Composition operators which are similar to an isometry on various Banach spaces $X \hookrightarrow Hol(\mathbb{D})$

Mahesh Kumar

Lady Shri Ram College For Women University of Delhi

> December 14, 2018 ISI Bangalore

(Joint work with W. Arendt, I. Chalendar, S. Srivastava)

Let $Hol(\mathbb{D})$ denote the space of all holomorphic functions on \mathbb{D} , where \mathbb{D} is the open unit disc of \mathbb{C} . Then

• $(X, \|.\|_X)$ is a Banach space,

- $(X, \|.\|_X)$ is a Banach space,
- $X \subset \operatorname{Hol}(\mathbb{D})$,

- $(X, \|.\|_X)$ is a Banach space,
- $X \subset \operatorname{Hol}(\mathbb{D})$,
- the point evaluations $\delta_z \in X'$, $z \in \mathbb{D}$.

- $(X, \|.\|_X)$ is a Banach space,
- $X \subset \operatorname{Hol}(\mathbb{D})$,
- the point evaluations $\delta_z \in X'$, $z \in \mathbb{D}$.

We denote this by $X \hookrightarrow \operatorname{Hol}(\mathbb{D}).$

• $H^p(\mathbb{D}), 1 \leq p \leq \infty$ (Hardy spaces)

イロト イ団ト イヨト イヨト

æ

- $H^p(\mathbb{D}), 1 \leq p \leq \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

- $H^p(\mathbb{D}), 1 \le p \le \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)
- A^p_α(D), α > −1, 1 ≤ p < ∞ (Standard weighted Bergman spaces)

- $H^p(\mathbb{D}), 1 \le p \le \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)
- A^p_α(D), α > −1, 1 ≤ p < ∞ (Standard weighted Bergman spaces)
- \mathcal{D} (Dirichlet space)

- $H^p(\mathbb{D}), 1 \le p \le \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)
- A^p_α(D), α > −1, 1 ≤ p < ∞ (Standard weighted Bergman spaces)
- \mathcal{D} (Dirichlet space)
- $W(\mathbb{D})$ (Wiener algebra)

- $H^p(\mathbb{D}), 1 \leq p \leq \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)
- A^p_α(D), α > −1, 1 ≤ p < ∞ (Standard weighted Bergman spaces)
- \mathcal{D} (Dirichlet space)
- $W(\mathbb{D})$ (Wiener algebra)
- $A(\mathbb{D})$ (Disc algebra)

- $H^p(\mathbb{D}), 1 \le p \le \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)
- A^p_α(D), α > −1, 1 ≤ p < ∞ (Standard weighted Bergman spaces)
- \mathcal{D} (Dirichlet space)
- $W(\mathbb{D})$ (Wiener algebra)
- $A(\mathbb{D})$ (Disc algebra)
- \mathcal{B} (Bloch space)

- $H^p(\mathbb{D}), 1 \le p \le \infty$ (Hardy spaces)
- $H^p(\beta)$, $1 \le p < \infty$ (Weighted Hardy spaces)
- A^p_α(D), α > −1, 1 ≤ p < ∞ (Standard weighted Bergman spaces)
- \mathcal{D} (Dirichlet space)
- $W(\mathbb{D})$ (Wiener algebra)
- $A(\mathbb{D})$ (Disc algebra)
- B (Bloch space)
- \mathcal{B}_{lpha} , 0 < lpha < ∞ (Bloch type spaces)

Composition operators on $X \hookrightarrow Hol(\mathbb{D})$

Let φ : D → D be holomorphic. Then the composition operator C_φ : Hol(D) → Hol(D) is defined by

$$C_{\varphi}f = f \circ \varphi$$
 for all $f \in \operatorname{Hol}(\mathbb{D})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Composition operators on $X \hookrightarrow Hol(\mathbb{D})$

Let φ : D → D be holomorphic. Then the composition operator C_φ : Hol(D) → Hol(D) is defined by

$$C_{\varphi}f = f \circ \varphi$$
 for all $f \in \operatorname{Hol}(\mathbb{D})$.

• Let $X \hookrightarrow \operatorname{Hol}(\mathbb{D})$. Then by the Closed Graph Theorem, $C_{\varphi}X \subset X$, if and only if, $C_{\varphi} \in \mathcal{L}(X)$.

Composition operators on $X \hookrightarrow \operatorname{Hol}(\mathbb{D})$

Let φ : D → D be holomorphic. Then the composition operator C_φ : Hol(D) → Hol(D) is defined by

$$C_{\varphi}f = f \circ \varphi$$
 for all $f \in \operatorname{Hol}(\mathbb{D})$.

