Wold decomposition for doubly commuting isometric covariant representations

Harsh Trivedi LNM Institute of Information & Technology, Jaipur email:harsh.trivedi@Inmiit.ac.in

joint work with

Shankar Veerabathiran University of Madras, Chennai (Madras)

Recent Advances in Operator Theory and Operator Algebras OTOA 2018 December 14, 2018

Introduction to Wold decomposition

- Let V be an isometry on a Hilbert space H, that is, V*V = I_H.
- A closed subspace W ⊆ H is said to be wandering subspace for V if V^kW ⊥ V^lW for all k, l ∈ N with k ≠ l, or equivalently, if V^mW ⊥ W for all m ≥ 1.
- An isometry V on \mathcal{H} is said to be a **unilateral shift** or **shift** if

$$\mathcal{H} = \bigoplus_{m \ge 0} V^m \mathcal{W},$$

for some wandering subspace \mathcal{W} for V.

For a shift V on \mathcal{H} with a wandering subspace \mathcal{W} we have

$$\mathcal{H} \ominus \mathcal{V}\mathcal{H} = \bigoplus_{m \ge 0} \mathcal{V}^m \mathcal{W} \ominus \mathcal{V}(\bigoplus_{m \ge 0} \mathcal{V}^m \mathcal{W})$$

= $\bigoplus \mathcal{V}^m \mathcal{W} \ominus \bigoplus \mathcal{V}^m \mathcal{W} = \mathcal{W}.$

▶ The wandering subspace of a shift is unique and is given by

 $m \ge 0$ $m \ge 1$

$$\mathcal{W} = \mathcal{H} \ominus \mathcal{V}\mathcal{H}.$$

Theorem (Wold, 1938)

Let V be an isometry on \mathcal{H} . Then \mathcal{H} admits a unique decomposition $\mathcal{H} = \mathcal{H}_s \oplus \mathcal{H}_u$, where \mathcal{H}_s and \mathcal{H}_u are V-reducing subspaces of \mathcal{H} and $V|_{\mathcal{H}_s}$ is a shift and $V|_{\mathcal{H}_u}$ is unitary. Moreover,

$$\mathcal{H}_s = \bigoplus_{m=0}^{\infty} V^m \mathcal{W}$$
 and $\mathcal{H}_u = \bigcap_{m=0}^{\infty} V^m \mathcal{H},$

where $W = ran(I - VV^*) = kerV^*$ is the wandering subspace for V.

Let V = (V₁,..., V_n) be an *n*-tuple (n ≥ 2) of commuting isometries on H. Then V is said to *doubly commute* if

$$V_i V_j^* = V_j^* V_i,$$

for all $1 \le i < j \le n$.

Theorem (M. Slocinski, 1980)

Let $V = (V_1, V_2)$ be a pair of doubly commuting isometries on a Hilbert space \mathcal{H} . Then there exists a unique decomposition

$$\mathcal{H}=\mathcal{H}_{ss}\oplus\mathcal{H}_{su}\oplus\mathcal{H}_{us}\oplus\mathcal{H}_{uu},$$

where \mathcal{H}_{ij} are joint V-reducing subspace of \mathcal{H} for all i, j = s, u. Moreover, V_1 on $\mathcal{H}_{i,j}$ is a shift if i = s and unitary if i = u and that V_2 is a shift if j = s and unitary if j = u. Let (T_1, \ldots, T_n) be an *n*-tuple of commuting operators on a Hilbert space \mathcal{H} and $1 \le m \le n$. Let $A = \{i_1, \ldots, i_l\} \subseteq I_m$ and $1 \le l \le m$. We denote by T_A the |A|-tuple of commuting operators $(T_{i_1}, \ldots, T_{i_l})$ and $\mathbb{N}^A := \{\mathbf{k} = (k_{i_1}, \ldots, k_{i_l}) : k_{i_j} \in \mathbb{N}, 1 \le j \le l\}$. We also denote $T_{i_1}^{k_{i_1}} \cdots T_{i_l}^{k_{i_l}}$ by $T_A^{\mathbf{k}}$ for all $\mathbf{k} \in \mathbb{N}^A$.

