Isometric dilation and von Neumann inequality for operator tuples

B. Krishna Das

Indian Institute of Technology Bombay

OTOA - 2018 ISI Bangalore, December 13-19

(joint work with S. Barik, K. Haria and J. Sarkar)

< 同 > < 臣 > < 臣 >

Definition

Let T be a contraction on H. A unitary U on $K \supseteq H$ is a dilation of T if (?) $T = P_H U|_H$, i.e.

$$U = \begin{bmatrix} T & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^{\perp}$.

▲圖▶ ★ 国▶ ★ 国▶

3

Definition

Let T be a contraction on H. A unitary U on $K \supseteq H$ is a dilation of T if $T^n = P_H U^n|_H$ for all $n \in \mathbb{N}$, i.e.

$$U^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^{\perp}$. In this case, $p(T) = P_H p(U)|_H$ for any polynomial $p \in \mathbb{C}[z]$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let $T = (T_1, \ldots, T_n)$ be an *n*-tuple of commuting contractions on H. An *n*-tuple of commuting unitary $U = (U_1, \ldots, U_n)$ on $K \supseteq H$ is a dilation of T if $p(T) = P_H p(U)|_H$ for any polynomial $p \in \mathbb{C}[z_1, \ldots, z_n]$, i.e.

$$p(U) = \begin{bmatrix} p(T) & * \\ * & * \end{bmatrix}$$

with respect to the decomposition $K = H \oplus H^{\perp}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

・日・ ・ ヨ・ ・ ヨ・

3

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

z∈D

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,

$$\|p(T)\| \leq \sup_{z\in\mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,

$$\|p(T)\| \leq \sup_{z\in\mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2]$,

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Nagy-Foias)

Let T be a contraction on a Hilbert space H. Then T has a unique minimal unitary dilation.

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z]$,

$$\|p(T)\| \leq \sup_{z\in\mathbb{D}} |p(z)|.$$

Theorem (T. Ando)

Let (T_1, T_2) be a pair of commuting contractions on H. Then (T_1, T_2) dilates to a pair of commuting unitaries (U_1, U_2) .

• von Neumann inequality: For any polynomial $p \in \mathbb{C}[z_1, z_2]$,

$$\|p(T_1, T_2)\| \leq \sup_{(z_1, z_2) \in \mathbb{D}^2} |p(z_1, z_2)|.$$

Neither dilation nor the von Neumann inequality holds for
 p-tuples of commuting contractions with *p* > *2* +

• \mathcal{E} -valued Hardy space over the unit polydisc \mathbb{D}^n :

$$H^2_{\mathcal{E}}(\mathbb{D}^n) := \{\sum_{k \in \mathbb{Z}^n} a_k z^k : a_k \in \mathcal{E}, \sum_{k \in \mathbb{Z}^n} \|a_k\|^2 < \infty\}.$$

A B K A B K

• \mathcal{E} -valued Hardy space over the unit polydisc \mathbb{D}^n :

$$\mathcal{H}^2_\mathcal{E}(\mathbb{D}^n):=\{\sum_{k\in\mathbb{Z}^n}a_kz^k:a_k\in\mathcal{E},\sum_{k\in\mathbb{Z}^n}\|a_k\|^2<\infty\}.$$

• The *n*-tuple of shift on $H^2_{\mathcal{E}}(\mathbb{D}^n)$ is denoted by $(M_{z_1}, \ldots, M_{z_n})$.

高 とう ヨン うまと

• \mathcal{E} -valued Hardy space over the unit polydisc \mathbb{D}^n :

$$\mathcal{H}^2_\mathcal{E}(\mathbb{D}^n):=\{\sum_{k\in\mathbb{Z}^n}a_kz^k:a_k\in\mathcal{E},\sum_{k\in\mathbb{Z}^n}\|a_k\|^2<\infty\}.$$

The *n*-tuple of shift on H²_E(Dⁿ) is denoted by (M_{z1},..., M_{zn}).
H²_E(Dⁿ) is a reproducing kernel Hilbert space with kernel S_n(z, w)I_E where S_n is the Szegö kernel defined by

$$\mathbb{S}_n(z,w)=\prod_{i=1}^n(1-z_i\bar{w}_i)^{-1}\quad(z,w\in\mathbb{D}^n).$$