- Let $X \hookrightarrow \operatorname{Hol}(\mathbb{D})$. Then by the Closed Graph Theorem, $C_{\varphi}X \subset X$, if and only if, $C_{\varphi} \in \mathcal{L}(X)$.
- If $||C_{\varphi}f||_X = ||f||_X$ for all $f \in X$, then C_{φ} is called an isometry of X.

Composition operators on $X \hookrightarrow \operatorname{Hol}(\mathbb{D})$

Let φ : D → D be holomorphic. Then the composition operator C_φ : Hol(D) → Hol(D) is defined by

$$C_{\varphi}f = f \circ \varphi$$
 for all $f \in \operatorname{Hol}(\mathbb{D})$.

- Let $X \hookrightarrow \operatorname{Hol}(\mathbb{D})$. Then by the Closed Graph Theorem, $C_{\varphi}X \subset X$, if and only if, $C_{\varphi} \in \mathcal{L}(X)$.
- If $||C_{\varphi}f||_X = ||f||_X$ for all $f \in X$, then C_{φ} is called an isometry of X.
- Moreover if there exists an invertible S ∈ L(X) such that C_φ = S⁻¹VS, where V is an isometry of X, then C_φ is said to be similar to an isometry of X.

Composition operators similar to an isometry of H^p

< ∃ →

э

Theorem (Bayart, 2002)

Let φ be a holomorphic self map of \mathbb{D} . The following assertions are equivalent on H^p , $1 \leq p < \infty$:

- (i) C_{φ} is similar to an isometry of H^{p} ;
- (ii) φ is inner and has a fixed point in \mathbb{D} .

Mahesh Kumar Composition operators similar to an isometry

æ

《曰》《聞》《臣》《臣》。

Theorem (ACKS-2018)

The following assertions are equivalent on X.

- (i) C_{φ}^{n} converges strongly;
- (ii) φ is not inner and there is $b \in \mathbb{D}$ s.t. $\varphi(b) = b$;
- (iii) C_{φ}^{n} converges uniformly.

In that case, C_{φ}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$ for all $f \in X$.

Theorem (ACKS-2018)

The following assertions are equivalent on X.

- (i) C_{φ}^{n} converges strongly;
- (ii) φ is not inner and there is $b \in \mathbb{D}$ s.t. $\varphi(b) = b$;
- (iii) C_{φ}^{n} converges uniformly.

In that case, C_{φ}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$ for all $f \in X$.

Theorem (Cowen, MacCluer, 95)

Let φ be a holomorphic self map of \mathbb{D} . Then a composition operator C_{φ} is an isometry of H^p , $1 \leq p < \infty$ if and only if φ is an inner function and $\varphi(0) = 0$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Composition operators similar to an isometry

Let
$$X \in \{A^p_\beta \ (1 \le p < \infty, \ \beta > -1), \ H^{\infty}_{\nu_q} \ (q > 0), \ \mathcal{B}_0, \ \mathcal{B}^{\alpha} \ (\alpha > 0, \ \alpha \ne 1) \ \}.$$

э

э

Let $X \in \{A_{\beta}^{p} \ (1 \leq p < \infty, \beta > -1), H_{\nu_{q}}^{\infty} \ (q > 0), \mathcal{B}_{0}, \mathcal{B}^{\alpha} \ (\alpha > 0, \alpha \neq 1) \}$. Those composition operators which are similar to an isometry of X is characterized as follows:

Let $X \in \{A_{\beta}^{p} \ (1 \leq p < \infty, \beta > -1), H_{\nu_{q}}^{\infty} \ (q > 0), \mathcal{B}_{0}, \mathcal{B}^{\alpha} \ (\alpha > 0, \alpha \neq 1) \}$. Those composition operators which are similar to an isometry of X is characterized as follows:

Theorem (ACKS-2018)

Let φ be a holomorphic self map of \mathbb{D} . Consider the composition operator C_{φ} on X. The following assertions are equivalent: (i) C_{φ} is similar to an isometry of X;

(ii) φ is an elliptic automorphism.

Sketch of the proof $(X = A^p_\beta \text{ or } H^\infty_{\nu_q} \text{ or } \mathcal{B}^\alpha, \, \alpha > 1)$

イロト イポト イヨト イヨト

æ

Sketch of the proof $(X = A^{p}_{\beta} \text{ or } H^{\infty}_{\nu_{q}} \text{ or } \mathcal{B}^{\alpha}, \alpha > 1)$

Let X be A^p_β or $H^\infty_{\nu_a}$ or $\mathcal{B}^\alpha(\alpha > 1)$ and $\varphi : \mathbb{D} \to \mathbb{D}$ be holomorphic.