Theorem (J. Sarkar, 2014) Let $V = (V_1, ..., V_n)$ be an n-tuple ($n \ge 2$) of doubly commuting isometries on \mathcal{H} and $m \in \{2, ..., n\}$. Let $I_m = \{1, 2, ..., m\}$. Then there exists 2^m joint ($V_1, ..., V_m$)-reducing subspaces $\{\mathcal{H}_A : A \subseteq I_m\}$ (counting the trivial subspace $\{0\}$) such that

$$\mathcal{H} = \bigoplus_{A \subseteq I_m} \mathcal{H}_A,\tag{1}$$

where for each $A \subseteq I_m$,

$$\mathcal{H}_{A} = \bigoplus_{\mathbf{k} \in \mathbb{N}^{A}} V_{A}^{\mathbf{k}} \Big(\bigcap_{\mathbf{j} \in \mathbb{N}^{l_{m} \setminus A}} V_{l_{m} \setminus A}^{\mathbf{j}} \mathcal{W}_{A} \Big).$$
(2)

In particular, there exists 2^n orthogonal joint V-reducing subspaces $\{\mathcal{H}_A : A \subseteq I_n\}$ such that

$$\mathcal{H}=\sum_{A\subseteq I_n}\oplus\mathcal{H}_A,$$

and for each $A \subseteq I_n$ and $\mathcal{H}_A \neq \{0\}$, $V_i|_{\mathcal{H}_A}$ is a shift if $i \in A$ and unitary if $i \in I_n \setminus A$ for all i = 1, ..., n. Moreover, the above decomposition is unique, in the sense that

$$\mathcal{H}_{A} = \bigoplus_{\mathbf{k} \in \mathbb{N}^{A}} V_{A}^{\mathbf{k}} \Big(\bigcap_{\mathbf{j} \in \mathbb{N}^{I_{n} \setminus A}} V_{I_{n} \setminus A}^{\mathbf{j}} \mathcal{W}_{A} \Big),$$

for all $A \subseteq I_n$.

► This decomposition is stronger in the sense that the orthogonal decomposition works for any m ∈ {2,..., n} with (2 < n).</p>

Introduction to covariant representations

Definition

Let \mathcal{M} be a C^* -algebra and E be a vector space which is a right \mathcal{M} -module satisfying $\alpha(xm) = (\alpha x)m = x(\alpha m)$ for $x \in E, m \in \mathcal{M}, \alpha \in \mathbb{C}$. The module E is called an **(right)** inner-product \mathcal{M} -module if there exists a map $\langle \cdot, \cdot \rangle : E \times E \to \mathcal{M}$ satisfying :

Definition

A (right) Hilbert \mathcal{M} -module is an inner-product \mathcal{M} -module E which is complete w.r.t. $||x|| := ||\langle x, x \rangle||^{1/2}$ for $x \in E$.

Let E be a Hilbert *M*-modules. A map T : E → E is called adjointable if there exists a map S : E → E such that

$$\langle T(x), y \rangle = \langle x, S(y) \rangle$$
 for all $x, y \in E$.

Notation: $\mathcal{L}(E)$.

- The module *E* is said to be a C*-correspondence over *M* if it has a left *M*-module structure induced by a non-zero *-homomorphism φ : *M* → *L*(*E*) in the sense aξ := φ(a)ξ (a ∈ M, ξ ∈ E).
- If F is another C*-correspondence over M, then tensor product F ⊗_φ E satisfy the following properties: for all ζ₁, ζ₂ ∈ F, ξ₁, ξ₂ ∈ E and a ∈ M

$$(\zeta_1 a) \otimes \xi_1 = \zeta_1 \otimes \phi(a)\xi_1,$$

 $\langle \zeta_1 \otimes \xi_1, \zeta_2 \otimes \xi_2 \rangle = \langle \xi_1, \phi(\langle \zeta_1, \zeta_2 \rangle)\xi_2 \rangle.$

