
Composition operators which are similar to an
isometry on various Banach spaces X ↪→ Hol(D)

Mahesh Kumar

Lady Shri Ram College For Women
University of Delhi

December 14, 2018
ISI Bangalore

(Joint work with W. Arendt, I. Chalendar, S. Srivastava)

Mahesh Kumar Composition operators similar to an isometry



Banach spaces of holomorphic functions

Let Hol(D) denote the space of all holomorphic functions on D,
where D is the open unit disc of C. Then

(X , ‖.‖X ) is called a
Banach space of holomorphic functions if

(X , ‖.‖X ) is a Banach space,

X ⊂ Hol(D),

the point evaluations δz ∈ X ′, z ∈ D.

We denote this by
X ↪→ Hol(D).
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Examples of X ↪→ Hol(D)

Hp(D), 1 ≤ p ≤ ∞ (Hardy spaces)

Hp(β), 1 ≤ p <∞ (Weighted Hardy spaces)

Ap
α(D), α > −1, 1 ≤ p <∞ (Standard weighted Bergman

spaces)

D (Dirichlet space)

W (D) (Wiener algebra)

A(D) (Disc algebra)

B (Bloch space)

Bα, 0 < α <∞ (Bloch type spaces)
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Composition operators on X ↪→ Hol(D)

Let ϕ : D→ D be holomorphic. Then the composition
operator Cϕ : Hol(D)→ Hol(D) is defined by

Cϕf = f ◦ ϕ for all f ∈ Hol(D).

Let X ↪→ Hol(D). Then by the Closed Graph Theorem,
CϕX ⊂ X , if and only if, Cϕ ∈ L(X ).

If ‖Cϕf ‖X = ‖f ‖X for all f ∈ X , then Cϕ is called an isometry
of X .

Moreover if there exists an invertible S ∈ L(X ) such that
Cϕ = S−1VS , where V is an isometry of X , then Cϕ is said to
be similar to an isometry of X .
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Composition operators similar to an isometry of Hp

Theorem (Bayart, 2002)

Let ϕ be a holomorphic self map of D. The following assertions are
equivalent on Hp, 1 ≤ p <∞:

(i) Cϕ is similar to an isometry of Hp;

(ii) ϕ is inner and has a fixed point in D.
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Sketch of the proof (X = Hp)

Theorem (ACKS-2018)

The following assertions are equivalent on X .

(i) Cn
ϕ converges strongly;

(ii) ϕ is not inner and there is b ∈ D s.t. ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P, where Pf = f (b)1D for all f ∈ X .

Theorem (Cowen, MacCluer, 95)

Let ϕ be a holomorphic self map of D. Then a composition
operator Cϕ is an isometry of Hp, 1 ≤ p <∞ if and only if ϕ is an
inner function and ϕ(0) = 0.
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Composition operators similar to an isometry

Let X ∈ {Ap
β (1 ≤ p <∞, β > −1), H∞νq (q > 0), B0, Bα (α > 0,

α 6= 1) }.

Those composition operators which are similar to an
isometry of X is characterized as follows:

Theorem (ACKS-2018)

Let ϕ be a holomorphic self map of D. Consider the composition
operator Cϕ on X . The following assertions are equivalent:

(i) Cϕ is similar to an isometry of X ;

(ii) ϕ is an elliptic automorphism.
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Sketch of the proof (X = Ap
β or H∞νq or Bα, α > 1)

Let X be Ap
β or H∞νq or Bα (α > 1) and ϕ : D→ D be holomorphic.

Theorem (ACKS-2018)

The following assertions are equivalent on X .

(i) Cn
ϕ converges strongly;

(ii) ϕ is not an automorphism and there is b ∈ D s.t. ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P, where Pf = f (b)1D for all f ∈ X .

Theorem (Mart́ın, Vukotić, 2006, Bonet, et al., 2008, Zorboska,
2007)

Cϕ is an isometry of X if and only if ϕ is a rotation.
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Theorem (Mart́ın, Vukotić, 2006, Bonet, et al., 2008, Zorboska,
2007)

Cϕ is an isometry of X if and only if ϕ is a rotation.

Mahesh Kumar Composition operators similar to an isometry



Sketch of the proof (X = B0)

Let ϕ be a holomorphic self map of D such that ϕ ∈ B0.

Theorem (ACKS-2018)

The following assertions are equivalent on B0:

(i) Cϕ is an isometry of B0;

(ii) ϕ(0) = 0 and τ∞ϕ = 1;

(iii) ϕ is a rotation, where

τ∞ϕ := sup
z∈D

1− |z |2

1− |ϕ(z)|2
|ϕ′(z)|
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Sketch of the proof (X = B0)

Theorem (Rodŕıguez, 99)

Suppose that ϕ is a holomorphic self map of D. Then

‖Cϕ‖e,B ≤ τ∞ϕ ≤ 1.

Moreover, if ϕ ∈ B0, then

‖Cϕ‖e,B0 ≤ τ∞ϕ ≤ 1.