Sketch of the proof $(X = A^{p}_{\beta} \text{ or } H^{\infty}_{\nu_{a}} \text{ or } \mathcal{B}^{\alpha}, \alpha > 1)$

Let X be A^p_β or $H^\infty_{\nu_q}$ or $\mathcal{B}^\alpha(\alpha > 1)$ and $\varphi : \mathbb{D} \to \mathbb{D}$ be holomorphic.

Theorem (ACKS-2018)

The following assertions are equivalent on X.

(i) C_{ω}^{n} converges strongly;

(ii) φ is not an automorphism and there is $b \in \mathbb{D}$ s.t. $\varphi(b) = b$;

(iii) C_{φ}^{n} converges uniformly.

In that case, C_{φ}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$ for all $f \in X$.

Sketch of the proof $(X = A^p_\beta \text{ or } H^\infty_{\nu_q} \text{ or } \mathcal{B}^\alpha, \, \alpha > 1)$

Let X be A^p_β or $H^\infty_{\nu_q}$ or $\mathcal{B}^\alpha(\alpha > 1)$ and $\varphi : \mathbb{D} \to \mathbb{D}$ be holomorphic.

Theorem (ACKS-2018)

The following assertions are equivalent on X.

(i) C_{ω}^{n} converges strongly;

(ii) φ is not an automorphism and there is $b \in \mathbb{D}$ s.t. $\varphi(b) = b$;

(iii) C_{φ}^{n} converges uniformly.

In that case, C_{φ}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$ for all $f \in X$.

Theorem (Martín, Vukotić, 2006, Bonet, et al., 2008, Zorboska, 2007)

 C_{φ} is an isometry of X if and only if φ is a rotation.

æ

イロト イヨト イヨト イヨト

Let φ be a holomorphic self map of $\mathbb D$ such that $\varphi \in \mathcal B_0$.

• • = • • = •

э

Let φ be a holomorphic self map of \mathbb{D} such that $\varphi \in \mathcal{B}_0$.

Theorem (ACKS-2018)

The following assertions are equivalent on \mathcal{B}_0 :

(i)
$$C_{\varphi}$$
 is an isometry of \mathcal{B}_0 ;

(ii)
$$\varphi(0) = 0$$
 and $\tau_{\varphi}^{\infty} = 1;$

(iii) φ is a rotation, where

$$au_arphi^\infty := \sup_{z\in\mathbb{D}} rac{1-|z|^2}{1-|arphi(z)|^2} |arphi'(z)|$$

æ

イロト イヨト イヨト イヨト

Theorem (Rodríguez, 99)

Suppose that φ is a holomorphic self map of \mathbb{D} . Then

$$\|\mathcal{C}_{\varphi}\|_{e,\mathcal{B}} \leq \tau_{\varphi}^{\infty} \leq 1.$$

Moreover, if $\varphi \in \mathcal{B}_0$, then

$$\|C_{\varphi}\|_{e,\mathcal{B}_0} \leq \tau_{\varphi}^{\infty} \leq 1.$$

• • = • • = •

Theorem (Rodríguez, 99)

Suppose that φ is a holomorphic self map of \mathbb{D} . Then

$$\|\mathcal{C}_{\varphi}\|_{e,\mathcal{B}} \leq \tau_{\varphi}^{\infty} \leq 1.$$

Moreover, if $\varphi \in \mathcal{B}_0$, then

$$\|\mathcal{C}_{\varphi}\|_{e,\mathcal{B}_0} \leq \tau_{\varphi}^{\infty} \leq 1.$$

Theorem (ACKS-2017)

Let $X \hookrightarrow \operatorname{Hol}(\mathbb{D})$ and $\varphi : \mathbb{D} \to \mathbb{D}$ be holomorphic s.t. $C_{\varphi}(X) \subset X$ and that there exists $b \in \mathbb{D}$ s.t. $\lim_{n\to\infty} \varphi_n(z) = b$ for all $z \in \mathbb{D}$. Then the following assertions are equivalent:

(i)
$$C_{\varphi}^{n}$$
 converges in $\mathcal{L}(X)$ as $n \to \infty$;
(ii) $r_{e}(C_{\varphi}) < 1$.