Definition

Let *E* be a *C**-correspondence over \mathcal{M} and \mathcal{H} be a Hilbert space. Assume $\sigma : \mathcal{M} \to B(\mathcal{H})$ to be a representation and $T : E \to B(\mathcal{H})$ to be a linear map. The tuple (T, σ) is called a **covariant** representation of *E* on \mathcal{H} if

$$T(m\xi m') = \sigma(m)T(\xi)\sigma(m') \qquad (\xi \in E, m, m' \in \mathcal{M}).$$
(3)

The covariant representation is called **completely contractive** if T is completely contractive. The covariant representation (T, σ) is called **isometric** if

$$T(\xi_1)^*T(\xi_2) = \sigma(\langle \xi_1, \xi_2 \rangle) \qquad (\xi_1, \xi_2 \in E).$$

Lemma (Muhly and Solel, 1998)

The map $(T, \sigma) \mapsto \widetilde{T}$ provides a bijection between the collection of all completely contractive, covariant representations (T, σ) of E on \mathcal{H} and the collection of all contractive linear maps $\widetilde{T}: E \bigotimes_{\sigma} \mathcal{H} \to \mathcal{H}$ defined by

$$\widetilde{T}(\xi \otimes h) := T(\xi)h \qquad (\xi \in E, h \in \mathcal{H}),$$

and such that $\widetilde{T}(\phi(a) \otimes I_{\mathcal{H}}) = \sigma(a)\widetilde{T}$, $a \in \mathcal{M}$. Moreover, \widetilde{T} is isometry if and only if (T, σ) is isometric.

Let *E* be a *C*^{*}-correspondence over a *C*^{*}-algebra \mathcal{M} . Then for each $n \in \mathbb{N}$, $E^{\otimes n} := E \otimes_{\phi} \cdots \otimes_{\phi} E$ (*n* times) is the *C*^{*}-correspondence over the *C*^{*}-algebra \mathcal{M} , where the left action of \mathcal{M} on $E^{\otimes n}$ is given by

$$\phi^n(a)(\xi_1\otimes\cdots\otimes\xi_n):=\phi(a)\xi_1\otimes\cdots\otimes\xi_n.$$

Denote $E^{\otimes 0} := \mathcal{M}$. The Fock space $\mathcal{F}(E) := \bigoplus_{n \ge 0} E^{\otimes n}$ is the C^* correspondence over a C^* -algebra \mathcal{M} , with left action of \mathcal{M} on $\mathcal{F}(E)$ is given by $\phi_{\infty} : \mathcal{M} \longrightarrow L(\mathcal{F}(E))$ where

$$\phi_{\infty}(a)(\oplus_{n\geq 0}\xi_n):=\oplus_{n\geq 0}a\cdot\xi_n, \ \xi_n\in E^{\otimes n}.$$

Let $\xi \in E$, we define the creation operator T_{ξ} on $\mathcal{F}(E)$ by

$$T_{\xi}(\eta) := \xi \otimes \eta, \ \eta \in E^{\otimes n}$$

Let π be a representation of \mathcal{M} on the Hilbert space \mathcal{H} . The isometric covariant representation (ρ, S) of E on the Hilbert space $\mathcal{F}(E) \otimes_{\pi} \mathcal{H}$ defined by

$$\rho(\mathbf{a}) := \phi_{\infty}(\mathbf{a}) \otimes I_{\mathcal{H}} , \mathbf{a} \in \mathcal{M}$$
$$S(\xi) := T_{\xi} \otimes I_{\mathcal{H}}, \ \xi \in E.$$

is called an **induced representation** (induced by π).

Definition (L. Helmer, 2016)

Let *E* be a *C*^{*}-correspondence over a *C*^{*}-algebra \mathcal{M} . Let (σ, V) be an isometric covariant representation of *E* on a Hilbert space \mathcal{H} . For a closed $\sigma(\mathcal{M})$ -invariant subspace \mathcal{W} , we define

$$\mathfrak{L}^{n}(\mathcal{W}) := \bigvee \{ V(\xi_1) V(\xi_2) \dots V(\xi_n) h : \xi_i \in E, h \in \mathcal{W} \},$$

for $n \in \mathbb{N}$ and $\mathfrak{L}^{0}(\mathcal{W}) := \mathcal{W}$. Then \mathcal{W} is called **wandering** for (σ, V) , if the subspaces $\mathfrak{L}^{n}(\mathcal{W})$, $n \in \mathbb{N}_{0}$ are mutually orthogonal.

