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Classical roots

States with entropy

What exactly is entropy?

In the modern microscopic interpretation of entropy in statistical
mechanics, entropy is the amount of additional information
needed to specify the exact physical state of a system, given its
thermodynamic specification.

It is often said that entropy is an expression of the disorder, or
randomness of a system, or of our lack of information about it.
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Classical roots

Boltzmann

Spatially homogeneous Boltzmann equation (for the dynamics
of rarefied gases) [1872]:

∂f1
∂t

=

∫
dΩ

∫
d3v2I(g, θ)|v2 − v1|(f ′1f ′2 − f1f2) (1)

where f1 ≡ f (v1, t), f ′2 ≡ f (v′2, t), . . . , are velocity distribution
functions, I(g, θ) denotes the differential scattering cross
section, dΩ the solid angle element, and g = |v|.

The natural Lyapunov functional for this equation is

H+(f ) =

∫
f (x) log f (x)dx .

The (classical) continuous entropy S differs from the functional
H only by sign. Hence Boltzmann’s H-functional may be viewed
as the first formalisation of the concept of entropy.
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Classical roots

Relative entropy

Let µ and ν be probability measures over a set X , and assume
that µ� ν. The relative entropy of the states represented by µ
and ν, is defined as

S(µ|ν) =

∫
X

log

(
dµ
dν

)
dµ =

∫
X

dµ
dν

log

(
dµ
dν

)
dν, (2)

provided that the integrals in the above formulae exist.

If both ν and µ are absolutely continuous with respect to the
reference measure λ, then under some mild additional
assumptions, this can be rewritten as

S(µ|ν) =

∫
X

p log
p
q

dλ =

∫
X

p log p − p log q dλ, (3)

where p = dµ
dλ and q = dν

dλ .
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Algebraic preliminaries

Orlicz functions and spaces

Orlicz function: A convex function Ψ : [0,∞)→ [0,∞] satisfying
Ψ(0) = 0 and limu→∞Ψ(u) =∞,
neither identically zero nor infinite valued on all of (0,∞),
left continuous at bΨ = sup{u > 0 : Ψ(u) <∞}.

Definition

f ∈ L0 belongs to LΨ ⇔ ψ(λ|f |) is integrable for some
λ = λ(f ) > 0.

Luxemburg-Nakano norm: ‖f‖ψ = inf{λ > 0 : ‖ψ(|f |/λ)‖1 ≤ 1}.

If Ψ(t) = tp, then LΨ = Lp.
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Algebraic preliminaries

Weights and modular automorphisms

Every von Neumann algebra M admits a faithful normal
semifinite weight ν.

Any fns weight ν, is a bit like an energy potential in that it
induces a canonical one-parameter group of ∗-automorphisms
σνt : M → M (t ∈ R) on M.

If an fns weight ν satisfies ν(a∗a) = ν(aa∗) for all a ∈ M, we call
ν a trace. In this case the automorphism group σνt (t ∈ R) is
trivial.
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Algebraic preliminaries

Quantum paradigm: tracial case

Strategy: Let M be a von Neumann algebra equipped with a
faithful normal semifinite trace τ . We then simply replace L∞ by
M, and

∫
·dν by τ , and see what happens if we try to copy the

classical theory.

Example: Consider the case where M = Mn(C) and τ = Tr:
Lp(Mn(C),Tr) is just Mn(C) equipped with the norm
Tr(|a|p)1/p.
Similarly LΨ(Mn(C),Tr) is Mn(C) equipped with the norm
‖a‖Ψ = inf{λ > 0 : Tr(ψ(|a|/λ)) ≤ 1}.

J von Neumann: Some matrix inequalities and metrization of
matrix space, Tomsk Univ Rev 1(1937), 286-300
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Algebraic preliminaries

The strange ways of type III Lp spaces: 1

The challenge: Some von Neuman algebras have no fns trace,
but to be true to our mission, we need to show that the earlier
structures hold for these algebras as well.

An indirect construction: Let M = L∞(X ,Σ, ν). Now pass to

A = L∞(X ,Σ, ν)⊗ L∞(R)

Equip A with the “trace” τA =
∫
·dν ⊗

∫
R ·e

−tdt and pass to Ã
(the completion of A in the topology of convergence in measure
determined by τ ).

(Haagerup, 1979) For any measurable function f on X (finite
ν-almost everywhere) we have that

f ∈ Lp(X ,Σ, ν) ⇔ f ⊗ e(·)/p ∈ Ã.
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Algebraic preliminaries

The strange ways of type III Lp spaces: 2
Commutative Quantum

Embed L∞(X ,Σ, ν) “Enlarge” M equipped with
into L∞(X ,Σ, ν)⊗ L∞(R) an fns weight ν, by

passing to A = M oν R

θs(f ⊗ g)(x , t) = f (x)g(t − s) There exists a dual action of R
on A in the form of a group of
*-auto-morphisms {θs} (s ∈ R)∫

·dν ⊗
∫
R ·e

−tdt A admits a canonical trace τA
characterised by τA ◦ θs = e−sτA.