æ

イロト イヨト イヨト イヨト

Theorem (Allen, Collona, 2009)

Suppose that φ is a holomorphic self map of \mathbb{D} . Then the operator C_{φ} on \mathcal{B} is isometric if and only if $\varphi(0) = 0$ and one of the following equivalent conditions holds:

(i) $\tau_{\omega}^{\infty} = 1;$

- (ii) φ either is a rotation or for every $w \in \mathbb{D}$, there exists $(a_n) \subset \mathbb{D}$ such that $|a_n| \to 1$, $\varphi(a_n) \to w$, and $\tau_{\omega}(a_n) \to 1$ as $n \to \infty$.
- (iii) φ either is a rotation or the zeros of φ form an infinite sequence (z_k) in \mathbb{D} s.t. $\limsup_{k\to\infty} (1-|z_k|^2)|\varphi'(z_k)|=1$.

(iv) φ either is a rotation or $\varphi = gB$, where g is a non-vanishing analytic function mapping \mathbb{D} into itself and B is an infinite Blaschke product whose zero set Z contains a sequence $(z_k)_k$ such that $|g(z_k)| \to 1$ when $k \to \infty$ and

 $\lim_{k\to\infty}\prod_{\xi\in Z,\xi\neq z_k}\left|\frac{z_k-\xi}{1-\overline{\xi}z_k}\right|=1.$

æ

イロト イヨト イヨト イヨト

Theorem (ACKS-2018)

The following assertions are equivalent on \mathcal{B}_0 .

(i) C_{φ}^{n} converges weakly;

(ii) φ is not an automorphism and there is $b \in \mathbb{D}$ s.t. $\varphi(b) = b$;

(iii) C_{φ}^{n} converges uniformly.

In that case, C_{φ}^n converges to P as $n \to \infty$, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$.

æ

イロト イ団ト イヨト イヨト

For $\alpha > 0$ and φ a holomorphic self map of \mathbb{D} , let $\tau_{\varphi,\alpha}^{\infty} < \infty$, where $\tau_{\varphi,\alpha}^{\infty} := \sup_{z \in \mathbb{D}} \frac{\left(1 - |z|^2\right)^{\alpha} |\varphi'(z)|}{\left(1 - |\varphi(z)|^2\right)^{\alpha}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For $\alpha > 0$ and φ a holomorphic self map of \mathbb{D} , let $\tau_{\varphi,\alpha}^{\infty} < \infty$, where $\tau_{\varphi,\alpha}^{\infty} := \sup_{z \in \mathbb{D}} \frac{\left(1 - |z|^2\right)^{\alpha} |\varphi'(z)|}{\left(1 - |\varphi(z)|^2\right)^{\alpha}}$.

Theorem (ACKS-2018)

Suppose there is $b \in \mathbb{D}$ s.t. $\varphi(b) = b$. The following assertions are equivalent on \mathcal{B}^{α} , $0 < \alpha < 1$.

- (i) C_{φ}^{n} converges strongly;
- (ii) there exists $n_0 \in \mathbb{N}$ such that $\varphi_{n_0}(\overline{\mathbb{D}}) \subset \mathbb{D}$;
- (iii) C_{φ}^{n} converges uniformly;
- (iv) C_{φ} is mean ergodic.

In that case, C_{ω}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$.

æ

イロト イ団ト イヨト イヨト

Theorem (ACKS-2018)

There exist positive constants k_{α} and K_{α} depending only on α such that

$$k_{\alpha}\tau_{\varphi,\alpha}^{\infty} \leq \|\mathcal{C}_{\varphi}\|_{\mathcal{L}(\mathcal{B}^{\alpha})} \leq K_{\alpha}\tau_{\varphi,\alpha}^{\infty}.$$

A B M A B M

Theorem (ACKS-2018)

There exist positive constants k_{α} and K_{α} depending only on α such that

$$k_{\alpha}\tau_{\varphi,\alpha}^{\infty} \leq \|\mathcal{C}_{\varphi}\|_{\mathcal{L}(\mathcal{B}^{\alpha})} \leq K_{\alpha}\tau_{\varphi,\alpha}^{\infty}.$$

Theorem (Zorboska, 2007)

Let $0 < \alpha < 1$ and let φ be a holomorphic self map of \mathbb{D} . Then C_{φ} is an isometry of \mathcal{B}^{α} if and only if φ is a rotation.

Composition operators similar to an isometry of $\mathcal B$

< ∃ →

э

Those composition operators which are similar to an isometry of $\ensuremath{\mathcal{B}}$ is characterized as follows:

Those composition operators which are similar to an isometry of $\ensuremath{\mathcal{B}}$ is characterized as follows:

Theorem (ACKS-2018)

Let φ be a holomorphic self map of \mathbb{D} . Consider the composition operator C_{φ} on \mathcal{B} . The following assertions are equivalent: (i) C_{φ} is similar to an isometry; (ii) φ has a fixed point $b \in \mathbb{D}$ and $\tau_{\varphi}^{\infty} = 1$.

