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Introduction to Wold decomposition

I Let V be an isometry on a Hilbert space H, that is,
V ∗V = IH.

I A closed subspace W ⊆ H is said to be wandering subspace
for V if V kW ⊥ V lW for all k, l ∈ N with k 6= l , or
equivalently, if VmW ⊥W for all m ≥ 1.

I An isometry V on H is said to be a unilateral shift or shift if

H =
⊕
m≥0

VmW,

for some wandering subspace W for V .



I For a shift V on H with a wandering subspace W we have

H	 VH =
⊕
m≥0

VmW 	 V (
⊕
m≥0

VmW)

=
⊕
m≥0

VmW 	
⊕
m≥1

VmW =W.

I The wandering subspace of a shift is unique and is given by

W = H	 VH.



Theorem (Wold, 1938)

Let V be an isometry on H. Then H admits a unique
decomposition H = Hs ⊕Hu, where Hs and Hu are V -reducing
subspaces of H and V |Hs is a shift and V |Hu is unitary. Moreover,

Hs =
∞⊕

m=0

VmW and Hu =
∞⋂

m=0

VmH,

where W = ran(I − VV ∗) = kerV ∗ is the wandering subspace for
V .



I Let V = (V1, . . . ,Vn) be an n-tuple (n ≥ 2) of commuting
isometries on H. Then V is said to doubly commute if

ViV
∗
j = V ∗j Vi ,

for all 1 ≤ i < j ≤ n.

Theorem (M. Slocinski, 1980)

Let V = (V1,V2) be a pair of doubly commuting isometries on a
Hilbert space H. Then there exists a unique decomposition

H = Hss ⊕Hsu ⊕Hus ⊕Huu,

where Hij are joint V -reducing subspace of H for all i , j = s, u.
Moreover, V1 on Hi ,j is a shift if i = s and unitary if i = u and
that V2 is a shift if j = s and unitary if j = u.



Notation:

Let (T1, . . . ,Tn) be an n-tuple of commuting operators on a
Hilbert space H and 1 ≤ m ≤ n. Let A = {i1, . . . , il} ⊆ Im and
1 ≤ l ≤ m. We denote by TA the |A|-tuple of commuting operators
(Ti1 , . . . ,Til ) and NA := {k = (ki1 , . . . , kil ) : kij ∈ N, 1 ≤ j ≤ l}.
We also denote T

ki1
i1
· · ·T kil

il
by T k

A for all k ∈ NA.



Theorem ( J. Sarkar, 2014)

Let V = (V1, . . . ,Vn) be an n-tuple (n ≥ 2) of doubly commuting
isometries on H and m ∈ {2, . . . , n}. Let Im = {1, 2, . . . ,m}. Then
there exists 2m joint (V1, . . . ,Vm)-reducing subspaces
{HA : A ⊆ Im} (counting the trivial subspace {0}) such that

H =
⊕
A⊆Im

HA, (1)

where for each A ⊆ Im,

HA =
⊕
k∈NA

V k
A

( ⋂
j∈NIm\A

V j
Im\AWA

)
. (2)



In particular, there exists 2n orthogonal joint V -reducing subspaces
{HA : A ⊆ In} such that

H =
∑
A⊆In

⊕HA,

and for each A ⊆ In and HA 6= {0}, Vi |HA
is a shift if i ∈ A and

unitary if i ∈ In \ A for all i = 1, . . . , n. Moreover, the above
decomposition is unique, in the sense that

HA =
⊕
k∈NA

V k
A

( ⋂
j∈NIn\A

V j
In\AWA

)
,

for all A ⊆ In.

I This decomposition is stronger in the sense that the
orthogonal decomposition works for any m ∈ {2, . . . , n} with
(2 < n).



Introduction to covariant representations

Definition
Let M be a C ∗-algebra and E be a vector space which is a right
M-module satisfying α(xm) = (αx)m = x(αm) for
x ∈ E ,m ∈M, α ∈ C. The module E is called an (right)
inner-product M-module
if there exists a map 〈·, ·〉 : E × E →M satisfying :

(i) 〈x , x〉 ≥ 0 for x ∈ E and 〈x , x〉 = 0 only if x = 0,

(ii) 〈x , ym〉 = 〈x , y〉m for x , y ∈ E and for m ∈M,

(iii) 〈x , y〉 = 〈y , x〉∗ for x , y ∈ E ,

(iv) 〈x , µy + νz〉 = µ〈x , y〉+ ν〈x , z〉 for x , y , z ∈ E and for
µ, ν ∈ C.

Definition
A (right) Hilbert M-module is an inner-product M-module E
which is complete w.r.t. ‖x‖ := ‖〈x , x〉‖1/2 for x ∈ E .



I Let E be a Hilbert M-modules. A map T : E → E is called
adjointable if there exists a map S : E → E such that

〈T (x), y〉 = 〈x ,S(y)〉 for all x , y ∈ E .