Theorem (Muhly-Solel, 1999)

Let (σ, V) be an isometric covariant representation of E on a Hilbert space \mathcal{H} . Then the representation (σ, V) decomposes into a direct sum $(\sigma_1, V_1) \bigoplus (\sigma_2, V_2)$ on $\mathcal{H} = \mathcal{H}_1 \bigoplus \mathcal{H}_2$ where $(\sigma_1, V_1) = (\sigma, V)|_{\mathcal{H}_1}$ is an induced covariant representation and $(\sigma_2, V_2) = (\sigma, V)|_{\mathcal{H}_2}$ is fully coisometric. The above decomposition is unique in the sense that if \mathcal{K} reduces (σ, V) , and if the restriction $(\sigma, V)|_{\mathcal{K}}$ is induced(resp. fully coisometric), then $\mathcal{K} \subset \mathcal{H}_1$ (resp. $\mathcal{K} \subset \mathcal{H}_2$). Moreover, $\mathcal{H}_2 := \bigoplus_{k \ge 0} \mathfrak{L}^k(\mathcal{W})$, and hence

$$\mathcal{H}_1 := \left(\bigoplus_{k \ge 0} \mathfrak{L}^k(\mathcal{W})
ight)^\perp = igcap_{k=0}^\infty (\mathfrak{L}^k(\mathcal{H})).$$

Let $k \in \mathbb{N}$ and let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. We require *product system* \mathbb{E} of C^* -correspondences over \mathbb{N}_0^k [Fowler, 2002]: Consider \mathbb{E} to be a family of k C^* -correspondences $\{E_1, \ldots, E_k\}$ together with the unitary isomorphisms $t_{i,j} : E_i \otimes E_j \to E_j \otimes E_i$ (i > j). Thus we identify for all $\mathbf{n} = (n_1, \ldots, n_k) \in \mathbb{N}_0^k$ the correspondence $\mathbb{E}(\mathbf{n})$ with $E_1^{\otimes n_1} \otimes \cdots \otimes E_k^{\otimes n_k}$. Indeed, we use $t_{i,i} = \mathrm{id}_{E_i \otimes E_i}$, $t_{i,j} = t_{j,i}^{-1}$ for i < j.

Definition

Assume \mathbb{E} to be a product system over \mathbb{N}_0^k . By a **completely contractive covariant representation** of \mathbb{E} on a Hilbert space \mathcal{H} we mean a tuple $(\sigma, T^{(1)}, \ldots, T^{(k)})$, where (σ, \mathcal{H}) is a representation of \mathcal{M} , and $T^{(i)} : E_i \to B(\mathcal{H})$ are linear completely contractive maps satisfying

 $T^{(i)}(a\xi_ib) = \sigma(a)T^{(i)}(\xi_i)\sigma(b), \quad a, b \in \mathcal{M}, \xi_i \in E_i,$ as well as $\widetilde{T}^{(i)}(I_{E_i} \otimes \widetilde{T}^{(j)}) = \widetilde{T}^{(j)}(I_{E_j} \otimes \widetilde{T}^{(i)})(t_{i,j} \otimes I_{\mathcal{H}})$ with $i, j \in \{1, \dots, k\}.$ Moreover, the representation is called **isometric** if each $(\sigma, T^{(i)})$ is isometric as a representation of E_i , and **fully coisometric** if each $(\sigma, T^{(i)})$ is fully coisometric.

