KMS states and groupoid C*-algebras

Jean Renault

Université d'Orléans

December 18th. 2018

- KMS states
- ② Neshveyev's theorem
- Ountz-like algebras
- Exel-Laca algebras

Definition of KMS states

According to Gibbs and Boltzman, Gibbs states are the equilibrium states in statistical mechanics. Kubo, Martin and Schwinger have discovered a C*-algebraic formulation of Gibbs states.

Definition

Let A be a C*-algebra, σ_t a strongly continuous one-parameter group of automorphisms of A and $\beta \in \mathbb{R}$. One says that a state φ of A is (σ, β) -KMS if

() it is invariant under σ_t for all $t \in \mathbb{R}$ and

If a, b ∈ A, there exists a function F bounded and continuous on the strip 0 ≤ Imz ≤ β and analytic on 0 < Imz < β such that:

- $F(t) = \varphi(a\sigma_t(b))$ for all $t \in \mathbb{R}$;
- $F(t+i\beta) = \varphi(\sigma_t(b)a)$ for all $t \in \mathbb{R}$.

Properties of KMS states

Here A is a separable C*-algebra and $\sigma = (\sigma_t)$ is a strongly continuous one-parameter group of automorphisms of A.

- The σ_t invariance is implied by KMS_β for $\beta \neq 0$.
- For a given β, the set Σ_β of KMS_β-states is a Choquet simplex of A*: i.e. it is a *-weakly closed convex subset of A* and every KMS_β-state is the barycenter of a unique probability measure supported on the extremal KMS_β-states.
- The extremal KMS_{β} -states are factorial.

KMS Problem. Determine all the KMS-states of a given dynamical system (A, σ) . The discontinuities of the map $\beta \mapsto \Sigma_{\beta}$ are interpreted as phase transitions.

Groupoid C*-algebras

All our results about the KMS problem are restricted to diagonal automorphism groups. Let me explain what it means.

I first recall that, given a locally compact groupoid G with Haar system, we can construct a C*-algebra $C^*(G)$. It is a completion of the *-algebra $C_c(G)$ of continuous functions with compact support.

Proposition

Let $c : G \to \mathbb{R}$ be a continuous cocycle. Then the formula

$$\sigma_t^c(f)(\gamma) = e^{itc(\gamma)}f(\gamma), \qquad f \in C_c(G)$$

defines a strongly continuous one-parameter automorphism group σ^c of $C^*(G)$.

Diagonal automorphism groups

We can now give the following definition.

Definition

A strongly continuous one-parameter automorphism group σ of a C*-algebra A is called diagonal if there exists a locally compact groupoid with Haar system G and a continuous cocycle $c : G \to \mathbb{R}$ such that (A, σ) is isomorphic to $(C^*(G), \sigma^c)$.

Quasi-invariant measures

Definition

Let G be a locally compact groupoid with Haar system λ . A measure μ on $G^{(0)}$ is called quasi-invariant if the measures $\mu \circ \lambda$ and its inverse $\mu \circ \lambda^{-1}$ are equivalent. We denote by $D = d(\mu \circ \lambda)/d(\mu \circ \lambda^{-1})$ the Radon-Nikodym derivative.

Proposition

Let μ be a quasi-invariant measure. Then its Radon-Nikodym derivative D is a \mathbb{R}^*_+ -valued cocycle.

KMS measures

Definition

Let G be a locally compact groupoid with Haar system, $c : G \to \mathbb{R}$ a continuous cocycle and $\beta \in \mathbb{R}$. One says that a measure μ on $G^{(0)}$ is (c, β) -KMS if it is quasi-invariant with R-N derivative $e^{-\beta c}$.

The above definition is essentially the same as the definition of Gibbs measures given by Capocaccia in the framework of statistical mechanics in 1976. It also agrees with the Dobrushin-Lanford-Ruelle definition.

Neshveyev's theorem

Theorem (Neshveyev12)

Let G and c as above. Assume that G is étale and that $G^{(0)}$ is compact. Then,

• Given a (c, β) -KMS probability measure μ on $G^{(0)}$ and a measurable family of states φ_x on the subgroups $G_x^x \cap c^{-1}(0)$ such that $\gamma \varphi_{s(\gamma)} \gamma^{-1} = \varphi_{r(\gamma)}$ for all $\gamma \in G$, the formula

$$\varphi(f) = \int \varphi_x(f) d\mu(x), \qquad f \in C_c(G)$$

defines a (σ^c, β) -KMS state.

2 All (σ^{c}, β) -KMS states have the above form.

Comments

In his recent thesis, J. Christensen extends this theorem to the case when $G^{(0)}$ is no longer compact. He has then to consider KMS weights rather than KMS states.

I suspect that a version of this theorem holds for non-étale locally compact groupoids with Haar system. This requires to consider weights, which is always a delicate business.

The Renault-Deaconu groupoid

Given a compact space X, two open subsets U, V and a surjective local homeomorphism $T: U \to V$, we build the following semi-direct product groupoid:

 $G(X, T) = \{(x, m - n, y) : x, y \in X; m, n \in \mathbb{N} \text{ et } T^m x = T^n y\}$

It is implicit in this definition that x [resp. y] belongs to the domain of T^m [resp. T^n]. It is a locally compact étale Hausdorff groupoid.

