.

 $M_{\phi} \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ where $M_{\phi}f : z \mapsto \phi(z)f(z)$.

Theorem (Beurling-Lax-Halmos, 1961)

Invariant subspaces of $T_z \in H^2_{\mathcal{H}}(\mathbb{T})$ are precisely subspaces of the form

 $M_{\phi}H^2_{\mathcal{H}}(\mathbb{T})$

where ϕ is an inner function.

イロン イ理 とく ヨン イヨン

 $T_z \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ is a model of a unilateral shift of multiplicity dim \mathcal{H} .

 $\phi : \mathbb{T} \mapsto \mathcal{B}(\mathcal{H})$ is an inner function iff $\phi(z)$ are partial isometries with the same initial space for almost every *z*.

 $M_{\phi} \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ where $M_{\phi}f : z \mapsto \phi(z)f(z)$.

Theorem (Beurling-Lax-Halmos, 1961)

Invariant subspaces of $T_z \in H^2_{\mathcal{H}}(\mathbb{T})$ are precisely subspaces of the form

 $M_{\phi}H^2_{\mathcal{H}}(\mathbb{T})$

where ϕ is an inner function.

イロト 不得 とくほ とくほとう

 $T_z \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ is a model of a unilateral shift of multiplicity dim \mathcal{H} .

 $\phi : \mathbb{T} \mapsto \mathcal{B}(\mathcal{H})$ is an inner function iff $\phi(z)$ are partial isometries with the same initial space for almost every *z*.

 $M_{\phi} \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ where $M_{\phi}f : z \mapsto \phi(z)f(z)$.

Theorem (Beurling-Lax-Halmos, 1961)

Invariant subspaces of $T_z \in H^2_{\mathcal{H}}(\mathbb{T})$ are precisely subspaces of the form

 $M_{\phi}H^2_{\mathcal{H}}(\mathbb{T})$

where ϕ is an inner function.

イロト イポト イヨト イヨト 一臣

 $Lat(S_1, S_2)$ - the lattice of joint invariant subspaces.

 $\operatorname{Lat}(S_1, S_2) = \operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

 $S_i \simeq T_z \in \mathcal{B}(H^2_{\mathcal{H}_i}(\mathbb{T}))$ where $\mathcal{H}_i \simeq \ker S_i^*$ for i = 1, 2.

 $\operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

is difficult to calculate.

 $Lat(S_1, S_2)$ - the lattice of joint invariant subspaces.

 $\operatorname{Lat}(S_1, S_2) = \operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

 $S_i \simeq T_z \in \mathcal{B}(H^2_{\mathcal{H}_i}(\mathbb{T}))$ where $\mathcal{H}_i \simeq \ker S_i^*$ for i = 1, 2.

 $\operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

is difficult to calculate.

 $Lat(S_1, S_2)$ - the lattice of joint invariant subspaces.

 $\operatorname{Lat}(S_1, S_2) = \operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

 $S_i \simeq T_z \in \mathcal{B}(H^2_{\mathcal{H}_i}(\mathbb{T}))$ where $\mathcal{H}_i \simeq \ker S_i^*$ for i = 1, 2.

 $\operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

is difficult to calculate.

 $Lat(S_1, S_2)$ - the lattice of joint invariant subspaces.

 $\operatorname{Lat}(S_1, S_2) = \operatorname{Lat}(S_1) \cap \operatorname{Lat}(S_2)$

 $S_i \simeq T_z \in \mathcal{B}(H^2_{\mathcal{H}_i}(\mathbb{T}))$ where $\mathcal{H}_i \simeq \ker S^*_i$ for i = 1, 2.

 $Lat(S_1) \cap Lat(S_2)$

is difficult to calculate.

 $(V_1, V_2) \in \mathcal{B}(H)$ - a pair of commuting isometries,

 $(\tilde{V}_1, \tilde{V}_2) \in \mathcal{B}(\tilde{H})$ - an isometric extension of (V_1, V_2) .

Then:

 $H \in \operatorname{Lat}(\tilde{V}_1, \tilde{V}_2),$ $\operatorname{Lat}(V_1, V_2) = \{\mathcal{M} \cap H : \mathcal{M} \in \operatorname{Lat}(\tilde{V}_1, \tilde{V}_2)\}$

 $(V_1, V_2) \in \mathcal{B}(H)$ - a pair of commuting isometries,

 $(\tilde{V}_1, \tilde{V}_2) \in \mathcal{B}(\tilde{H})$ - an isometric extension of (V_1, V_2) .