Definition

A representation $(\sigma, T^{(1)}, \ldots, T^{(k)})$ of \mathbb{E} on a Hilbert space \mathcal{H} is called **doubly commuting** if for each $i, j \in \{1, \ldots, k\}$, $i \neq j$ implies

$$\widetilde{T}^{(j)^*}\widetilde{T}^{(i)} = (I_{E_j} \otimes \widetilde{T}^{(i)})(t_{i,j} \otimes I_{\mathcal{H}})(I_{E_i} \otimes \widetilde{T}^{(j)^*}).$$
(4)

Definition

Let \mathcal{K} be a closed subspace of a Hilbert space \mathcal{H} . The subspace \mathcal{K} is called **reducing** for a doubly commuting representation $(\sigma, T^{(1)}, \ldots, T^{(k)})$ on \mathcal{H} , if it reduces $\sigma(\mathcal{M})$ (this means that the projection onto \mathcal{K} , will be denoted by $P_{\mathcal{K}}$, lies in $\sigma(\mathcal{M})'$), and both $\mathcal{K}, \mathcal{K}^{\perp}$ are left invariant by each operator $T^{(i)}(\xi_i)$ for $\xi_i \in E_i$, $i \in \{1, \ldots, k\}$. Then it is evident that the 'restriction' of this representation provides a new representation of \mathbb{E} on \mathcal{K} , which is called a **summand** of $(\sigma, T^{(1)}, \ldots, T^{(k)})$ and will be denoted by $(\sigma, T^{(1)}, \ldots, T^{(k)})|_{\mathcal{K}}$.

Remark

To check \mathcal{K} reduces $(\sigma, T^{(j)})$, it is enough to check \mathcal{K} reduces $\sigma(\mathcal{M})$, and $P_{\mathcal{K}}$ commutes with $\widetilde{T}^{(j)}\widetilde{T}^{(j)*}$.

For a closed subspace \mathcal{K} , we use notation $\mathfrak{L}^i_I(\mathcal{K})$ for the closed subspace generated by

$$\{T^{(i)}(\xi_{1})\cdots T^{(i)}(\xi_{l})k:\xi_{1},\ldots\xi_{l}\in E_{i},k\in\mathcal{K}\}.$$
When $l = 1$, we denote it by $\mathfrak{L}^{i}(\mathcal{K})$.
For $\mathbf{n} = (n_{1},\cdots,n_{k})\in\mathbb{N}_{0}^{k}$, we define $\widetilde{T}_{\mathbf{n}}:\mathbb{E}(\mathbf{n})\otimes_{\sigma}\mathcal{H}\longrightarrow\mathcal{H}$ by
 $\widetilde{T}_{\mathbf{n}}:=\widetilde{T}_{n_{1}}^{(1)}\left(I_{E_{1}^{\otimes n_{1}}}\otimes\widetilde{T}_{n_{2}}^{(2)}\right)\cdots\left(I_{E_{1}^{\otimes n_{1}}\otimes\cdots\otimes E_{k-1}^{\otimes n_{k-1}}}\otimes\widetilde{T}_{n_{k}}^{(k)}\right).$
Let $A = \{i_{1},\cdots i_{p}\}\subset\{1,2,\cdots,k\}$, denote
 $\mathbb{N}_{0}^{A}:=\{\mathbf{m}=(m_{i_{1}},\cdots m_{i_{p}}):m_{i_{j}}\in\mathbb{N}_{0},1\leq j\leq p\}$. Let
 $\mathbf{m}=(m_{i_{1}},\cdots m_{i_{p}})\in\mathbb{N}_{0}^{A}$, define $\widetilde{T}_{\mathbf{m}}^{A}:\mathbb{E}(\mathbf{m})\otimes_{\sigma}\mathcal{H}\longrightarrow\mathcal{H}$ by
 $\widetilde{T}_{\mathbf{m}}^{A}=\widetilde{T}_{m_{i_{1}}}^{(i_{1})}\left(I_{E_{i_{1}}^{\otimes m_{i_{1}}}}\otimes\widetilde{T}_{m_{i_{2}}}^{(i_{2})}\right)\cdots\left(I_{E_{i_{1}}^{\otimes m_{i_{1}}}\otimes\cdots\otimes E_{i_{p-1}}^{\otimes m_{i_{p-1}}}}\otimes\widetilde{T}_{m_{i_{p}}}^{(i_{p})}\right).$
Moreover, for a given closed subspace \mathcal{K} , we use symbol