Theorem (ACKS-2017)

Let X ↪→ Hol(D) and ϕ : D→ D be holomorphic s.t. Cϕ(X ) ⊂ X
and that there exists b ∈ D s.t. limn→∞ ϕn(z) = b for all z ∈ D.
Then the following assertions are equivalent:

(i) Cn
ϕ converges in L(X ) as n→∞;

(ii) re(Cϕ) < 1.
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Sketch of the proof (X = B0)

Theorem (Allen, Collona, 2009)

Suppose that ϕ is a holomorphic self map of D. Then the operator
Cϕ on B is isometric if and only if ϕ(0) = 0 and one of the
following equivalent conditions holds:

(i) τ∞ϕ = 1;

(ii) ϕ either is a rotation or for every w ∈ D, there exists (an) ⊂ D
such that |an| → 1, ϕ(an)→ w , and τϕ(an)→ 1 as n→∞.

(iii) ϕ either is a rotation or the zeros of ϕ form an infinite
sequence (zk) in D s.t. lim supk→∞(1− |zk |2)|ϕ′(zk)| = 1.

(iv) ϕ either is a rotation or ϕ = gB, where g is a non-vanishing
analytic function mapping D into itself and B is an infinite
Blaschke product whose zero set Z contains a sequence (zk)k
such that |g(zk)| → 1 when k →∞ and

limk→∞
∏
ξ∈Z ,ξ 6=zk

∣∣∣ zk−ξ
1−ξzk

∣∣∣ = 1.
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Sketch of the proof (X = B0)

Theorem (ACKS-2018)

The following assertions are equivalent on B0.

(i) Cn
ϕ converges weakly;

(ii) ϕ is not an automorphism and there is b ∈ D s.t. ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P as n→∞, where Pf = f (b)1D.

Mahesh Kumar Composition operators similar to an isometry



Sketch of the proof (X = B0)

Theorem (ACKS-2018)

The following assertions are equivalent on B0.

(i) Cn
ϕ converges weakly;

(ii) ϕ is not an automorphism and there is b ∈ D s.t. ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P as n→∞, where Pf = f (b)1D.

Mahesh Kumar Composition operators similar to an isometry



Sketch of the proof (X = Bα, 0 < α < 1)

For α > 0 and ϕ a holomorphic self map of D, let τ∞ϕ,α <∞,

where τ∞ϕ,α := supz∈D
(1−|z|2)

α|ϕ′(z)|
(1−|ϕ(z)|2)α .

Theorem (ACKS-2018)

Suppose there is b ∈ D s.t. ϕ(b) = b. The following assertions are
equivalent on Bα, 0 < α < 1.

(i) Cn
ϕ converges strongly;

(ii) there exists n0 ∈ N such that ϕn0(D) ⊂ D;

(iii) Cn
ϕ converges uniformly;

(iv) Cϕ is mean ergodic.

In that case, Cn
ϕ converges to P, where Pf = f (b)1D.
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Sketch of the proof (X = Bα, 0 < α < 1)

Theorem (ACKS-2018)

There exist positive constants kα and Kα depending only on α
such that

kατ
∞
ϕ,α ≤ ‖Cϕ‖L(Bα) ≤ Kατ

∞
ϕ,α.

Theorem (Zorboska, 2007)

Let 0 < α < 1 and let ϕ be a holomorphic self map of D. Then Cϕ
is an isometry of Bα if and only if ϕ is a rotation.
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Theorem (Zorboska, 2007)
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Composition operators similar to an isometry of B

Those composition operators which are similar to an isometry of B
is characterized as follows:

Theorem (ACKS-2018)

Let ϕ be a holomorphic self map of D. Consider the composition
operator Cϕ on B. The following assertions are equivalent:

(i) Cϕ is similar to an isometry;

(ii) ϕ has a fixed point b ∈ D and τ∞ϕ = 1.
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Sketch of the proof

Theorem (ACKS-2018)

Let ϕ : D→ D be holomorphic. The following assertions are
equivalent on B.

(i) Cn
ϕ converges strongly;

(ii) τ∞ϕ < 1 and there is b ∈ D such that ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P, where Pf = f (b)1D for all f ∈ B.

Mahesh Kumar Composition operators similar to an isometry



Sketch of the proof

Theorem (ACKS-2018)

Let ϕ : D→ D be holomorphic. The following assertions are
equivalent on B.

(i) Cn
ϕ converges strongly;

(ii) τ∞ϕ < 1 and there is b ∈ D such that ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P, where Pf = f (b)1D for all f ∈ B.

Mahesh Kumar Composition operators similar to an isometry



Composition operators similar to an isometry of D

Those composition operators which are similar to an isometry of D
is characterized as follows:

Theorem (ACKS-2018)

Let ϕ be a univalent and holomorphic self map of D such that nϕ
is essentially radial. The following assertions are equivalent on D.

(i) Cϕ is similar to an isometry of D;

(ii) ϕ is a full map with a fixed point b ∈ D.
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Sketch of the proof

Theorem (Mart́ın, Vukotić, 2006)

A composition operator Cϕ is an isometry of D if and only if ϕ is a
univalent full map of D that fixes the origin.

Theorem (ACKS-2018)

Let ϕ be a univalent and holomorphic self map of D such that the
counting function nϕ is essentially radial. The following assertions
are equivalent on D.

(i) Cn
ϕ converges strongly;

(ii) ϕ is not a full map of D and there is b ∈ D with ϕ(b) = b;

(iii) Cn
ϕ converges uniformly.

In that case, Cn
ϕ converges to P, where Pf = f (b)1D for all f ∈ D.
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