伺い イヨト イヨト 三日

• \mathcal{E} -valued Hardy space over the unit polydisc \mathbb{D}^n :

$$\mathcal{H}^2_\mathcal{E}(\mathbb{D}^n) := \{\sum_{k\in\mathbb{Z}^n} a_k z^k : a_k\in\mathcal{E}, \sum_{k\in\mathbb{Z}^n} \|a_k\|^2 < \infty\}.$$

The *n*-tuple of shift on H²_E(Dⁿ) is denoted by (M_{z1},..., M_{zn}).
H²_E(Dⁿ) is a reproducing kernel Hilbert space with kernel S_n(z, w)I_E where S_n is the Szegö kernel defined by

$$\mathbb{S}_n(z,w)=\prod_{i=1}^n(1-z_i\bar{w}_i)^{-1}\quad(z,w\in\mathbb{D}^n).$$

An *n*-tuple of commuting contractions T = (T₁,..., T_n) satisfies Szegö positivity if

$$\mathbb{S}_{n}^{-1}(T, T^{*}) = \sum_{F \subset \{1, \dots, n\}} (-1)^{|F|} T_{F} T_{F}^{*} \ge 0$$

where for $F = \{F_{1}, \dots, F_{k}\} \subset \{1, \dots, n\}, T_{F} := T_{F_{1}} \cdots T_{F_{k}}$

• If $T = (T_1, ..., T_n)$ satisfy Szegö positivity then $D_T := \mathbb{S}_n^{-1}(T, T^*)^{1/2}$ is the defect operator and $\mathcal{D}_T := \operatorname{Ran} D_T$ is the defect space of T.

・ 同 ト ・ ヨ ト ・ ヨ ト

• If
$$T = (T_1, ..., T_n)$$
 satisfy Szegö positivity then
 $D_T := \frac{\mathbb{S}_n^{-1}}{(T, T^*)^{1/2}}$ is the defect operator and
 $\mathcal{D}_T := \overline{\operatorname{Ran}} D_T$ is the defect space of T .

Theorem (Curto & Vasilescu, 1993)

Let $T = (T_1, ..., T_n)$ be an n-tuple of commuting pure contractions which satisfy Szegö positivity. Then T dilates to $(M_{z_1}, ..., M_{z_n})$ on $H^2_{\mathcal{D}_T}(\mathbb{D}^n)$.

(4回) (4回) (4回)

• If
$$T = (T_1, ..., T_n)$$
 satisfy Szegö positivity then
 $D_T := \frac{\mathbb{S}_n^{-1}}{(T, T^*)^{1/2}}$ is the defect operator and
 $\mathcal{D}_T := \overline{\operatorname{Ran}} D_T$ is the defect space of T .

Theorem (Curto & Vasilescu, 1993)

Let $T = (T_1, ..., T_n)$ be an n-tuple of commuting pure contractions which satisfy Szegö positivity. Then T dilates to $(M_{z_1}, ..., M_{z_n})$ on $H^2_{\mathcal{D}_T}(\mathbb{D}^n)$.

Remark: The hypothesis of the above theorem is also necessary for an *n*-tuple of commuting contractions T to be dilated to $(M_{z_1}, \ldots, M_{z_n})$ on some $H^2_{\mathcal{E}}(\mathbb{D}^n)$.

(本部) (本語) (本語) (語)

• For an *n*-tuple
$$T = (T_1, ..., T_n)$$
 and $1 \le r \le n$,
 $\hat{T}_r = (T_1, ..., T_{r-1}, T_{r+1}, ..., T_n)$.

回 と く ヨ と く ヨ と

• For an *n*-tuple
$$T = (T_1, ..., T_n)$$
 and $1 \le r \le n$,
 $\hat{T}_r = (T_1, ..., T_{r-1}, T_{r+1}, ..., T_n)$.
Let $n > 2$ and $1 \le p < q \le n$.