Notation: L(E ).

I The module E is said to be a C ∗-correspondence over M if
it has a left M-module structure induced by a non-zero
∗-homomorphism φ :M→ L(E ) in the sense
aξ := φ(a)ξ (a ∈M, ξ ∈ E ).

I If F is another C ∗-correspondence over M, then tensor
product F

⊗
φ E satisfy the following properties: for all

ζ1, ζ2 ∈ F , ξ1, ξ2 ∈ E and a ∈M

(ζ1a)⊗ ξ1 = ζ1 ⊗ φ(a)ξ1,

〈ζ1 ⊗ ξ1, ζ2 ⊗ ξ2〉 = 〈ξ1, φ(〈ζ1, ζ2〉)ξ2〉.



Definition
Let E be a C ∗-correspondence over M and H be a Hilbert space.
Assume σ :M→ B(H) to be a representation and T : E → B(H)
to be a linear map. The tuple (T , σ) is called a covariant
representation of E on H if

T (mξm′) = σ(m)T (ξ)σ(m′) (ξ ∈ E ,m,m′ ∈M). (3)

The covariant representation is called completely contractive if
T is completely contractive. The covariant representation (T , σ) is
called isometric if

T (ξ1)∗T (ξ2) = σ(〈ξ1, ξ2〉) (ξ1, ξ2 ∈ E ).



Lemma (Muhly and Solel, 1998)

The map (T , σ) 7→ T̃ provides a bijection between the collection
of all completely contractive, covariant representations (T , σ) of E
on H and the collection of all contractive linear maps
T̃ : E

⊗
σH → H defined by

T̃ (ξ ⊗ h) := T (ξ)h (ξ ∈ E , h ∈ H),

and such that T̃ (φ(a)⊗ IH) = σ(a)T̃ , a ∈M. Moreover, T̃ is
isometry if and only if (T , σ) is isometric.



Let E be a C ∗-correspondence over a C ∗-algebra M . Then for
each n ∈ N, E⊗n := E ⊗φ · · · ⊗φ E (n times) is the
C ∗-correspondence over the C ∗-algebra M, where the left action of
M on E⊗n is given by

φn(a)(ξ1 ⊗ · · · ⊗ ξn) := φ(a)ξ1 ⊗ · · · ⊗ ξn.

Denote E⊗0 := M. The Fock space F(E ) :=
⊕

n≥0 E
⊗n is the C ∗

correspondence over a C ∗-algebra M, with left action of M on
F(E ) is given by φ∞ : M −→ L(F(E )) where

φ∞(a)(⊕n≥0ξn) := ⊕n≥0a · ξn, ξn ∈ E⊗n.

Let ξ ∈ E , we define the creation operator Tξ on F(E ) by

Tξ(η) := ξ ⊗ η, η ∈ E⊗n.



Let π be a representation of M on the Hilbert space H. The
isometric covariant representation (ρ, S) of E on the Hilbert space
F(E )⊗π H defined by

ρ(a) : = φ∞(a)⊗ IH , a ∈M

S(ξ) : = Tξ ⊗ IH, ξ ∈ E .

is called an induced representation (induced by π).



Definition (L. Helmer, 2016)

Let E be a C ∗-correspondence over a C ∗-algebra M. Let (σ,V ) be
an isometric covariant representation of E on a Hilbert space H.
For a closed σ(M)-invariant subspace W, we define

Ln(W) :=
∨
{V (ξ1)V (ξ2) . . .V (ξn)h : ξi ∈ E , h ∈ W},

for n ∈ N and L0(W) :=W. Then W is called wandering for
(σ,V ), if the subspaces Ln(W) , n ∈ N0 are mutually orthogonal.



Theorem (Muhly-Solel, 1999)

Let (σ,V ) be an isometric covariant representation of E on a
Hilbert space H. Then the representation (σ,V ) decomposes into
a direct sum (σ1,V1)

⊕
(σ2,V2) on H = H1

⊕
H2 where

(σ1,V1) = (σ,V )|H1 is an induced covariant representation and
(σ2,V2) = (σ,V )|H2 is fully coisometric. The above decomposition
is unique in the sense that if K reduces (σ,V ) , and if the
restriction (σ,V )|K is induced(resp. fully coisometric), then
K ⊂ H1(resp. K ⊂ H2). Moreover, H2 :=

⊕
k≥0 L

k(W), and
hence

H1 :=

⊕
k≥0

Lk(W)

⊥ =
∞⋂
k=0

(Lk(H)).



Let k ∈ N and let N0 = N ∪ {0}. We require product system E of
C ∗-correspondences over Nk

0 [Fowler, 2002]: Consider E to be a
family of k C ∗-correspondences {E1, . . . ,Ek} together with the
unitary isomorphisms ti ,j : Ei ⊗ Ej → Ej ⊗ Ei (i > j). Thus we
identify for all n = (n1, . . . , nk) ∈ Nk

0 the correspondence E(n)
with E⊗

n1

1 ⊗ · · · ⊗ E⊗
nk

k . Indeed, we use ti ,i = idEi⊗Ei
, ti ,j = t−1j ,i

for i < j .



