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Hypercyclicity and chaos

Linear dynamics deals with various notions from dynamical
systems in the context of linear operators.

Definition
I An operator T is hypercyclic if it has a dense orbit, that

is, the set
{x ,Tx ,T 2x , . . .}

is dense in X for some x ∈ X .
I A vector z is periodic for T if T nz = z for some natural

number n.
I Hypercyclic + dense set of periodic points, then T is

called chaotic.

Main motivations arise from dynamical systems (via Birkhoff’s
Theorem) and operator theory (via cyclic vectors)
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Topological Transitivity and mixing

(Birkhoff’s Transitivity Theorem 1929):
Let g : M→M be a continuous map on a separable, complete
metric space with no isolated points. The g is topologically
transitive if and only if it has a dense orbit.

In either case, the
set of all points with dense orbits is residual in M.

T is transitive if for given non-empty open sets U and V ,
T k(U) meets V for some k.
It is mixing if T k(U) meets V for all k after certain stage.
Clearly mixing ⇒ transitivity, but they are different notions.
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How to check if an operator is hypercyclic?

Theorem
(The Hypercyclicity Criterion)
Suppose that D is dense in X and {nk} ⊆ N is a strictly
increasing sequence. If
(i) T nk → 0 pointwise on D, and

(ii) for each f ∈ D there exists a sequence {fk}k≥1 ⊆ X such
that

fk → 0 and T nk fk → f ,

then T is hypercyclic. If

nk = k,

for all k ∈ N, then T is topologically mixing.
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Theorem
(The Chaoticity Criterion) T is chaotic if for each x ∈ D, there
exists a sequence {uk}k≥0 in X with u0 = x such that

∑
n≥0

T nx and ∑
n≥0

un,

are unconditionally convergent, and

T nuk = uk−n,

for all k ≥ n.

Chaoticity Criterion ⇒ Mixing Criterion, but in general chaos
and topological mixing are different.
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Interesting Properties

I A hypercyclic operator is not compact. It is never normal.
It cannot be a contraction.

Suppose T is hypercyclic on X .
(1) σp(T ∗) is always empty. (More is true)
(2) Every orbit of T ∗ is unbounded.
(3) If X is complex, then every connected component of σ(T )
meets S1 in C.
(4) T p is hypercyclic for all p ≥ 1 and shares the set of
hypercyclic vectors
(5) so is λT for unimodular λ

I Every infinite dimensional separable Banach space
supports a hypercyclic operator.
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Suppose T is chaotic on a complex Banach space.
(1) The set of all perioidc vectors is the subspace generated by
eigenvectors cooresponding to rational eigenvalues.
(2) σ(T ) has no isolated points
I Not every infinite dim separable Banach space supports a

chaotic operator.



Examples of hypercyclic operators

Historical examples are due to Birkhoff (1929), McLane (1951)
and Rolewicz (1969).
(i) The wighted backward shift

Bw (x0,x1, . . .) = (w1x1,w2x2, . . .) is hypercyclic on `p iff
limsupn(w1w2 . . .wn) = ∞.

(ii) The adjoint multiplier M∗ϕ on the Hardy space H2(D) is
hypercyclic if and only if ϕ is non-constant and ϕ(D) meets S1.
(iii) Every non-trivial operator commuting the derivative
operator is hypercyclic on H (C).
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Examples of chaotic operators

(i) The wighted backward shift

Bw (x0,x1, . . .) = (w1x1,w2x2, . . .) is chaotic on `p iff the
sequence (w1w2 . . .wn)−p is in `p.

(ii) The adjoint multiplier M∗ϕ on the Hardy space H2(D) is
chaotic if and only if it is hypercyclic.
(iii) Every non-trivial operator commuting the derivative
operator is chaotic on H (C).
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Reproducing kernel Hilbert spaces

Scalar kernels:
Let H be an analytic function space over D and let the
evaluation functonal

w → f (w)

be bounded for each w . Then there exists kw ∈H such that
f (w) = 〈f ,kw 〉 for all f and w . The function

k(z ,w) = 〈kw ,kz〉

is called the (positive definite) kernel for H . The functions kw
form a total set.
There is a one-one coresspondence between RKH spaces and
positive definite kernels.



Operator valued kernels:
Let E be a Hilbert space. An function K : D×D→B(E ) is an
analytic kernel if K is analytic in the first variable and

n

∑
i ,j=1
〈K (zi ,zj)ηj ,ηi〉E ≥ 0,

for all {zi}ni=1 ⊆ D and {ηi}ni=1 ⊆ E and n ∈ N. In this case
there exists a Hilbert space HE (K ) of E -valued analytic
functions on D such that

{K (·,w)η : w ∈ D,η ∈ E },

is a total set in HE (K ), where

(K (·,w)η)(z) = K (z ,w)η .



(i)(Reproducing property)

〈f ,K (·,w)η〉HE (K) = 〈f (w),η〉E

(ii)The evaluation operator f → f (w) is bounded for each w .
(iii)K (z ,w)∗ = K (w ,z)
Analyticity in w and reproducing property ⇒

Kn(z) = ∂ nK
∂ w̄n (z ,0) ∈B(E )

and the function
Kn,η (z) = Kn(z)η

is in HE (K ).
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Derivatives: norms and connection with the adjoint
operator M∗z

〈f (n)(0),η〉E = 〈f ,Kn,η〉HE (K),

〈Km,ζ ,Kn,η〉HE (K) = 〈
(

∂ n+mK
∂zn∂ w̄m (0,0)

)
ζ ,η〉E ,

‖Kn,η‖2HE (K) = 〈
(

∂ 2nK
∂zn∂ w̄n (0,0)

)
η ,η〉E .

If the multiplication operator Mz is bounded on HE (K ), then

M∗z ( 1n!Kn,η ) =
{

1
(n−1)!Kn−1,η if n ≥ 1
0 if n = 0,

for all η ∈ E .
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Main Results

Suppose that E0 is dense.
(1) If

liminf
n

(
1

(n!)2
〈( ∂ 2nK

∂zn∂ w̄n (0,0)
)

η ,η
〉
E

)
= 0,

uniformly in η ∈ E0, then M∗z is hypercyclic.
(2) If

lim
n

(
1

(n!)2
〈( ∂ 2nK

∂zn∂ w̄n (0,0)
)

η ,η
〉
E

)
= 0,

for all η ∈ E0, then M∗z is topologically mixing.



Scalar case

Suppose Mz is bounded on H (k) corresponding to an analytic
scalar kernel k. Then:
(1) M∗z is hypercyclic if

liminf
n

1
(n!)2

∂ 2nk
∂zn∂ w̄n (0,0) = 0.

(2) M∗z is topologically mixing if

lim
n

1
(n!)2

∂ 2nk
∂zn∂ w̄n (0,0) = 0.



Conditions for chaos of M∗z

(1) Assume that Mz is bounded and E0 is dense in E . Then
M∗z is chaotic on HE (K ) if

∑
n,m≥0

1
n! m!〈

(
∂ n+mK
∂zn∂ w̄n (0,0)

)
η ,η〉E ,

is convergent in some sense for all η ∈ E0.



Counter-example

Consider the diagonal kernel

k(z ,w) = ∑n βnznwn,

where (βn) is positive real sequence so that the space k has
the domain the bi-disc. Let

K (z ,w) = k(z ,w)IE .

Then HE (K ) is the tensor product of H (k) with E . It can be
shown that
M∗z is hypercyclic iff inf βn = 0.
M∗z is mixing iff limn βn = 0
It is chaotic iff ∑n βn < ∞.



Counter-example

Now consider a new

k1(z ,w) = (1− z)−1k(z ,w)(1−w)−1.

It can be shown through a suitable (βn) that M∗z is hypercyclic
on H (k1), but the sufficient conditions are not necessary.

However, if P(z) is an operator valued polynomial with
injective P(0), then one can show that the sufficient conditions
are also necessary for HE (K1), where

K1(z ,w) = P(z)K (z ,w)P(w)∗.
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