回 と く ヨ と く ヨ と

- For an *n*-tuple $T = (T_1, ..., T_n)$ and $1 \le r \le n$, $\hat{T}_r = (T_1, ..., T_{r-1}, T_{r+1}, ..., T_n)$. Let n > 2 and $1 \le p < q \le n$.
- $\mathcal{P}_{p,q} = \{(T_1, \dots, T_n) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity} and <math>||T_i|| < 1, i = 1, \dots, n\}.$

伺下 イヨト イヨト

• For an *n*-tuple
$$T = (T_1, ..., T_n)$$
 and $1 \le r \le n$,
 $\hat{T}_r = (T_1, ..., T_{r-1}, T_{r+1}, ..., T_n)$.
Let $n > 2$ and $1 \le p < q \le n$.
• $\mathcal{P}_{p,q} = \{(T_1, ..., T_n) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity}$
and $||T_i|| < 1, i = 1, ..., n\}$.
Example: Let $T_i = \begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix}$ for all $i = 1, ..., n$ and let
 $\frac{1}{\sqrt{n}} < r \le \frac{1}{\sqrt{n-1}}$. Then for any $1 \le i \le n$,
 $\mathbb{S}_{n-1}^{-1}(\hat{T}_i, \hat{T}_i^*) = \begin{bmatrix} 1 - r^2(n-1) & 0 \\ 0 & 1 \end{bmatrix} \ge 0$

and

$$\mathbb{S}_n^{-1}(T,T^*) = \begin{bmatrix} 1-r^2n & 0\\ 0 & 1 \end{bmatrix} \not\ge 0.$$

Thus $T \in \mathcal{P}_{p,q}$ for any $1 \le p < q \le n$. But T does not satisfy Szegö positivity.

æ

Let T be an n-tuple of commuting contractions. If $T \in \mathcal{P}_{p,q}$ for some $1 \leq p < q \leq n$, then T can be dilated to a tuple of commuting unitaries. Therefore, T satisfies von Neumann inequality on \mathbb{D}^n .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let T be an n-tuple of commuting contractions. If $T \in \mathcal{P}_{p,q}$ for some $1 \leq p < q \leq n$, then T can be dilated to a tuple of commuting unitaries. Therefore, T satisfies von Neumann inequality on \mathbb{D}^n .

• $\mathcal{T}_{p,q} = \{(T_1, \ldots, T_n) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity} and <math>\hat{T}_p$ is pure}.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let T be an n-tuple of commuting contractions. If $T \in \mathcal{P}_{p,q}$ for some $1 \leq p < q \leq n$, then T can be dilated to a tuple of commuting unitaries. Therefore, T satisfies von Neumann inequality on \mathbb{D}^n .

- $\mathcal{T}_{p,q} = \{(T_1, \ldots, T_n) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity} and <math>\hat{T}_p$ is pure}.
- $\mathcal{P}_{p,q} \subseteq \mathcal{T}_{p,q}$.

(4月) (4日) (4日)

Let T be an n-tuple of commuting contractions. If $T \in \mathcal{P}_{p,q}$ for some $1 \leq p < q \leq n$, then T can be dilated to a tuple of commuting unitaries. Therefore, T satisfies von Neumann inequality on \mathbb{D}^n .

- $\mathcal{T}_{p,q} = \{(T_1, \ldots, T_n) : \hat{T}_p, \hat{T}_q \text{ satisfy Szegö positivity} and <math>\hat{T}_p$ is pure}.
- $\mathcal{P}_{p,q} \subseteq \mathcal{T}_{p,q}$.
- For $T \in \mathcal{T}_{p,q}$, we say that T is of finite rank if dim $\mathcal{D}_{\hat{T}_i} < \infty$, for all i = p, q.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Explicit dilation for finite rank tuples

Theorem (–, Barik, Haria & Sarkar, 18)

If $T \in \mathcal{T}_{p,q}$ is a finite rank tuple, then T dilates to the n-tuple of commuting isometries

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_p}, \ldots, M_{z_{n-1}})$$
 on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1}),$

where Φ_p is an one variable inner function in $H^{\infty}_{\mathcal{B}(\mathcal{D}_{\hat{T}_p})}(\mathbb{D})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Explicit dilation for finite rank tuples