Definition
Assume E to be a product system over Nk

0 . By a completely
contractive covariant representation of E on a Hilbert space H
we mean a tuple (σ,T (1), . . . ,T (k)), where (σ,H) is a
representation of M, and T (i) : Ei → B(H) are linear completely
contractive maps satisfying

T (i)(aξib) = σ(a)T (i)(ξi )σ(b), a, b ∈M, ξi ∈ Ei ,

as well as T̃ (i)(IEi
⊗ T̃ (j)) = T̃ (j)(IEj

⊗ T̃ (i))(ti ,j ⊗ IH) with
i , j ∈ {1, . . . , k}.



Moreover, the representation is called isometric if each (σ,T (i)) is
isometric as a representation of Ei , and fully coisometric if each
(σ,T (i)) is fully coisometric.

Definition
A representation (σ,T (1), . . . ,T (k)) of E on a Hilbert space H is
called doubly commuting if for each i , j ∈ {1, . . . , k}, i 6= j
implies

T̃ (j)∗T̃ (i) = (IEj
⊗ T̃ (i))(ti ,j ⊗ IH)(IEi

⊗ T̃ (j)∗). (4)



Definition
Let K be a closed subspace of a Hilbert space H . The subspace K
is called reducing for a doubly commuting representation
(σ,T (1), . . . ,T (k)) on H, if it reduces σ(M) (this means that the
projection onto K, will be denoted by PK, lies in σ(M)′), and both
K,K⊥ are left invariant by each operator T (i)(ξi ) for ξi ∈ Ei ,
i ∈ {1, . . . , k}. Then it is evident that the ‘restriction’ of this
representation provides a new representation of E on K, which is
called a summand of (σ,T (1), . . . ,T (k)) and will be denoted by
(σ,T (1), . . . ,T (k))|K.

Remark
To check K reduces (σ,T (j)), it is enough to check K reduces
σ(M), and PK commutes with T̃ (j)T̃ (j)∗ .



For a closed subspace K, we use notation Li
l (K) for the closed

subspace generated by

{T (i)(ξ1) · · ·T (i)(ξl)k : ξ1, . . . ξl ∈ Ei , k ∈ K}.

When l = 1, we denote it by Li (K).
For n = (n1, · · · , nk) ∈ Nk

0 , we define T̃n : E(n)⊗σ H −→ H by

T̃n := T̃
(1)
n1

(
I
E
⊗n1
1
⊗ T̃

(2)
n2

)
· · ·
(
I
E
⊗n1
1 ⊗···⊗E

⊗nk−1
k−1

⊗ T̃
(k)
nk

)
.

Let A = {i1, · · · ip} ⊂ {1, 2, · · · , k}, denote
NA
0 := {m = (mi1 , · · ·mip) : mij ∈ N0, 1 ≤ j ≤ p}. Let

m = (mi1 , · · ·mip) ∈ NA
0 , define T̃A

m : E(m)⊗σ H −→ H by

T̃A
m = T̃

(i1)
mi1

(
I
E
⊗mi1
i1

⊗ T̃
(i2)
mi2

)
· · ·

(
I
E
⊗mi1
i1

⊗···⊗E
⊗mip−1
ip−1

⊗ T̃
(ip)
mip

)
.

Moreover, for a given closed subspace K, we use symbol

LA
m(K) :=

∨
{T (i1)

mi1
(ηi1) · · ·T (ip)

mip
(ηip)h : ηij ∈ E

⊗mij

ij
, 1 ≤ j ≤ p, h ∈ K}.

Clearly LA
m(K) = T̃A

m(E(m)⊗σ K).



Main result

Theorem (H.-Shankar V.)

Let E be a product system of C ∗-correspondences over Nk
0 . Let

(σ,T (1), . . . ,T (k)) be a doubly commuting isometric, covariant
representation of E on a Hilbert space H. Then for 2 ≤ m ≤ k ,
there exists 2m (σ,T (1), . . . ,T (m))-reducing subspaces
{HA : A ⊆ Im} such that

H :=
⊕
A⊆Im

HA,

where

HA =
⊕
n∈NA

0

LA
n

 ⋂
j∈NIm\A

0

L
Im\A
J (WA)

 .



Corollary (Theorem 2.4, Skalski-Zacharias, 2008)

In particular, there exist 2k orthogonal (σ,T (1), . . . ,T (k))-reducing
subspaces {HA : A ⊂ Ik} such that

H :=
⊕
A⊆Ik

HA,

and for each A ⊂ Ik and HA 6= {0}; (σ,T (i))|HA
is an induced

representation whenever i ∈ A and (σ,T (i))|HA
is fully coisometric

whenever i ∈ In \ A. Moreover, the above decomposition is unique.
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