Two basic examples.

- The one-sided shift on $\prod_1^\infty\{0,1\}.$
- The map $z \mapsto z^2$ on the circle.

Quasi-product cocycles

Given $\phi \in C(U,\mathbb{R})$, we define the cocycle $c: G(X,T)
ightarrow \mathbb{R}$ by

$$c_{\phi}(x, m-n, y) = \sum_{k=0}^{m-1} \phi(T^{k}x) - \sum_{l=0}^{n-1} \phi(T^{l}y)$$

Similarly, given $\psi \in C(U, \mathbb{R}^*_+)$, we define the cocycle $D_{\psi} : G(X, T) \to \mathbb{R}^*_+$ by

$$D_{\psi}(x,m-n,y) = \frac{\psi(x)\psi(Tx)\dots\psi(T^{m-1}x)}{\psi(y)\psi(Ty)\dots\psi(T^{n-1}y)}$$

and the transfer operator $L_\psi: C_c(U) \to C_c(X)$ by

$$L_{\psi}f(y) = \sum_{x \in \mathcal{T}^{-1}(\{y\})} \psi(x)f(x).$$

Conformal measures

In the thermodynamical formalism, our KMS measures are called conformal measures. They can be described as Perron-Frobenius eigenfunctions of the dual of the transfer operator.

Lemma

A probability measure μ on X is quasi-invariant with R-N derivative D_{ψ} iff $L_{\psi}^* \mu | V = \mu_{|U}$.

Corollary

Given $\varphi \in C(X, \mathbb{R})$ and $\beta \in \mathbb{R}$, a probability measure μ on X is (c_{φ}, β) -KMS iff $L^*_{e^{-\beta\varphi}}\mu|_{V} = \mu|_{U}$.

Cuntz-Krieger and graph algebras

The above formalism applies to Cuntz-Krieger and graph algebras. For example, let (X, T) be the one-sided subshift of finite type given by the transition matrix M and let c be the gauge cocycle. When M is primitive, the gauge group has a single KMS state occuring at inverse temperature $\beta = \log \lambda$, where λ is the Perron-Frobenius eigenvalue of M.

Exel-Laca algebras

Exel and Laca have defined in 1999 the Cuntz-Krieger algebra of an infinite matrix $M: I \times I \to \{0, 1\}$ where the index set I is infinite countable. For convenience, we introduce the oriented graph (V, E) where the set of vertices is V = I and the arrows are (i, j) where M(i, j) = 1. When M is not row-finite, the space X_{∞} of infinite paths is not locally compact. Let us define J(j) as the set of arrows (i, j) and \mathcal{J} as the set of limit points of J(j) as $j \to \infty$.

Definition

- A terminal path is
 - either an infinite path $i_0 i_1 i_2 \dots$
 - or a controlled finite path $(i_0i_1i_2...i_n; J)$ where $J \in \mathcal{J}$ and $i_n \in J$;
 - or an empty path $(\emptyset; J)$ where $J \in \mathcal{J}$.

Exel-Laca algebra as a groupoid C*-algebra

Proposition (R 99)

- the set of terminal paths X = X_∞ ⊔ X_f admits a natural locally compact topology;
- ② the shift $T : U \to X$, where $U = X \setminus \{(\emptyset; J), J \in \mathcal{J}\}$, is a local homeomorphism.

Theorem (R 99)

Exel-Laca algebra is the groupoid C^* -algebra $C^*(G(X, T))$.

The renewal shift

Bissacot, Exel, Frausino, Raszeja have recently revisited the theory of conformal measures on countable Markov chains, using the framework of Exel-Laca algebras. Their pet example is the famous renewal shift.

Conformal measures on the renewal shift

Let us first determine the terminal path space of the renewal shift. Since $J(j) = \{1, j + 1\}$, the only limit point is the set $\{1\}$. The controlled finite paths are the finite paths which end by 1. We have $X = X_{\infty} \sqcup X_{\rm f}$ and $U = X \setminus \{(\emptyset; \{1\})\}$.

The above authors prove the existence of conformal measures which live on $X_{\rm f}$, hence which do not appear in the classical theory.

Theorem (Bissacot, Exel, Frausino, Raszeja 18)

Consider a potential $\varphi : U \to \mathbb{R}$ of the form $\varphi(i_1 i_2 ...) = f(i_1)$ where $f : I \to \mathbb{R}$ admits a strictly positive infimum M > 0. Then

- if β > log 2/M, there exists a unique (c_φ, β)-KMS measure which vanishes on X_∞;
- if β < log 2/M, there exists no (c_φ, β)-KMS measure which vanish on X_∞.

Bissacot, Exel, Frausino, Raszeja: *Conformal measures on generalized Renault-Deaconu groupoids.* arXiv: 1808.00765.

Exel and Laca: *Cuntz-Krieger algebras for infinite matrices.* J. Reine Angew. Math. **512**, (1999).

Neshveyev: *KMS states on the C*-algebras of non-principal groupoids.* J. Operator Theory **70**,2 (2013).

Renault: *Cuntz-like algebras*. Operator theoretical methods (Timisoara 1998), Theta Foundation (2000).

Thank you for your attention!