Theorem (-, Barik, Haria & Sarkar, 18)

If $T \in \mathcal{T}_{p,q}$ is a finite rank tuple, then T dilates to the n-tuple of commuting isometries

$$(M_{z_1}, \ldots, M_{z_{p-1}}, M_{\Phi_p}, M_{z_p}, \ldots, M_{z_{n-1}})$$
 on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1}),$

where Φ_p is an one variable inner function in $H^{\infty}_{\mathcal{B}(\mathcal{D}_{\hat{T}_p})}(\mathbb{D})$.

Theorem (–, Barik, Haria & Sarkar, 18)

If $T \in \mathcal{T}_{p,q}$ is a finite rank operator, then \exists an algebraic variety V in $\overline{\mathbb{D}}^n$ such that

$$\|p(T)\| \leq \sup_{\mathbf{z}\in V} |p(\mathbf{z})|, \quad (p \in \mathbb{C}[z_1,\ldots,z_n]).$$

If, in addition, T_p is a pure contraction, then \exists a distinguished variety V' in \mathbb{D}^2 such that $V = V' \times \mathbb{D}^{n-2} \subseteq \mathbb{D}^n$.

Let $T \in \mathcal{T}_{p,q}$ for some $1 \le p < q \le n$. • Since \hat{T}_p is pure and Szegö tuple, we can dilate \hat{T}_p to $(M_{z_1}, \ldots, M_{z_{n-1}})$ on $H^2_{\hat{\mathcal{D}}_{\hat{T}_p}}(\mathbb{D}^{n-1})$.

<回> < 回> < 回>

- Let $T \in \mathcal{T}_{p,q}$ for some $1 \leq p < q \leq n$.
 - Since \hat{T}_p is pure and Szegö tuple, we can dilate \hat{T}_p to $(M_{z_1}, \ldots, M_{z_{n-1}})$ on $H^2_{\hat{D}_{\hat{T}_p}}(\mathbb{D}^{n-1})$.
 - We need find an isometric dilation of T_p on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1})$ which commutes with $(M_{z_1}, \ldots, M_{z_{n-1}})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let $T \in \mathcal{T}_{p,q}$ for some $1 \leq p < q \leq n$.
 - Since \hat{T}_p is pure and Szegö tuple, we can dilate \hat{T}_p to $(M_{z_1}, \ldots, M_{z_{n-1}})$ on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1})$.
 - We need find an isometric dilation of T_p on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1})$ which commutes with $(M_{z_1}, \ldots, M_{z_{n-1}})$.
 - Need to find a unitary $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$: $\mathcal{D}_{\hat{T}_p} \oplus H \to \mathcal{D}_{\hat{T}_p} \oplus H$ for some Hilbert space H such that $\Phi(z) = A + zB(I - zD)^{-1}C$ is inner and M_{Φ} is a dilation of T_p .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $T \in \mathcal{T}_{p,q}$ for some $1 \leq p < q \leq n$.
 - Since \hat{T}_p is pure and Szegö tuple, we can dilate \hat{T}_p to $(M_{z_1}, \ldots, M_{z_{n-1}})$ on $H^2_{\mathcal{D}_{\hat{T}_p}}(\mathbb{D}^{n-1})$.
 - We need find an isometric dilation of T_{ρ} on $H^{2}_{\mathcal{D}_{\hat{T}_{\rho}}}(\mathbb{D}^{n-1})$ which commutes with $(M_{z_{1}}, \ldots, M_{z_{n-1}})$.
 - Need to find a unitary $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$: $\mathcal{D}_{\hat{T}_p} \oplus H \to \mathcal{D}_{\hat{T}_p} \oplus H$ for some Hilbert space H such that $\Phi(z) = A + zB(I - zD)^{-1}C$ is inner and M_{Φ} is a dilation of T_p .
 - It turns out that the map $\{D_{\hat{T}_p}h \oplus D_{\hat{T}_q}T_q^*h : h \in \mathcal{H}\} \rightarrow \{D_{\hat{T}_p}T_p^*h \oplus D_{\hat{T}_p}h : h \in \mathcal{H}\}$ is an isometry and therefore extends to a unitary $U : \mathcal{D}_{\hat{T}_p} \oplus \mathcal{D}_{\hat{T}_q} \rightarrow \mathcal{D}_{\hat{T}_p} \oplus \mathcal{D}_{\hat{T}_q}$. This uniary do the job for us.

