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Characterization of invariant subspaces . . .

Aim

To give a complete characterization of (joint) invariant subspaces for
(Mz1 , . . . ,Mzn) on the Hardy space H2(Dn) over the unit polydisc Dn in Cn,
n > 1.

To discuss about a complete set of unitary invariants for invariant subspaces
as well as unitarily equivalent invariant subspaces.

To classify a large class of n-tuples of commuting isometries.
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Characterization of invariant subspaces . . .

Notation

Unit polydisc Dn = {(z1, . . . , zn) ∈ Cn : |zi | < 1, i = 1, . . . , n}.
Hardy space H2(D) = {f =

∑∞
n=0 anzn :

∑∞
n=0 |an|2 <∞}.

Vector-valued Hardy space

H2
E(D) = {f =

∞∑
n=0

anzn : an ∈ E and
∞∑
n=0

‖an‖2
E <∞},

where E is some Hilbert space.

Mz denote the multiplication operator on H2
E(D) defined by

(Mz f )(w) = wf (w) (f ∈ H2
E(D),w ∈ D).

H∞B(E)(D) denote the space of bounded B(E)-valued holomorphic functions on
D.
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Invariant subspaces: Motivation

A closed subspace M of a Hilbert space H is said to be invariant subspace
under T ∈ B(H) if T (M) ⊆M.

Given an invariant subspace M of T ∈ B(H), one can view T as an operator
matrix with respect to the decomposition H =M⊕M⊥[

T |M ∗
0 ∗

]
.

One of the most famous open problems in operator theory and function
theory is the so-called invariant subspace problem: Does every bounded linear
operator have a non-trivial closed invariant subspace?
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Invariant subspaces: Motivation

The celebrated Beurling theorem (1949) says that a non-zero closed subspace
S of H2(D) is invariant for Mz if and only if there exists an inner function
θ ∈ H∞(D) such that

S = θH2(D).

One may now ask whether an analogous characterization holds for (joint)
invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, i.e., if S is an
invariant subspace for (Mz1 , . . . ,Mzn) on H2(Dn), then

S = ψH2(Dn),

where ψ ∈ H∞(Dn) is an inner function.

Rudin’s pathological examples (Rudin (1969)): There exist invariant
subspaces S1 and S2 for (Mz1 ,Mz2 ) on H2(D2) such that
(1) S1 is not finitely generated, and
(2) S2 ∩ H∞(D2) = {0}.
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Invariant subspaces: Motivation

To understand the structure of a large class of operators we need to
understand the structure of shift invariant subspaces for the vector-valued
Hardy space over the unit disc.

Theorem (Beurling-Lax-Halmos)

A non-zero closed subspace S of H2
E(D) is invariant for Mz if and only if there

exists a closed subspace F ⊆ E and an inner function Θ ∈ H∞B(F,E)(D) such that

S = ΘH2
F (D).

Idea

Identify Hardy space over polydisc H2(Dn+1) to the H2(Dn)-valued Hardy
space over disc H2

H2(Dn)(D).

Represent (Mz1 ,Mz2 , . . . ,Mzn+1 ) on H2(Dn+1) to (Mz ,Mκ1 , . . . ,Mκn) on
H2

H2(Dn)(D), where κi ∈ H∞B(H2(Dn))(D), i = 1, . . . , n, is a constant as well as

simple and explicit B(H2(Dn))-valued analytic function.
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Basic definitions

A closed subspace S ⊆ H2
E(Dn) is called a (joint) invariant subspace for

(Mz1 , . . . ,Mzn) on H2
E(Dn) if

ziS ⊆ S,
for all i = 1, . . . , n.

An isometry V on H is called a pure isometry (or shift) if V ∗m → 0 in SOT.

Let V be a pure isometry on H. Then

H =
∞
⊕

m=0
V mW,

where W = ker V ∗ = H	 VH.

The natural map ΠV : H → H2
W(D) defined by

ΠV (V mη) = zmη,

for all m ≥ 0 and η ∈ W, is a unitary operator and

ΠV V = MzΠV .

