Subnormality of operators of class Q

Jan Stochel

coauthors: S. Chavan, Z. J. Jabłoński, I. B. Jung

OTOA 2018, December 13-19, Bangalore

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

• The Cauchy dual (operator) T' of a left-invertible operator $T \in \boldsymbol{B}(\mathcal{H})$ is defined by

$$T'=T(T^*T)^{-1}.$$

• If T is left-invertible, then T' is again left-invertible and

$$(T')' = T,$$

 $T^*T' = I$ and $T'^*T = I.$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• This notion has been introduced and studied by Shimorin in the context of the wandering subspace problem for Bergman-type operators (2001).

• The Cauchy dual (operator) T' of a left-invertible operator $T \in \boldsymbol{B}(\mathcal{H})$ is defined by

$$T'=T(T^*T)^{-1}.$$

• If T is left-invertible, then T' is again left-invertible and

$$(T')' = T,$$

$$T^*T' = I \text{ and } T'^*T = I.$$

• This notion has been introduced and studied by Shimorin in the context of the wandering subspace problem for Bergman-type operators (2001).

・ 同 ト ・ ヨ ト ・ ヨ ト

• The Cauchy dual (operator) T' of a left-invertible operator $T \in \boldsymbol{B}(\mathcal{H})$ is defined by

$$T'=T(T^*T)^{-1}.$$

• If T is left-invertible, then T' is again left-invertible and

$$(T')' = T,$$

 $T^*T' = I$ and $T'^*T = I.$

< 回 > < 回 > < 回 > … 回

• This notion has been introduced and studied by Shimorin in the context of the wandering subspace problem for Bergman-type operators (2001).

• Given $m \ge 1$, we say that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is an *m*-isometry if $B_m(T) = 0$, where

$$B_m(T) = \sum_{k=0}^m (-1)^k \binom{m}{k} T^{*k} T^k$$

- We say that *T* is:
 - completely hyperexpansive if $B_m(T) \leq 0$ for all $m \geq 1$.
 - 2-hyperexpansive if $B_2(T) \leq 0$.
- • 2-hyperexpansive operator ~> Richter (1988)
 - *m*-isometric operator ~ Agler (1990)
 - completely hyperexpansive operator ~> Athavale (1996)
- a 2-isometry is *m*-isometric for every *m* ≥ 2, and thus it is completely hyperexpansive,

• a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual T' is a contraction

• Given $m \ge 1$, we say that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is an *m*-isometry if $B_m(T) = 0$, where

$$B_m(T) = \sum_{k=0}^m (-1)^k \binom{m}{k} T^{*k} T^k$$

- We say that T is:
 - completely hyperexpansive if $B_m(T) \leq 0$ for all $m \geq 1$.
 - 2-hyperexpansive if $B_2(T) \leq 0$.
- 2-hyperexpansive operator ~→ Richter (1988)
 m-isometric operator ~→ Agler (1990)
 completely hyperexpansive operator ~→ Athavale (1996)
- a 2-isometry is *m*-isometric for every *m* ≥ 2, and thus it is completely hyperexpansive,

• a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual T' is a contraction

• Given $m \ge 1$, we say that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is an *m*-isometry if $B_m(T) = 0$, where

$$B_m(T) = \sum_{k=0}^m (-1)^k \binom{m}{k} T^{*k} T^k.$$

- We say that T is:
 - completely hyperexpansive if $B_m(T) \leq 0$ for all $m \geq 1$.
 - 2-hyperexpansive if $B_2(T) \leq 0$.
- • 2-hyperexpansive operator ~> Richter (1988)
 - *m*-isometric operator ~ Agler (1990)
 - completely hyperexpansive operator ~> Athavale (1996)
- a 2-isometry is *m*-isometric for every *m* ≥ 2, and thus it is completely hyperexpansive,

• a 2-hyperexpansive (e.g. 2-isometric) operator is

left-invertible and its Cauchy dual T' is a contraction.

• Given $m \ge 1$, we say that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is an *m*-isometry if $B_m(T) = 0$, where

$$B_m(T) = \sum_{k=0}^m (-1)^k \binom{m}{k} T^{*k} T^k.$$

- We say that T is:
 - completely hyperexpansive if $B_m(T) \leq 0$ for all $m \geq 1$.
 - 2-hyperexpansive if $B_2(T) \leq 0$.
- • 2-hyperexpansive operator ~> Richter (1988)
 - *m*-isometric operator ~ Agler (1990)
 - completely hyperexpansive operator ~> Athavale (1996)
- a 2-isometry is *m*-isometric for every *m* ≥ 2, and thus it is completely hyperexpansive,

• a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual T' is a contraction.