Sketch of the proof

æ

3 🕨 🖌 3

Theorem (ACKS-2018)

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be holomorphic. The following assertions are equivalent on \mathcal{B} .

(i)
$$C_{\varphi}^{n}$$
 converges strongly;

(ii)
$$au_{arphi}^{\infty} < 1$$
 and there is $b \in \mathbb{D}$ such that $arphi(b) = b$;

(iii)
$$C_{\varphi}^{n}$$
 converges uniformly.

In that case, C_{φ}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$ for all $f \in \mathcal{B}$.

• • = • • = •

Composition operators similar to an isometry of ${\cal D}$

< ∃ →

э

Those composition operators which are similar to an isometry of $\ensuremath{\mathcal{D}}$ is characterized as follows:

Those composition operators which are similar to an isometry of $\ensuremath{\mathcal{D}}$ is characterized as follows:

Theorem (ACKS-2018)

Let φ be a univalent and holomorphic self map of \mathbb{D} such that n_{φ} is essentially radial. The following assertions are equivalent on \mathcal{D} . (i) C_{φ} is similar to an isometry of \mathcal{D} ; (ii) φ is a full map with a fixed point $b \in \mathbb{D}$.

Sketch of the proof

æ

3 🕨 🖌 3

Theorem (Martín, Vukotić, 2006)

A composition operator C_{φ} is an isometry of \mathcal{D} if and only if φ is a univalent full map of \mathbb{D} that fixes the origin.

• • = • • = •

Theorem (Martín, Vukotić, 2006)

A composition operator C_{φ} is an isometry of \mathcal{D} if and only if φ is a univalent full map of \mathbb{D} that fixes the origin.

Theorem (ACKS-2018)

Let φ be a univalent and holomorphic self map of \mathbb{D} such that the counting function n_{φ} is essentially radial. The following assertions are equivalent on \mathcal{D} .

(i) C_{φ}^{n} converges strongly;

(ii) φ is not a full map of $\mathbb D$ and there is $b \in \mathbb D$ with $\varphi(b) = b$;

(iii) C_{φ}^{n} converges uniformly.

In that case, C_{φ}^{n} converges to P, where $Pf = f(b)\mathbf{1}_{\mathbb{D}}$ for all $f \in \mathcal{D}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

References

- Wolfgang Arendt, Isabelle Chalendar, Mahesh Kumar, and Sachi Srivastava, Asymptotic behaviour of the powers of composition operators on Banach spaces of holomorphic functions, Indiana Univ. Math. J., Volume 67, Issue 4 (2018), pp 1571-1595, ISSN: 0022-2518.
- Wolfgang Arendt, Isabelle Chalendar, Mahesh Kumar, and Sachi Srivastava, *Powers of composition operators: Asymptotic behaviour on Bergman, Dirichlet and Bloch spaces*, Journal of the Australian Mathematical Society (2018), to appear.
- R. F. Allen, F. Colonna, On the isometric composition operators on the Bloch space in Cⁿ, J. Math. Anal. Appl. 355 (2009) 675-688.

References

- F. Bayart, *Similarity to an isometry of a composition operator*, Proc. Amer. Math. Soc. 131 (2002), 1789-1791.
- J. Bonet, M. Lindström, and E. Wolf, *Isometric weighted composition operators on weighted Banach spaces of type* H[∞], Proc. Amer. Math. Soc. (12) 136 (2008), 4267–4273.
- C.C. Cowen, B.D. MacCluer, *Composition Operators on Spaces* of *Analytic Functions*, CRC Press, Boca Raton, FL, 1995.
- M.J. Martín and D. Vukotić, Isometries of some classical function spaces among the composition operators, Recent advances in operator-related function theory, Contemp. Math. 393 (2006), 133-138.

References

- M.J. Martín and D. Vukotić, Isometries of the Dirichlet space among the composition operators, Proc. Amer. Math. Soc. (6) 134 (2006), 1701–1705.
- M.J. Martín and D. Vukotić, Isometric composition operators on the Bloch space among the composition operators, Bull. London Math. Soc. Contemp. Math. (1) 39 (2007), 151–155.
- A. Montes-Rodríguez, *The essential norm of a composition operator on Bloch spaces*, Pacific J. Math, 188 (1999), 339-351.
- N. Zorboska, Isometric composition operators on the Bloch-type spaces, Comptes Rendus Mathématiques de Í Académie des Sciences. La Société Royale du Canada, vol. (3) 29 (2007), 91-96.

Thank You

Mahesh Kumar Composition operators similar to an isometry

回 とう キャン・キャン

æ