By analogy with the classical setting, we may define

Lp(M) = {a ∈ Ã : θs(a) = e−s/pa for all s ∈ R} (Haagerup 1979).
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Type III Orlicz spaces

Haagerup’s construction of Lp-spaces for type III von Neumann
algebras can be extended to also allow for the construction of
Orlicz spaces. (L, 2014)

The classical roots of the construction: Let M = L∞(X ,Σ, ν),
and let A = L∞(X ,Σ, ν)⊗ L∞(R) be as before.

Given an Orlicz function Ψ, define ϕΨ : [0,∞)→ [0,∞) by

ϕΨ(t) =
1

Ψ−1(1/t)
.

For any measurable function f on X , we then have that

f ∈ LΨ(X ,Σ, ν) ⇔ f ⊗ ϕΨ(e(·)) ∈ Ã.
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A few nuts and bolts

The noncommutative space LΨ(M) consists of all τ -measurable
operators f affiliated to A for which we have that
θs(a) = g1/2

s ag1/2
s for all s ∈ R, where gs = ϕΨ(e−sh)ϕΨ(h)−1.

Any state ω ∈ M∗ induces a “dual” state ω̃ on A = M oν R.

ω̃ admits a Radon-Nikodym derivative hω = dω̃
dτA

in the form of
an unbounded operator affiliated to A for which ω̃(·) = τA(hω·).

The space L1(M) is a copy of M∗ in the following sense: Each
hω belongs to L1(M), and this space admits a tracial functional
tr in terms of which we have that ω(a) = tr(hωa) for all a ∈ M.

In the case where the reference weight ν is itself a state, the
density h = hν = d ν̃

dτA
can be used to canonically embed M into

LΨ(M) by means of the prescription a→ ϕ
1/2
Ψ (h) aϕ1/2

Ψ (h).
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Algebraic preliminaries

Cocycle derivatives 1

Theorem (Comparing weights)

Let M be a von Neumann algebra and φ, ψ faithful semifinite
normal weights on M. Then there exists a σ-strongly
continuous one parameter family {ut} of unitaries in M with the
following properties:

ut+t ′ = utσ
φ
t (ut ′), for all t , t ′ ∈ R,

σψt (x) = utσ
φ
t (x)u∗t , for all x ∈ M, t ∈ R,

a unitary u ∈ M satisfies ψ(x) = φ(uau∗) for all x ∈ M, if
and only if ut = u∗σφt (u) for all t ∈ R,

where σϕt (σψt ) is the modular evolution determined by ϕ (ψ
respectively).
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Cocycle derivatives 2

Definition
The family of unitaries described by the above theorem is called
the cocycle derivative of ϕ with respect to ψ and is denoted by

(Dϕ : Dψ)t = ut . (4)

We propose:

Definition

Let ϑ, ψ be faithful normal states on M. We define the relative
entropy S(ϑ|ψ) to be S(ϑ|ψ) = limt→0

−i
t ϑ[(Dϑ : Dψ)t − 1] if the

limit exists, and assign a value of∞ to S(ϑ|ψ) otherwise.
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Relative entropy for general systems

Araki style relative entropy

Let M be a σ-finite von Neumann algebra in standard form, and
let ψ and φ be two faithful normal states with unit vector
representatives Ψ,Φ ∈ H. (So ψ(a) = 〈aΨ,Ψ〉 for all a ∈ M,
etc.)
Tomita-Takesaki theory easily extends to show that
Sφ,ψ : aΨ→ a∗Φ is a closable densely-defined anti-linear
operator. The operator ∆φ,ψ is then defined to be the modulus
of the closure of Sφ,ψ.
The “standard” modular operator is used to generate the
modular automorphism group of a given state. Similarly this
operator then encodes the manner in which the dynamics
determined by the modular automorphism group of one state,
differs from the other. In view of this, Araki defined the relative
entropy of ψ and φ to be −〈Ψ, log(∆φ,ψ)Ψ〉.
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Relative entropy for general systems

Cocycle based definition

Theorem

Let M be a σ-finite von Neumann algebra in the standard form
described above, and let ψ and φ be two faithful normal states
with unit vector representatives Ψ,Φ ∈ H. (So ψ(a) = 〈aΨ,Ψ〉
for each a ∈ M, etc.) Then S(ψ|φ) as defined previously,
agrees exactly with Araki’s definition of relative entropy.

This extends the corresponding result of Ohya and Petz, who
only proved the claim in the case where S(ψ|φ) was finite.
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Relative entropy for general systems

Shades of the classical formula

Definition (Kosaki)
For normal weights ϑ and φ on M, and some positive δ, we say
that ϑ ≤ φ(δ) if t → (Dϑ : Dφ)t = ut extends to a bounded
M-valued point to weak*-continuous map z → uz on the closed
strip −δ ≤ =(z) ≤ 0, which is analytic on −δ < =(z) < 0.