• An operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be:

• hyponormal if $TT^* \leq T^*T$ (Halmos 1950),

• subnormal if there exist a Hilbert space \mathcal{K} and a normal operator $N \in \boldsymbol{B}(\mathcal{K})$, i.e. $N^*N = NN^*$, such that $\mathcal{H} \subseteq \mathcal{K}$ and Th = Nh for all $h \in \mathcal{H}$ (Halmos 1950),

• quasinormal if $TTT^* = TT^*T$ (A. Brown 1953).

• quasinormal operators are subnormal and subnormal operators are hyponormal, but not reversely (if \mathcal{H} is infinite dimensional).

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- An operator $T \in \boldsymbol{B}(\mathcal{H})$ is said to be:
 - hyponormal if $TT^* \leq T^*T$ (Halmos 1950),

• subnormal if there exist a Hilbert space \mathcal{K} and a normal operator $N \in \boldsymbol{B}(\mathcal{K})$, i.e. $N^*N = NN^*$, such that $\mathcal{H} \subseteq \mathcal{K}$ and Th = Nh for all $h \in \mathcal{H}$ (Halmos 1950),

• quasinormal if $TTT^* = TT^*T$ (A. Brown 1953).

 quasinormal operators are subnormal and subnormal operators are hyponormal, but not reversely (if H is infinite dimensional).

通 と く ヨ と く ヨ と

• The map $T \mapsto T'$ sends

2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),

Completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):
- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?
- The Cuchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

• The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).

• The map $T \mapsto T'$ sends

2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),

Completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):
- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?
- The Cuchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

イロン 不良 とくほう 不良 とうほ

• The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).

• The map $T \mapsto T'$ sends

2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),

Completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):
- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?
- The Cuchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

イロン 不良 とくほう 不良 とうほ

• The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).

• The map $T \mapsto T'$ sends

2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),

Completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):
- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?
- The Cuchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).

• The map $T \mapsto T'$ sends

2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),

Completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):
- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?
- The Cuchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

(個) (日) (日) (日)

• The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).

- The following question was addressed in (ACJS 2017):
 - find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.
- It was proved in (ACJS 2017) that this is the case for:
 2-isometries satisfying the kernel condition

 $T^*T(\ker(T^*))\subseteq \ker(T^*),$

• the so-called quasi-Brownian isometries.

 A recent generalization: in the class of quasi-Brownian isometries the map T → T' sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

• Quasi-Brownian isometries = \triangle_T -regular 2-isometries (Majdak, Mbekhta, Suciu 2016) generalize Brownian isometries studied by Agler and Stankus (1995-1996).

- The following question was addressed in (ACJS 2017):
 - find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.
- It was proved in (ACJS 2017) that this is the case for:
 - 2-isometries satisfying the kernel condition

 $T^*T(\ker(T^*)) \subseteq \ker(T^*),$

- the so-called quasi-Brownian isometries.
- A recent generalization: in the class of quasi-Brownian isometries the map T → T' sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

• Quasi-Brownian isometries = \triangle_T -regular 2-isometries (Majdak, Mbekhta, Suciu 2016) generalize Brownian isometries studied by Agler and Stankus (1995-1996).

- The following question was addressed in (ACJS 2017):
 - find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.
- It was proved in (ACJS 2017) that this is the case for:
 - 2-isometries satisfying the kernel condition

 $T^*T(\ker(T^*)) \subseteq \ker(T^*),$

- the so-called quasi-Brownian isometries.
- A recent generalization: in the class of quasi-Brownian isometries the map T → T' sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

• Quasi-Brownian isometries = \triangle_T -regular 2-isometries (Majdak, Mbekhta, Suciu 2016) generalize Brownian isometries studied by Agler and Stankus (1995-1996).