Then:

 $H \in \operatorname{Lat}(\tilde{V}_1, \tilde{V}_2),$ $\operatorname{Lat}(V_1, V_2) = \{\mathcal{M} \cap H : \mathcal{M} \in \operatorname{Lat}(\tilde{V}_1, \tilde{V}_2)\}$

the extension

Aim:

for a given relatively prime, positive integers m, n extend an arbitrary pair of isometries to a pair

 $(U^k V^m, U^l V^n),$

where:

U is a unitary operator commuting with an isometry *V*, and km - ln = 1,

describe a model of the pair

 $(U^k V^m, U^l V^n),$

3 describe

Lat
$$(U^k V^m, U^l V^n)$$
.

(partial results)

(* E) * E) E

the extension

Aim:

for a given relatively prime, positive integers m, n extend an arbitrary pair of isometries to a pair

$$(U^k V^m, U^l V^n),$$

where:

U is a unitary operator commuting with an isometry *V*, and km - ln = 1,

escribe a model of the pair

 $(U^k V^m, U^l V^n),$

3 describe

Lat
$$(U^k V^m, U^l V^n)$$
.

(partial results)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

ъ

the extension

Aim:

for a given relatively prime, positive integers m, n extend an arbitrary pair of isometries to a pair

$$(U^k V^m, U^l V^n),$$

where:

U is a unitary operator commuting with an isometry *V*, and km - ln = 1,

escribe a model of the pair

 $(U^k V^m, U^l V^n),$

describe

Lat
$$(U^k V^m, U^l V^n)$$

(partial results)

★ E ► ★ E ► E

Proposition

For any pair of commuting isometries $(V_1, V_2) \in \mathcal{B}(H)$ and positive integers m, n, there is an extension to a commuting pair of isometries $(\widehat{V}_1, \widehat{V}_2)$ on a Hilbert space \widehat{H} where

$\widehat{V}_2^{*n}\widehat{V}_1^m$

is a unitary operator commuting with $\widehat{V}_1, \widehat{V}_2$. Moreover, the extension may be chosen to be minimal.

 $\mathcal{M} = \{ f \in L^2(\mathbb{T}^2) : \hat{f}_{i,j} = 0 \text{ for } (i,j) \in \mathbb{Z}^2 \setminus Z \} \subset L^2(\mathbb{T}^2) \text{ where } Z$ is as in the picture

 $V_2^* {}^n V_1^m \xrightarrow{V_1} {}^n \cdots {}^n$

For $V_1 = M_{z_1}|_{\mathcal{M}}$, $V_2 = M_{z_2}|_{\mathcal{M}}$ a minimal extension $(\widehat{V}_1, \widehat{V}_2)$ such that $\widehat{V}_2^{*n} \widehat{V}_1^m$ is unitary is M_{z_1}, M_{z_2} for any m, n.

 $\mathcal{M} = \{ f \in L^2(\mathbb{T}^2) : \hat{f}_{i,j} = 0 \text{ for } (i,j) \in \mathbb{Z}^2 \setminus Z \} \subset L^2(\mathbb{T}^2) \text{ where } Z$ is as in the picture

For $V_1 = M_{z_1}|_{\mathcal{M}}$, $V_2 = M_{z_2}|_{\mathcal{M}}$ a minimal extension (\hat{V}_1, \hat{V}_2) such that $\hat{V}_2^{*n} \hat{V}_1^m$ is unitary is M_{z_1}, M_{z_2} for any m, n.

extension

Theorem

A pair of commuting isometries (V_1, V_2) on a Hilbert space H such that for some relatively prime, positive integers m, n the operator

 $V_2^{*n}V_1^m$ is unitary

may be extended to a pair

 $(\tilde{U}^k \tilde{V}^n, \tilde{U}^l \tilde{V}^m)$

where:

- Ũ is a unitary operator commuting with an isometry Ũ,
- $H \in \text{Lat}(\tilde{V}^m, \tilde{V}^n)$ and
- (k, l) are unique integers such that 0 < k < n, 0 ≤ l < m and km − ln = 1.

Moreover, the extension may be chosen to be minimal, and for a minimal extension if V_1 , V_2 are unilateral shifts, then \tilde{V} is a unilateral shift.

Theorem

Any pair of commuting isometries (V_1, V_2) , for any relatively prime, positive integers *m*, *n* may be extended to a pair

 $(\widehat{U}^k\widehat{V}^n,\widehat{U}^l\widehat{V}^m)$

where \widehat{U} is a unitary operator commuting with an isometry \widehat{V} and (k, I) are unique integers such that $0 < k < n, 0 \le I < m$ and km - ln = 1. Moreover, the extension may be chosen minimal.

▲御♪ ▲ほ♪ ▲ほ♪ … ほ

Let *m*, *n* be relatively prime, positive integers and km - ln = 1. Any pair of the form

$$(U^k V^n, U^l V^m)$$

where U is a unitary operator commuting with an isometry V is unitarily equivalent to:

$$(U_1 \oplus (T_z^n \otimes \mathcal{U}^k), U_2 \oplus (T_z^m \otimes \mathcal{U}^l))$$

on the Hilbert space $H_u \oplus (H^2(\mathbb{T}) \otimes \mathcal{H})$ for the respective unitary operators $U_1, U_2 \in \mathcal{B}(H_u), \mathcal{U} \in \mathcal{B}(\mathcal{H})$.

▲御♪ ▲臣♪ ▲臣♪ 二臣

Theorem

Let $T_z \in \mathcal{B}(H^2_{\mathcal{H}}(\mathbb{T}))$ and m, n be relatively prime, positive integers. The subspaces jointly invariant under (T_z^m, T_z^n) are precisely those of the form

$$M_{\phi}\left(H_{0}\oplus(I-P)H^{2}_{\mathcal{H}_{0}}(\mathbb{T})
ight)$$

where

- *P* ∈ B(H²_H(T)) is an orthogonal projection on the space of polynomials of degree at most mn − m − n,
- ϕ is an inner function with initial space \mathcal{H}_0 and
- $H_0 \subset PH^2_{\mathcal{H}_0}(\mathbb{T})$ invariant under PT^m_z , PT^n_z .
- $PT_z^3 = PT_z^2 = 0$ (the case m = 3, n = 2),
- if dim $\mathcal{H}_0 < \infty$ then dim $PH^2_{\mathcal{H}_0}(\mathbb{T}) < \infty$

$$\begin{split} H^2_{\mathcal{H}}(\mathbb{T}) &\simeq H^2(\mathbb{T}) \otimes \mathcal{H} \\ V &\simeq T_z \otimes I, \\ U &\simeq I \otimes \mathcal{U}. \end{split}$$

Theorem

The subspaces jointly invariant under $(T_z \otimes I, T_z \otimes U)$ are precisely those of the form $M_{\phi}(H^2(\mathbb{T}) \otimes \mathcal{H})$ where ϕ is an inner function satisfying

 $M_{\phi}(H^{2}(\mathbb{T})\otimes\mathcal{H})=WM_{\psi}(H^{2}(\mathbb{T})\otimes\mathcal{H})$

with some other inner function ψ and $W = \sum_{i>0} P_{\mathbb{C}z^i} \otimes \mathcal{U}^i$.

イロト イポト イヨト イヨト 三日

$T_{z_1}, T_{z_2} \in \mathcal{B}(H^2(\mathbb{T}^2))$ and $M_{z_1}, M_{z_2} \in \mathcal{B}(L^2(\mathbb{T}^2))$

 (T_{z_1}, T_{z_2}) extends to a pair of unilateral shifts $(\tilde{T}_{z_1}, \tilde{T}_{z_2})$ such that

$$\tilde{T}_{z_1}^* \tilde{T}_{z_2}$$
 is unitary,

where

$$ilde{ extsf{T}}_{ extsf{z}_{lpha}} = extsf{M}_{ extsf{z}_{lpha}}|_{\mathcal{M}} extsf{ for } lpha = 1,2$$

and $\mathcal{M} := \{ f \in L^2(\mathbb{T}^2) : \hat{f}_{i,j} = 0 \text{ for } j < -i \}.$