$$\begin{split} \mathfrak{L}^{A}_{\mathbf{m}}(\mathcal{K}) &:= \bigvee \{ T^{(i_{1})}_{m_{i_{1}}}(\eta_{i_{1}}) \cdots T^{(i_{p})}_{m_{i_{p}}}(\eta_{i_{p}})h : \eta_{i_{j}} \in \mathsf{E}^{\otimes m_{i_{j}}}_{i_{j}}, 1 \leq j \leq p, h \in \mathcal{K} \}. \\ \\ \mathsf{Clearly} \ \mathfrak{L}^{A}_{\mathbf{m}}(\mathcal{K}) &= \widetilde{T}^{A}_{\mathbf{m}}(\mathbb{E}(\mathbf{m}) \otimes_{\sigma} \mathcal{K}). \end{split}$$

Main result

Theorem (H.-Shankar V.)

Let \mathbb{E} be a product system of C^* -correspondences over \mathbb{N}_0^k . Let $(\sigma, T^{(1)}, \ldots, T^{(k)})$ be a doubly commuting isometric, covariant representation of \mathbb{E} on a Hilbert space \mathcal{H} . Then for $2 \le m \le k$, there exists 2^m $(\sigma, T^{(1)}, \ldots, T^{(m)})$ -reducing subspaces $\{\mathcal{H}_{\mathcal{A}} : A \subseteq I_m\}$ such that

$$\mathcal{H}:=\bigoplus_{A\subseteq I_m}\mathcal{H}_A,$$

where

$$\mathcal{H}_{\mathcal{A}} = igoplus_{\mathbf{n}\in\mathbb{N}_{0}^{\mathcal{A}}} \mathfrak{L}_{\mathbf{n}}^{\mathcal{A}} \left(igcap_{\mathbf{j}\in\mathbb{N}_{0}^{f_{m}\setminus\mathcal{A}}} \mathfrak{L}_{\mathbf{j}}^{f_{m}\setminus\mathcal{A}}(\mathcal{W}_{\mathcal{A}})
ight)$$

Corollary (Theorem 2.4, Skalski-Zacharias, 2008) In particular, there exist 2^k orthogonal (σ , $T^{(1)}$,..., $T^{(k)}$)-reducing subspaces { $\mathcal{H}_A : A \subset I_k$ } such that

$$\mathcal{H} := \bigoplus_{A \subseteq I_k} \mathcal{H}_A,$$

and for each $A \subset I_k$ and $\mathcal{H}_A \neq \{0\}$; $(\sigma, T^{(i)})|_{\mathcal{H}_A}$ is an induced representation whenever $i \in A$ and $(\sigma, T^{(i)})|_{\mathcal{H}_A}$ is fully coisometric whenever $i \in I_n \setminus A$. Moreover, the above decomposition is unique.

References:

- Leonid Helmer, Generalized Inner-Outer Factorizations in Non Commutative Hardy Algebras, Integral Equations Operator Theory 84 (2016), no. 4, 555–575.
- Muhly, Paul S., Solel, Baruch, Tensor algebras, induced representations, and the Wold decomposition, Canad. J. Math., 61 (1999), no. 4, 850-880.
- Gelu Popescu, *Operator theory on noncommutative domains*, Mem. Amer. Math. Soc. **205** (2010), no. 964, vi+124.
- Jaydeb Sarkar, *Wold decomposition for doubly commuting isometries.*, Linear Algebra Appl., **445** (2014), no. 4, 289-301.
- Jaydeb Sarkar, Harsh Trivedi and Shankar Veerabathiran, *Covariant representations of subproduct systems: Invariant subspaces and curvature*, New York J. Math., **24** (2018), 211-232.

References:

- Skalski, Adam; Zacharias, Joachim, Wold decomposition for representations of product systems of C*-correspondences, Internat. J. Math., 19 (2008), no. 4, 455-479.
- M. Slocinski, On Wold type decompositions of a pair of commuting isometries, Ann. Pol. Math. 37 (1980), 255-262.
- Solel, Baruch, Regular dilations of representations of product systems, Math. Proc. R. Ir. Acad., 108 (2008), no. 1, 89-110.
- H. Wold, A study in the analysis of stationary time series, Almquist and Wiksell, Uppsala, 1938.

THANK YOU.