- The following question was addressed in (ACJS 2017):
 - find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.
- It was proved in (ACJS 2017) that this is the case for:
 - 2-isometries satisfying the kernel condition

 $T^*T(\ker(T^*)) \subseteq \ker(T^*),$

- the so-called quasi-Brownian isometries.
- A recent generalization: in the class of quasi-Brownian isometries the map T → T' sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).
- Quasi-Brownian isometries = \triangle_T -regular 2-isometries (Majdak, Mbekhta, Suciu 2016) generalize Brownian isometries studied by Agler and Stankus (1995-1996).

A block matrix representation

Theorem

If $T \in \boldsymbol{B}(\mathcal{H})$, then TFAE:

(i) T is a quasi-Brownian isometry (resp., Brownian isometry),

(ii) T has a block matrix form

$$T = \left[\begin{array}{cc} V & E \\ 0 & U \end{array} \right] \tag{1}$$

with respect to an orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $V \in \boldsymbol{B}(\mathcal{H}_1), E \in \boldsymbol{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $U \in \boldsymbol{B}(\mathcal{H}_2)$ are such that

V isometry, $V^*E = 0$, U isometry, $UE^*E = E^*EU$ (2)

(resp., V isometry, $V^*E = 0$, U unitary, $UE^*E = E^*EU$), (3)

(iii) *T* is either an isometry or it has the block matrix form (1) with respect to a nontrivial orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $V \in \mathbf{B}(\mathcal{H}_1), E \in \mathbf{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $U \in \mathbf{B}(\mathcal{H}_2)$ satisfy (2) (resp. (3)) and ker $E = \{0\}$.

 This leads to a question why this phenomenon can happen.

 We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

- For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2 × 2 block matrix representation described by (1) and (2), not requiring that *U* (the bottom right corner) is an isometry.
- The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; N, Q and S denote the respective classes of operators.
- The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class *Q*.

 This leads to a question why this phenomenon can happen.

 We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

- For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2 × 2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.
- The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; N, Q and S denote the respective classes of operators.
- The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class *Q*.

 This leads to a question why this phenomenon can happen.

 We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

- For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2 × 2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.
- The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; N, Q and S denote the respective classes of operators.
- The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class *Q*.

- This leads to a question why this phenomenon can happen.
 - We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.
- For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2 × 2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.
- The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; N, Q and S denote the respective classes of operators.
- The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class Q.

Definition

We say that an operator $T \in \boldsymbol{B}(\mathcal{H})$ is of class Ω if T has a block matrix form

$$T = \left[egin{array}{cc} V & E \ 0 & Q \end{array}
ight]$$

with respect to a nontrivial orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $V \in \boldsymbol{B}(\mathcal{H}_1), E \in \boldsymbol{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $Q \in \boldsymbol{B}(\mathcal{H}_2)$ satisfy the conditions

V isometry,
$$V^*E = 0$$
, $QE^*E = E^*EQ$,

Q is a quasinormal operator.

ヘロン 人間 とくほとくほとう

If this is the case, then we write $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathfrak{Q}_{\mathcal{H}_1, \mathcal{H}_2}$.

The Cauchy dual

Proposition

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \Omega_{\mathcal{H}_1, \mathcal{H}_2}$ is left invertible. Then $\Omega := E^*E + Q^*Q$ is invertible in $B(\mathcal{H}), T' \in \Omega_{\mathcal{H}_1, \mathcal{H}_2}$ and

$$T' = \left[egin{array}{cc} V & \widetilde{E} \\ 0 & \widetilde{Q} \end{array}
ight],$$

where

$$\widetilde{E} = E \Omega^{-1}$$
 and $\widetilde{Q} = Q \Omega^{-1}$.

イロト イポト イヨト イヨト 三日

Proposition

Suppose
$$T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$$
. Then
(i) $T^n = \begin{bmatrix} V^n & E_n \\ 0 & Q^n \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$ for any $n \in \mathbb{Z}_+$, where
 $E_n = \begin{cases} 0 & \text{if } n = 0, \\ \sum_{j=1}^n V^{j-1} E Q^{n-j} & \text{if } n \ge 1, \end{cases}$

(ii)
$$T^{*n}T^n = \begin{bmatrix} I & 0\\ 0 & \Omega_n \end{bmatrix} \in \mathfrak{Q}_{\mathcal{H}_1,\mathcal{H}_2}$$
 for any $n \in \mathbb{Z}_+$, where
$$\Omega_n = \begin{cases} I & \text{if } n = 0,\\ E^*E(\sum_{j=0}^{n-1}(Q^*Q)^j) + (Q^*Q)^n & \text{if } n \ge 1. \end{cases}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Corollary