We call ΠV the Wold-von Neumann decomposition of the shift V .
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Commutator of shift

Theorem 1 (Maji, Sarkar, & Sankar’ 18)

Let V be a pure isometry on H, and let C be a bounded operator on H. Let PiV
be the Wold-von Neumann decomposition of V . Let W = Ker(V ∗) and assume
that M = ΠV C Π∗V . Then

CV = VC ,

if and only if
M = MΘ,

where
Θ(z) = PW(IH − zV ∗)−1C |W (z ∈ D).

Remark
In addition if CV ∗ = V ∗C , then

Θ(z) = C |W = Θ(0) (z ∈ D),

as C (I − VV ∗) = (I − VV ∗)C and V ∗m |W= 0 for all m ≥ 1.
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Preparation for main result

For the sake of simplicity we discuss firstly for n = 2, i.e., vector-valued
Hardy space over the bidisc H2

E(D2).

We now identify H2
E(D2) with H2

H2
E (D)

(D) by the canonical unitaries

H2
E(D2)

Û−→ H2(D)⊗ H2
E(D)

Ũ−→ H2
H2
E (D)(D)

where
Û(zk1

1 zk2
2 η) = zk1 ⊗ (zk2

1 η), ( k1, k2 ≥ 0, η ∈ E )

and
Ũ(zk ⊗ ζ) = zkζ, ( k ≥ 0, ζ ∈ H2

E(D) ).

Set U = ŨÛ. Then it follows that U : H2
E(D2)→ H2

H2
E (D)

(D) is a unitary

operator. Since

ÛMz1 = (Mz ⊗ IH2
E (D) ))Û and ÛMz2 = (IH2(D) ⊗Mz1 )Û,

we have UMz1 = MzU, and UMz2 = Mκ1 U, where κ1(w) = Mz1 for w ∈ D.
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Û−→ H2(D)⊗ H2
E(D)
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Ũ(zk ⊗ ζ) = zkζ, ( k ≥ 0, ζ ∈ H2

E(D) ).
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Û−→ H2(D)⊗ H2
E(D)
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Preparation for main result

Let E be a Hilbert space and let En = H2(Dn)⊗ E for n ≥ 1. Let κi ∈ H∞B(En)(D)

denote the B(En)-valued constant function on D defined by

κi (w) = Mzi ∈ B(En),

for all w ∈ D, and let Mκi denote the multiplication operator on H2
En(D) defined by

Mκi f = κi f ,

for all f ∈ H2
En(D) and i = 1, . . . , n. Then

Theorem 2 (Maji, Aneesh, Sarkar, & Sankar’ 18)

(i) (Mz1 ,Mz2 . . . ,Mzn+1 ) on H2
E(Dn+1) and (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) are
unitarily equivalent.
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Preparation for main result

Let S ⊆ H2
H2
E (D)

(D) be a closed invariant subspace for (Mz ,Mκ1 ) on

H2
H2
E (D)

(D). Set

V = Mz |S and V1 = Mκ1 |S .

Let ΠV : S → H2
W(D) be the Wold-von Neumann decomposition of V on S.

Then
ΠV V Π∗V = Mz and ΠV V1Π∗V = MΦ1 ,

where
Φ1(w) = PW(IS − wV ∗)−1V1|W ,

for all w ∈ D, Φ1 ∈ H∞B(W)(D).

Let iS denote the inclusion map iS : S ↪→ H2
En(D). Then

H2
W(D)

Π∗V−−→ S iS−→ H2
H2
E (D)(D)

i.e., ΠS = iS ◦ Π∗V : H2
W(D)→ H2

H2
E (D)

(D) is an isometry and

ran ΠS = S.
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Main result

We have invariant subspace result on vector-valued Hardy space over polydisc
setting:

Theorem 2 (Maji, Aneesh, Sarkar, & Sankar’ 18)