イロン イ部ン イヨン イヨン 三日

Theorem (-, Barik, Haria & Sarkar, 18) Let $T = (T_1, ..., T_n) \in \mathcal{T}_{p,q}$. Then T dilates to $(M_{z_1}, ..., M_{z_{p-1}}, M_{\Phi_p}, M_{z_{p+1}}, ..., M_{z_{q-1}}, M_{\Phi_q}, M_{z_q}, ..., M_{z_{n-1}}),$ on $H^2_{\mathcal{E}}(\mathbb{D}^{n-1})$ with $\Phi_p(z)\Phi_q(z) = \Phi_q(z)\Phi_p(z) = z_p I_{\mathcal{E}},$

for some Hilbert space \mathcal{E} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

key ideas

Let $T = (T_1, T_2, T_3) \in T_{2,3}$. Then (T_1, T_3) and (T_1, T_2) satisfy Szegö positivity.

• Then it can be shown that (T_1, T_2T_3) satisfy Szegö positivity.

★@> ★ E> ★ E> = E

Let $T = (T_1, T_2, T_3) \in T_{2,3}$. Then (T_1, T_3) and (T_1, T_2) satisfy Szegö positivity.

- Then it can be shown that (T_1, T_2T_3) satisfy Szegö positivity.
- Then (T_1, T_2T_3) can be dilated to (M_{z_1}, M_{z_2}) on $H^2_{\mathcal{E}}(\mathbb{D}^2)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let $T = (T_1, T_2, T_3) \in T_{2,3}$. Then (T_1, T_3) and (T_1, T_2) satisfy Szegö positivity.

- Then it can be shown that (T_1, T_2T_3) satisfy Szegö positivity.
- Then (T_1, T_2T_3) can be dilated to (M_{z_1}, M_{z_2}) on $H^2_{\mathcal{E}}(\mathbb{D}^2)$.
- Need to dilate (T_2, T_3) to (M_{Φ}, M_{Ψ}) on $H^2_{\mathcal{E}}(\mathbb{D}^2)$ such that

 $\Phi(z)\Psi(z)=\Psi(z)\Phi(z)=z_2I_{\mathcal{E}}.$

Let $T = (T_1, T_2, T_3) \in T_{2,3}$. Then (T_1, T_3) and (T_1, T_2) satisfy Szegö positivity.

- Then it can be shown that (T_1, T_2T_3) satisfy Szegö positivity.
- Then (T_1, T_2T_3) can be dilated to (M_{z_1}, M_{z_2}) on $H^2_{\mathcal{E}}(\mathbb{D}^2)$.
- Need to dilate (T_2, T_3) to (M_{Φ}, M_{Ψ}) on $H^2_{\mathcal{E}}(\mathbb{D}^2)$ such that

$$\Phi(z)\Psi(z)=\Psi(z)\Phi(z)=z_2I_{\mathcal{E}}.$$

This can be done using a technique recently found in the following artice:
 B. Krishna Das, S. Sarkar, J. Sarkar, *Factorizations of contractions*, Adv. Math. 322 (2017), 186 - 200.

- R. E. Curto and F.-H. Vasilescu, Standard operator models in the polydisc, Indiana Univ. Math. J. 42 (1993), 791-810.
- S. Barik, B. K. Das, K. J. Haria and J. Sarkar, Isometric dilations and von Neumann inequality for a class of tuples in the polydisc, Tran. Amer. Math. Soc. (to appear).
- A. Grinshpan, D.S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov and H.J. Woerdeman, *Classes of tuples of commuting contractions* satisfying the multivariable von Neumann inequality, J. Funct. Anal. 256 (2009), 3035-3054.

向下 イヨト イヨト

Thank You !

イロン 不同と 不同と 不同と

æ