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in Q_{\mathcal{H}_1, \mathcal{H}_2}$. Then T is an isometry if and only if

$$|Q|^2 + |E|^2 = I, (4)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

or equivalently if and only if

 $\sigma(|\boldsymbol{Q}|, |\boldsymbol{E}|) \subseteq \mathbb{T}_+,$

where $\mathbb{T}_+ := \{(x_1, x_2) \in \mathbb{R}^2_+ \colon x_1^2 + x_2^2 = 1\}.$

• A pair $(T_1, T_2) \in \boldsymbol{B}(\mathcal{H})^2$ is said to be a spherical isometry if $T_1^*T_1 + T_2^*T_2 = I$. Thus (4) means that the pair (|Q|, |E|) is a spherical isometry.

Corollary

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in Q_{\mathcal{H}_1, \mathcal{H}_2}$. Then T is an isometry if and only if

$$|Q|^2 + |E|^2 = I, (4)$$

(日本) (日本) (日本) 日

or equivalently if and only if

 $\sigma(|\boldsymbol{Q}|, |\boldsymbol{E}|) \subseteq \mathbb{T}_+,$

where $\mathbb{T}_+ := \{(x_1, x_2) \in \mathbb{R}^2_+ : x_1^2 + x_2^2 = 1\}.$

• A pair $(T_1, T_2) \in \boldsymbol{B}(\mathcal{H})^2$ is said to be a spherical isometry if $T_1^*T_1 + T_2^*T_2 = I$. Thus (4) means that the pair $(|\boldsymbol{Q}|, |\boldsymbol{E}|)$ is a spherical isometry.

Proposition

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in Q_{\mathcal{H}_1, \mathcal{H}_2}$. Set $\triangle_T = T^*T - I$ and $\Omega = E^*E + Q^*Q$. Then the following conditions are equivalent: (i) T is \triangle_T -regular, i.e., $\triangle_T \ge 0$ and $\triangle_T T = \triangle_T^{1/2} T \triangle_T^{1/2}$ with $\triangle_T = T^*T - I$, (ii) $\triangle_T \ge 0$, (iii) $\Omega \ge I$, (iv) $\sigma(|Q|, |E|) \cap \mathbb{D}_+ = \emptyset$, where $\mathbb{D}_+ = \{(x_1, x_2) \in \mathbb{R}^2_+ : x_1^2 + x_2^2 < 1\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathfrak{Q}_{\mathcal{H}_1, \mathcal{H}_2}$. Then the following conditions are equivalent:

- (i) T is a quasi-Brownian isometry,
- (ii) T is a 2-isometry,
- (iii) $(|Q|^2 I)(|Q|^2 + |E|^2 I) = 0$,
- (iv) $\sigma(|\mathbf{Q}|, |\mathbf{E}|) \subseteq \mathbb{T}_+ \cup (\{\mathbf{1}\} \times \mathbb{R}_+),$
- (v) there exists an orthogonal decomposition $\mathcal{H}_2 = \mathcal{H}_{2,1} \oplus \mathcal{H}_{2,2}$ such that $\mathcal{H}_{2,1}$ and $\mathcal{H}_{2,2}$ reduce Q and |E|, $Q|_{\mathcal{H}_{2,1}}$ is an isometry and $\left(Q|_{\mathcal{H}_{2,2}}, |E||_{\mathcal{H}_{2,2}}\right)$ is a spherical isometry.

▲御♪ ▲臣♪ ▲臣♪ 二臣

Proposition

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathfrak{Q}_{\mathcal{H}_1, \mathcal{H}_2}$. Then the following conditions are equivalent:

(i) T is a Brownian isometry, i.e., T is a 2-isometry such that $\triangle_T \triangle_{T^*} \triangle_T = 0$,

(ii)
$$(|Q|^2 - I)(|Q|^2 + |E|^2 - I) = 0$$

and
 $(|Q^*|^2 - I)(|Q|^2 + |E|^2 - I)^2 = 0,$

 (iii) there exists an orthogonal decomposition H₂ = H_{2,1} ⊕ H_{2,2} such that H_{2,1} and H_{2,2} reduce Q and |E|, Q|_{H_{2,1}} is an isometry, (Q|_{H_{2,2}}, |E||<sub>H_{2,2}) is a spherical isometry and the spaces H_{2,1} ⊖ Q(H_{2,1}) and |E|(H_{2,1}) are orthogonal.