$$\operatorname{Lat}(\tilde{T}_{Z_1}, \tilde{T}_{Z_2}) = \operatorname{Lat}(\tilde{T}_{Z_1}) \cap W\operatorname{Lat}(\tilde{T}_{Z_1})$$

where $W \in \mathcal{B}(\mathcal{M})$ is defined by

$$Wz_1^i z_2^j = z_1^{2i+j} z_2^{-i}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$T_{z_1}, T_{z_2} \in \mathcal{B}(H^2(\mathbb{T}^2))$$
 and $M_{z_1}, M_{z_2} \in \mathcal{B}(L^2(\mathbb{T}^2))$
 (T_{z_1}, T_{z_2}) extends to a pair of unilateral shifts $(\tilde{T}_{z_1}, \tilde{T}_{z_2})$ such that

$$ilde{T}^*_{z_1} ilde{T}_{z_2}$$
 is unitary,

where

$$\hat{T}_{z_{\alpha}} = M_{z_{\alpha}}|_{\mathcal{M}} \text{ for } \alpha = 1, 2$$

and $\mathcal{M} := \{f \in L^{2}(\mathbb{T}^{2}) : \hat{f}_{i,j} = 0 \text{ for } j < -i\}.$

$$\operatorname{Lat}(\tilde{T}_{Z_1},\tilde{T}_{Z_2})=\operatorname{Lat}(\tilde{T}_{Z_1})\cap W\operatorname{Lat}(\tilde{T}_{Z_1})$$

where $W \in \mathcal{B}(\mathcal{M})$ is defined by

$$Wz_1^i z_2^j = z_1^{2i+j} z_2^{-i}.$$

<ロ> (四) (四) (三) (三) (三)

$$T_{z_1}, T_{z_2} \in \mathcal{B}(H^2(\mathbb{T}^2))$$
 and $M_{z_1}, M_{z_2} \in \mathcal{B}(L^2(\mathbb{T}^2))$
 (T_{z_1}, T_{z_2}) extends to a pair of unilateral shifts $(\tilde{T}_{z_1}, \tilde{T}_{z_2})$ such that

$$ilde{T}^*_{z_1} ilde{T}_{z_2}$$
 is unitary,

where

$$ilde{T}_{Z_{\alpha}} = M_{Z_{\alpha}}|_{\mathcal{M}} ext{ for } \alpha = 1,2$$

and $\mathcal{M} := \{f \in L^{2}(\mathbb{T}^{2}) : \hat{f}_{i,j} = 0 ext{ for } j < -i\}.$

$$\operatorname{Lat}(\tilde{T}_{z_1},\tilde{T}_{z_2})=\operatorname{Lat}(\tilde{T}_{z_1})\cap W\operatorname{Lat}(\tilde{T}_{z_1})$$

where $W \in \mathcal{B}(\mathcal{M})$ is defined by

$$Wz_1^i z_2^j = z_1^{2i+j} z_2^{-i}.$$

ヘロト 人間 とくほとくほとう

æ

Consider (V_1, V_2) a pair of unilateral shifts such that $U := V_2^{*n} V_1^m$ is unitary. Then

$$V_1^m \simeq T_z \otimes I, \ V_2^n \simeq T_z \otimes \mathcal{U}, \ U = I \otimes \mathcal{U}.$$

If V_1 , V_2 are of finite multiplicity then \mathcal{U} is a unitary operator on a finite dimensional space.

Eigenvalues/eigenspaces of \mathcal{U} corresponds to those of $U := I \otimes \mathcal{U}$ which commutes with V_1, V_2 .

▲御♪ ▲臣♪ ▲臣♪ 二臣

Remark

Let a pair of commuting unilateral shifts (V_1, V_2) on H satisfy

$$V_2^{*n}V_1^m = \lambda I$$

for relatively prime, positive integers m, n and a complex number λ . Then there is a unilateral shift $\tilde{V} \in \mathcal{B}(\tilde{H})$ such that $H \subset \tilde{H}$ and

$$Lat(V_1, V_2) = \{H \cap \mathcal{N} : \mathcal{N} \in Lat(\tilde{V}^m, \tilde{V}^m)\}$$

where $Lat(\tilde{V}^n, \tilde{V}^m)$ is described.

Thank You !

Zbigniew Burdak On some extension of pairs of commuting isometries.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(< ≥) < ≥)</p>

ъ