(ii) Let E be a Hilbert space, S ⊆ H2
En(D) be a closed subspace, and let

W = S 	 zS. Then S is invariant for (Mz ,Mκ1 , . . . ,Mκn) if and only if
(MΦ1 , . . . ,MΦn) is an n-tuple of commuting shifts on H2

W(D) and there exists an
inner function Θ ∈ H∞B(W,En)(D) such that

S = ΘH2
W(D),

and
κiΘ = ΘΦi ,

where
Φi (w) = PW(IS − wPSM∗z )−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n.
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Remarks

One obvious necessary condition for a closed subspace S of H2
En(D) to be

(joint) invariant for (Mz ,Mκ1 , . . . ,Mκn) is that S is invariant for Mz , and,
consequently

S = ΘH2
W(D),

where W = S 	 zS and Θ ∈ H∞B(W,En)(D) is the Beurling, Lax and Halmos
inner function.

Again κiS ⊆ S, =⇒
κiΘ = ΘΓi ,

for some Γi ∈ B(H2
W(D)), i = 1, . . . , n (by Douglas’s range inclusion theorem

).

In the above theorem, we prove that Γi is explicit, that is

Γi = Φi ∈ H∞B(W)(D),

for all i = 1, . . . , n, and (Γ1, . . . , Γn) is an n-tuple of commuting shifts on
H2
W(D).
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En(D) to be

(joint) invariant for (Mz ,Mκ1 , . . . ,Mκn) is that S is invariant for Mz , and,
consequently

S = ΘH2
W(D),

where W = S 	 zS and Θ ∈ H∞B(W,En)(D) is the Beurling, Lax and Halmos
inner function.

Again κiS ⊆ S, =⇒
κiΘ = ΘΓi ,

for some Γi ∈ B(H2
W(D)), i = 1, . . . , n (by Douglas’s range inclusion theorem
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Remarks

Uniqueness

Let S be an invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on H2
En(D). Then

S = ΘH2
W(D) and

κiΘ = ΘΦi (i = 1, . . . , n),

from the above Theorem.

Now suppose S = Θ̃H2
W̃(D) and κi Θ̃ = Θ̃Φ̃i for some Hilbert space W̃, inner

function Θ̃ ∈ H∞B(W̃)
(D) and shift MΦ̃i

on H2
W̃(D), i = 1, . . . , n.

Then there exists a unitary operator τ :W → W̃ such that

Θ = Θ̃τ,

and
τΦi = Φ̃iτ,

for all i = 1, . . . , n.
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Nested invariant subspaces

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let E be a Hilbert space, and let S1 = Θ1H2
W1

(D) and S2 = Θ2H2
W2

(D) be two
invariant subspaces for (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) and Wj = Sj 	 zSj for
j = 1, 2. Let

Φj,i (w) = PWj (ISj − wPSj M
∗
z )−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n.

Then S1 ⊆ S2 if and only if there exists an inner multiplier Ψ ∈ H∞B(W1,W2)(D)
such that Θ1 = Θ2Ψ and ΨΦ1,i = Φ2,iΨ for all i = 1, . . . , n.
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Unitarily equivalent invariant subspaces

Definition

Let S and S̃ be invariant subspaces for the (n + 1)-tuples of multiplication
operators (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) and H2
Ẽn

(D), respectively. We say that S
and S̃ are unitarily equivalent, and write S ∼= S̃, if there is a unitary map
U : S → S̃ such that

UMz |S = Mz |S̃U and UMκi |S = Mκi |S̃U,

for all i = 1, . . . , n.

Identification

There exists a unitary operator UE : H2
E(Dn+1)→ H2

En(D) such that

UEMz1 = MzUE ,

and
UEMzi+1 = Mκi UE ,

for all i = 1, . . . , n.
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Intertwining maps

Let F be another Hilbert space, and let X : H2
E(Dn+1)→ H2

F (Dn+1) be a bounded
linear operator such that

XMzi = Mzi X , (0.1)

for all i = 1, . . . , n + 1. Set
Xn = UFXU∗E .

Then Xn : H2
En(D)→ H2

Fn
(D) is bounded and

XnMz = MzXn and XnMκi = Mκi Xn, (0.2)

for all i = 1, . . . , n.

Definition

Any map satisfying (0.2) will be referred to module maps.
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Unitarily equivalent invariant subspaces

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let S ⊆ H2
Fn

(D) be a closed invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on
H2
Fn

(D). Then S ∼= H2
En(D) if and only if there exists an isometric module map

Xn : H2
En(D)→ H2

Fn
(D) such that

S = XnH2
En(D).

Moreover, in this case
dim E ≤ dim F .

Corollary

Let S ⊆ H2
Hn

(D) be a closed invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on

H2
Hn

(D). Then S ∼= H2
Hn

(D) if and only if there exists an isometric module map

Xn : H2
Hn

(D)→ H2
Hn

(D) such that

S = Xn(H2
Hn

(D)).

The above corollary was first observed by Agrawal, Clark and Douglas (1986).
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A complete set of unitary invariants

Definition

Let E and Ẽ be Hilbert spaces, and let {Ψ1, . . . ,Ψn} ⊆ H∞B(E)(D) and

{Ψ̃1, . . . , Ψ̃n} ⊆ H∞B(Ẽ)
(D). We say that {Ψ1, . . . ,Ψn} and {Ψ̃1, . . . , Ψ̃n} coincide

if there exists a unitary operator τ : E → Ẽ such that

τΨi (z) = Ψ̃i (z)τ,

for all z ∈ D and i = 1, . . . , n.

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let E and Ẽ be Hilbert spaces. Let S ⊆ H2
En(D) and S̃ ⊆ H2

Ẽn
(D) be invariant

subspaces for (Mz ,Mκ1 , . . . ,Mκn) on H2
En(D) and H2

Ẽn
(D), respectively. Then

S ∼= S̃ if and only if {Φ1, . . . ,Φn} and {Φ̃1, . . . , Φ̃n} coincide.
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Representations of model isometries

Question

Given a Hilbert space E , characterize (n + 1)-tuples of commuting shifts on
Hilbert spaces that are unitarily equivalent to (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D).

Answer

Answer to this question is related to (numerical invariant) the rank of an operator
associated with the Szegö kernel on Dn+1.
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Representations of model isometries

Definition
The defect operator corresponding to an m-tuple of commuting contractions
(T1, . . . ,Tm) on a Hilbert space H is defined (see, Guo & Yang (2004)) as

S−1
m (T1, . . . ,Tm) =

∑
0≤|k|≤m

(−1)|k|T k1
1 · · ·T

km
m T ∗k1

1 · · ·T ∗kmm ,

where |k| = k1 + k2 + . . .+ km, 0 ≤ ki ≤ 1, i = 1, . . . ,m.

Definition

We say that (T1, . . . ,Tm) is of rank p (p ∈ N ∪ {∞}) if

rank [S−1
m (T1, . . . ,Tm)] = p,

and we write
rank (T1, . . . ,Tm) = p.
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Representations of model isometries

Let (V ,V1 . . . ,Vn) be an (n + 1)-tuple of doubly commuting shifts on H.
Then Sarkar (2014) proved that (V ,V1, . . . ,Vn) on H and (Mz1 , . . . ,Mzn+1 )
on H2

D(Dn+1) are unitarily equivalent, where

D = ran S−1
n+1(V ,V1, . . . ,Vn) =

(
n
∩
i=1

ker V ∗i

)
∩ ker V ∗.

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let (V ,V1, . . . ,Vn) be an (n + 1)-tuple of doubly commuting shifts on some
Hilbert space H. Let W = H	 VH, and let

Ψi (z) = Vi |W (i = 1, . . . , n),

for all z ∈ D. Then (V ,V1, . . . ,Vn) on H, (Mz ,MΨ1 , . . . ,MΨn) on H2
W(D), and

(Mz ,Mκ1 , . . . ,Mκn) on H2
En(D) are unitarily equivalent, where E is a Hilbert space

and dim E = rank (V ,V1, . . . ,Vn).
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