</sub>

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Theorem

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \Omega_{\mathcal{H}_1, \mathcal{H}_2}$. Then the following conditions are equivalent:

(i) T is subnormal,

(ii) $\sigma(|Q|, |E|) \subseteq \overline{\mathbb{D}}_+ \cup ((1, \infty) \times \{0\}),$ where $\sigma(|Q|, |E|)$ stands for the Taylor spectrum of (|Q|, |E|)and

$$\mathbb{D}_+ = \{ (x_1, x_2) \in \mathbb{R}^2_+ \colon x_1^2 + x_2^2 < 1 \}.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

We say that a multi-sequence $\{\gamma_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{d}} \subseteq \mathbb{R}$ is a Hamburger moment multi-sequence (or Hamburger moment sequence if d = 1) if there exists a positive Borel measure μ on \mathbb{R}^{d} , called a representing measure of $\{\gamma_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{d}}$, such that

$$\gamma_{\alpha} = \int_{\mathbb{R}^d} x^{\alpha} d\mu(x), \quad \alpha \in \mathbb{Z}^d_+.$$
 (5)

(日本) (日本) (日本) 日

If such μ is unique, then $\{\gamma_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{d}}$ is said to be determinate. If (5) holds for some positive Borel measure μ on \mathbb{R}^{d} supported in \mathbb{R}_{+}^{d} , then $\{\gamma_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{d}}$ is called a Stieltjes moment multi-sequence (or Stieltjes moment sequence if d = 1).

Theorem (Lambert 1976)

An operator $T \in \mathbf{B}(\mathcal{H})$ is subnormal if and only if for every $f \in \mathcal{H}$, the sequence $\{\|T^n f\|^2\}_{n=0}^{\infty}$ is a Stieltjes moment sequence, i.e., there exists a positive Borel measure μ_f on $[0, \infty)$ such that

$$||T^n f||^2 = \int_{[0,\infty)} t^n d\mu_f(t), \quad n = 0, 1, 2, \dots$$

通 とう ほうとう ほうとう

Lemma

Let $G: \mathfrak{B}(X) \to \mathbf{B}(\mathcal{H})$ be a regular Borel spectral measure on a topological Hausdorff space X such that supp G is compact. Suppose that for every $n \in \mathbb{Z}_+$, $\varphi_n: X \to \mathbb{R}$ is a continuous function. Then TFAE:

(i) $\{\int_X \varphi_n(x) \langle G(d x) f, f \rangle\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $f \in \mathcal{H}$,

(ii) $\{\varphi_n(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in \text{supp } G$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

A characterization of subnormality

Theorem

Let $G: \mathfrak{B}(X) \to \mathbf{B}(\mathcal{H})$ be a regular Borel spectral measure on a topological Hausdorff space X such that supp G is compact and let $T \in \mathbf{B}(\mathcal{H})$ be such that

$$T^{*n}T^n = \int_X \varphi_n \operatorname{d} G, \quad n \in \mathbb{Z}_+,$$

where φ_n : $X \to \mathbb{R}$, $n \in \mathbb{Z}_+$, are continuous functions. Suppose that for every $x \in X$, there exists a compactly supported complex Borel measure μ_x on \mathbb{R}_+ such that

$$\varphi_n(\mathbf{x}) = \int_{\mathbb{R}_+} t^n \,\mathrm{d}\,\mu_{\mathbf{x}}(t), \quad n \in \mathbb{Z}_+, \, \mathbf{x} \in \mathbf{X}.$$

Then T is subnormal if and only if for every $x \in \text{supp } G$, μ_x is a positive measure.

Lemma

Let $d \in \mathbb{N}, \mu$ be a compactly supported complex Borel measure on \mathbb{R}^d and

$$\gamma_lpha = \int_{\mathbb{R}^d} {oldsymbol x}^lpha {oldsymbol d} \mu({oldsymbol x}), \quad lpha \in \mathbb{Z}_+^d.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Then the following conditions are equivalent: (i) $\{\gamma_{\alpha}\}_{\alpha \in \mathbb{R}^d}$ is a Hamburger moment multi-sequence, (ii) μ is a positive measure. Moreover, if (i) holds, then $\{\gamma_{\alpha}\}_{\alpha \in \mathbb{R}^d}$ is determinate.