Relative entropy for general systems

Shades of the classical formula

Theorem

Let M be a σ-finite von Neumann algebra in standard form, and
let ϑ and φ be two faithful normal states corresponding to the
elements hϑ,hφ of L1(M). If φ ≤ ϑ(δ), then

lim
s↗1

tr(hs
ϑ · log hϑ · h1−s

φ − hs
ϑ · log hφ · h1−s

φ )

exists if and only if S(ϑ|φ) <∞, in which case they are equal.



Relative entropy for general systems

Shades of the classical formula

Theorem

Let M be a σ-finite von Neumann algebra in standard form, and
let ϑ and φ be two faithful normal states corresponding to the
elements hϑ,hφ of L1(M). If φ ≤ ϑ(δ), then

lim
s↗1

tr(hs
ϑ · log hϑ · h1−s

φ − hs
ϑ · log hφ · h1−s

φ )

exists if and only if S(ϑ|φ) <∞, in which case they are equal.



Relative entropy for general systems

Shades of the classical formula

Theorem

Let M be a σ-finite von Neumann algebra in standard form, and
let ϑ and φ be two faithful normal states corresponding to the
elements hϑ,hφ of L1(M). If φ ≤ ϑ(δ), then

lim
s↗1

tr(hs
ϑ · log hϑ · h1−s

φ − hs
ϑ · log hφ · h1−s

φ )

exists if and only if S(ϑ|φ) <∞, in which case they are equal.



Continuous entropy for general systems

von Neumann

Inspired by the then controversial work of Boltzmann [1872],
von Neumann in the context of B(H) expressed entropy as
Tr(ρ log(ρ)) (here ρ is a norm 1 element of S 1(H)+

representing the state of the system).

Problem: For the specific case of B(H) one gets a respectable
theory for the action of this quantity on S 1(H)+. For more
general tracial von Neumann algebras M, the quantity
τ(ρ log(ρ)) can be extremely badly behaved with respect to the
L1-topology. So B(H) is somewhat exceptional!!
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Continuous entropy for general systems

Beyond von Neumann: phase 1

Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and f ∈ L1 ∩ L log(L + 1)(M, τ)
with f ≥ 0. Then τ(f log(f + ε)) is well defined for any ε > 0.
Moreover

τ(f log f )

is bounded above, and if in addition f ∈ L1/2, it is also bounded
from below.

Here L log(L + 1)(M, τ) is the Orlicz space corresponding to the
function Ψ(t) = t log(t + 1).

Problem: Some very important quantum systems correspond to
von Neumann algebras which do not have a faithful normal
trace. How can we make sense of continuous entropy for such
systems?
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A type III dictionary

For any f ∈ [L log(L + 1) ∩ L1] with f ≥ 0,∫
f log(f + ε) dν = ε

[∫
(f/ε) log((f/ε) + 1) dν

]
+ log(ε)

∫
f dν.

Theorem
Let g be a measurable function, Ψ an Orlicz function, and
ϕΨ(t) = 1

Ψ−1(1/t) . Also let τA be the “trace”
τA =

∫
·dν ⊗

∫
R ·e

−tdt on A = L∞(X ,Σ, ν)⊗ L∞(R). Then∫
Ψ(|g|/ε) dν = τA(χ(ε,∞)(|g ⊗ ϕΨ(et )|)).

Apply the above to f and Ψ(t) = t log(t + 1) to see that∫
f log(f + ε) dν = ε

∫
Ψ(f/ε) dν + log(ε)‖f‖1

= ε[τA(χ(ε,∞)(f ⊗ ϕΨ(et ))] + log(ε)‖f‖1
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A home for entropy

The classical space [L log(L + 1) ∩ L1](X ,Σ, ν) is an Orlicz
space which we denote by Lent .

The noncommutative space Lent (M) canonically embeds into
both L1(M) and L log(L + 1)(M) by means of the prescriptions

ι1 : Lent (M)→ L1(M) : a 7→ ζ1(h)1/2a ζ1(h)1/2

and

ιlog : Lent (M)→ L1(M) : a 7→ ζlog(h)1/2a ζlog(h)1/2

where ζ1(h) = hϕent (h)−1 and ζlog(h) = ϕlog(h)ϕent (h)−1.
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Continuous entropy for general systems 1

Definition

A state ϑ on the von Neumann algebra M is called regular if for
some element g of Lent (M)+, d ϑ̃

dτ is of the form ι1(g). For such a
regular state we then define the continuous entropy S̃(ϑ) to be

inf
ε>0

[ετ(χ(ε,∞)(ιlog(g))) + log(ε)‖ι1(g)‖1].

(Here h is the density d ν̃
dτ of the dual weight ν̃.)
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Continuous entropy for general systems 2

Theorem

If ϑ is a regular state, then S̃(ϑ) is well defined (although
possibly infinite valued).

Theorem

Let ϑ be a regular state with d ϑ̃
dτ of the form ι1(g), where

g ∈ Lent (M)+ commutes with h = d ν̃
dτ . (Here ν is the “reference

state”.) Then S̃(ϑ) = S(ϑ|ν).
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