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notation

B(H) - the algebra of bounded linear operators on a
separable, complex Hilbert space H,
Lat(S) - the lattice of S - invariant subspaces, S ∈ B(H),
L2
H(T) - the space of square integrable, H valued functions,

where H is a complex Hilbert space,
H2
H(T) - Hardy space of H valued functions,

Mz ∈ B(L2
H(T)),Tz ∈ B(H2

H(T)) operators of multiplication
by the independent variable ′′z ′′,
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Beurling-Lax-Halmos theorem

Tz ∈ B(H2
H(T)) is a model of a unilateral shift of multiplicity

dimH.

φ : T 7→ B(H) is an inner function iff φ(z) are partial isometries
with the same initial space for almost every z.

Mφ ∈ B(H2
H(T)) where Mφf : z 7→ φ(z)f (z).

Theorem (Beurling-Lax-Halmos, 1961)

Invariant subspaces of Tz ∈ H2
H(T) are precisely subspaces of

the form
MφH2

H(T)

where φ is an inner function.
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commuting unilateral shifts

Let (S1,S2) ∈ B(H) be a pair of commuting unilateral shifts.

Lat(S1,S2) - the lattice of joint invariant subspaces.

Lat(S1,S2) = Lat(S1) ∩ Lat(S2)

Si ' Tz ∈ B(H2
Hi
(T)) where Hi ' kerS∗i for i = 1,2.

Lat(S1) ∩ Lat(S2)

is difficult to calculate.
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description via extension

(V1,V2) ∈ B(H) - a pair of commuting isometries,

(Ṽ1, Ṽ2) ∈ B(H̃) - an isometric extension of (V1,V2).

Then:

H ∈ Lat(Ṽ1, Ṽ2),

Lat(V1,V2) = {M∩ H :M∈ Lat(Ṽ1, Ṽ2)}
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the extension

Aim:
1 for a given relatively prime, positive integers m,n extend an

arbitrary pair of isometries to a pair

(UkV m,U lV n),

where:
U is a unitary operator commuting with an isometry V , and
km − ln = 1,

2 describe a model of the pair

(UkV m,U lV n),

3 describe
Lat(UkV m,U lV n).

(partial results)
Zbigniew Burdak On some extension of pairs of commuting isometries.



the extension

Aim:
1 for a given relatively prime, positive integers m,n extend an

arbitrary pair of isometries to a pair

(UkV m,U lV n),

where:
U is a unitary operator commuting with an isometry V , and
km − ln = 1,

2 describe a model of the pair

(UkV m,U lV n),

3 describe
Lat(UkV m,U lV n).

(partial results)
Zbigniew Burdak On some extension of pairs of commuting isometries.



the extension

Aim:
1 for a given relatively prime, positive integers m,n extend an

arbitrary pair of isometries to a pair

(UkV m,U lV n),

where:
U is a unitary operator commuting with an isometry V , and
km − ln = 1,

2 describe a model of the pair

(UkV m,U lV n),

3 describe
Lat(UkV m,U lV n).

(partial results)
Zbigniew Burdak On some extension of pairs of commuting isometries.



extension

Proposition

For any pair of commuting isometries (V1,V2) ∈ B(H) and
positive integers m,n, there is an extension to a commuting pair
of isometries (V̂1, V̂2) on a Hilbert space Ĥ where

V̂ ∗n2 V̂ m
1

is a unitary operator commuting with V̂1, V̂2. Moreover, the
extension may be chosen to be minimal.
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M = {f ∈ L2(T2) : f̂i,j = 0 for (i , j) ∈ Z2 \ Z} ⊂ L2(T2) where Z
is as in the picture

V1

V2

V∗n
2 V m

1

1

1

For V1 = Mz1 |M,V2 = Mz2 |M a minimal extension (V̂1, V̂2) such
that V̂ ∗n2 V̂ m

1 is unitary is Mz1 ,Mz2 for any m,n.
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extension

Theorem
A pair of commuting isometries (V1,V2) on a Hilbert space H
such that for some relatively prime, positive integers m,n the
operator

V ∗n2 V m
1 is unitary

may be extended to a pair
(Ũk Ṽ n, Ũ l Ṽ m)

where:
Ũ is a unitary operator commuting with an isometry Ṽ ,
H ∈ Lat(Ṽ m, Ṽ n) and
(k , l) are unique integers such that 0 < k < n,0 ≤ l < m
and km − ln = 1.

Moreover, the extension may be chosen to be minimal, and for
a minimal extension if V1,V2 are unilateral shifts, then Ṽ is a
unilateral shift.
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extension

Theorem
Any pair of commuting isometries (V1,V2), for any relatively
prime, positive integers m,n may be extended to a pair

(Ûk V̂ n, Û l V̂ m)

where Û is a unitary operator commuting with an isometry V̂
and (k , l) are unique integers such that 0 < k < n,0 ≤ l < m
and km − ln = 1. Moreover, the extension may be chosen
minimal.
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model

Let m,n be relatively prime, positive integers and km − ln = 1.
Any pair of the form

(UkV n,U lV m)

where U is a unitary operator commuting with an isometry V is
unitarily equivalent to:(

U1 ⊕ (T n
z ⊗ Uk ),U2 ⊕ (T m

z ⊗ U l)
)

on the Hilbert space Hu ⊕ (H2(T)⊗H) for the respective
unitary operators U1,U2 ∈ B(Hu), U ∈ B(H).
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Lat(V m,V n)

Theorem

Let Tz ∈ B(H2
H(T)) and m,n be relatively prime, positive

integers. The subspaces jointly invariant under (T m
z ,T n

z ) are
precisely those of the form

Mφ

(
H0 ⊕ (I − P)H2

H0
(T)
)

where
P ∈ B(H2

H(T)) is an orthogonal projection on the space of
polynomials of degree at most mn −m − n,
φ is an inner function with initial space H0 and
H0 ⊂ PH2

H0
(T) invariant under PT m

z ,PT n
z .

PT 3
z = PT 2

z = 0 (the case m = 3,n = 2),
if dimH0 <∞ then dimPH2

H0
(T) <∞
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Lat(UV ,V ) (m = n = 1)

H2
H(T) ' H2(T)⊗H

V ' Tz ⊗ I,

U ' I ⊗ U .

Theorem

The subspaces jointly invariant under (Tz ⊗ I,Tz ⊗ U) are
precisely those of the form Mφ(H2(T)⊗H) where φ is an inner
function satisfying

Mφ(H2(T)⊗H) = WMψ(H2(T)⊗H)

with some other inner function ψ and W =
∑

i≥0 PCz i ⊗ U i .
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H2(T2)

Tz1 ,Tz2 ∈ B(H
2(T2)) and Mz1 ,Mz2 ∈ B(L

2(T2))

(Tz1 ,Tz2) extends to a pair of unilateral shifts (T̃z1 , T̃z2) such
that

T̃ ∗z1
T̃z2 is unitary,

where
T̃zα = Mzα |M for α = 1,2

andM := {f ∈ L2(T2) : f̂i,j = 0 for j < −i}.

Lat(T̃z1 , T̃z2) = Lat(T̃z1) ∩W Lat(T̃z1)

where W ∈ B(M) is defined by

Wz i
1z j

2 = z2i+j
1 z−i

2 .
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finite multiplicity

Consider (V1,V2) a pair of unilateral shifts such that
U := V ∗n2 V m

1 is unitary. Then

V m
1 ' Tz ⊗ I, V n

2 ' Tz ⊗ U , U = I ⊗ U .

If V1,V2 are of finite multiplicity then U is a unitary operator on a
finite dimensional space.
Eigenvalues/eigenspaces of U corresponds to those of
U := I ⊗ U which commutes with V1,V2.
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finite multiplicity

Remark
Let a pair of commuting unilateral shifts (V1,V2) on H satisfy

V ∗n2 V m
1 = λI

for relatively prime, positive integers m,n and a complex
number λ. Then there is a unilateral shift Ṽ ∈ B(H̃) such that
H ⊂ H̃ and

Lat(V1,V2) = {H ∩N : N ∈ Lat(Ṽ m, Ṽ m)}

where Lat(Ṽ n, Ṽ m) is described.
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Thank You !
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