Lemma

Suppose $d \ge 1$ and μ_1 and μ_2 are compactly supported complex Borel measures on \mathbb{R}^d such that

$$\int_{\mathbb{R}^d} x^lpha d\mu_1(x) = \int_{\mathbb{R}^d} x^lpha d\mu_2(x), \quad lpha \in \mathbb{Z}_+^d.$$

イロト イポト イヨト イヨト 三日

Then $\mu_1 = \mu_2$.

Uniqueness of moments II

Any sequence $\{\gamma_n\}_{n=0}^{\infty} \subseteq \mathbb{R}$ has infinitely many representing complex measures. Indeed, by [Boas 1938, Durán], there is a complex Borel measure ρ on \mathbb{R} such that

$$\gamma_n = \int_{\mathbb{R}} x^n d\rho(x), \quad n \in \mathbb{Z}_+.$$

Let $\{s_n\}_{n=0}^{\infty}$ be an indeterminate Hamburger moment sequence with two distinct representing measures μ_1 and μ_2 . Then $\mu := \mu_1 - \mu_2$ is a signed Borel measure on \mathbb{R} such that (Stieltjes)

$$\int_{\mathbb{R}} x^n d\mu(x) = 0, \quad n \in \mathbb{Z}_+.$$

As a consequence, we have

$$\gamma_n = \int_{\mathbb{R}} x^n d(\rho + \vartheta \mu)(x), \quad n \in \mathbb{Z}_+, \ \vartheta \in \mathbb{C}.$$

Moreover, the mapping $\mathbb{C} \ni \vartheta \longmapsto \rho + \vartheta \mu$ is injective.

Polynomials and moments

Lemma

Let for $k = 1, 2, \{\gamma_k(n)\}_{n=0}^{\infty}$ be a Hamburger moment sequence having a compactly supported representing measure μ_k and let $p \in \mathbb{C}[x]$ be such that

$$\gamma_1(n) = \gamma_2(n) + p(n), \quad n \in \mathbb{Z}_+.$$
(6)

Then p is a constant polynomial and $\mu_1 = \mu_2 + p(0)\delta_1$.

Corollary

Suppose $p \in \mathbb{C}[x]$. Then the following conditions are equivalent:

(i) $\{p(n)\}_{n=0}^{\infty}$ is a Hamburger moment sequence,

(ii) $\{p(n)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence,

(iii) *p* is a constant polynomial and $p(0) \ge 0$.

Polynomials and moments

Lemma

Let for $k = 1, 2, \{\gamma_k(n)\}_{n=0}^{\infty}$ be a Hamburger moment sequence having a compactly supported representing measure μ_k and let $p \in \mathbb{C}[x]$ be such that

$$\gamma_1(n) = \gamma_2(n) + p(n), \quad n \in \mathbb{Z}_+.$$
(6)

Then p is a constant polynomial and $\mu_1 = \mu_2 + p(0)\delta_1$.

Corollary

Suppose $p \in \mathbb{C}[x]$. Then the following conditions are equivalent:

(i) $\{p(n)\}_{n=0}^{\infty}$ is a Hamburger moment sequence,

(ii) $\{p(n)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence,

(iii) p is a constant polynomial and $p(0) \ge 0$.

References

- J. Agler, A disconjugacy theorem for Toeplitz operators, *Amer. J. Math.* **112** (1990), 1-14.
- J. Agler, M. Stankus, *m*-isometric transformations of Hilbert spaces, I, II, III, *Integr. Equ. Oper. Theory* **21**, **23**, **24** (1995, 1995, 1996), 383-429, 1-48, 379-421.
- W. Majdak, M. Mbekhta, L. Suciu, Operators intertwining with isometries and Brownian parts of 2-isometries, *Linear Algebra Appl.* **509** (2016), 168-190.
- A. Anand, S. Chavan, Z. J. Jabłoński, J. Stochel, A solution to the Cauchy dual subnormality problem for 2-isometries, preprint 2017.

・ 同 ト ・ ヨ ト ・ ヨ ト …

C. Badea, L. Suciu, The Cauchy dual and 2-isometric liftings of concave operators, preprint 2018.

THANK YOU!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □