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It is interesting to investigate quantum group symmetry of
classical spaces. In this context, one naturally asks the
following:

Can there be a non-classical symmetry by a genuine
quantum group of the classical system?

Here, a genuine quantum group means that the underlying
algebra structure is not commutative, as we adopt the
convention of symmetry given by a co-action. One can also ask
a dual question replacing co-action by action where genuine
should correspond to noncommnutative co-algebra structure.
We address these issues in the analytic framework of C*
algebraic compact quantum groups.




Quick review of basic concepts
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Definition
A compact quantum group (CQG for short) a la Woronowicz
(CCQO)iCat?gnzheir is a pair (A, A) where A is a unital C*-algebra, A is a
coassociative comultiplication, i.e. a unital C*-homomorphism
from A to A ® A (minimal tensor product) satisfying
(A®id)o A = (id® A) o A, and linear span of each of the
sets {(b® 1)A(c): b,c € A} and {(1® b)A(c): b,c € A} is
dense in A® A.

Definition

We say that a CQG (A, A) (co)-acts on a (unital) C*-algebra
C if there is a unital x-homomorphism o : C — C ® A such that
(e®id)oa = (id ® A) o o, and the linear span of a(C)(1 ® .A)
is norm-dense in C ® A.



CQG and their
(co)actions

m Every CQG A contains a unital dense *-subalgebra 4y and
maps k : Ag — Ao, € : Ag — C such that Ay becomes a
Hopf algebra with &, € as the antipode and counit
respectively. Moreover, it is a Hopf x-algebra , i.e. € is
*-homomorphism and (x o %) = id.

m There is an analogue of Haar measure, namely a (unique)
positive linear functional h, called the Haar state, on A
such that h(1) =1 and
(h®1id)(A(a)) = (id ® h)(A(a)) = h(a)l for all a € A.
Moreover, there is an exact analogue of unitary
co-representation and Peter-Weyl theory.



CQG and their
(co)actions

m Given an action « of a CQG A on a unital C* algebra C,

we can find a norm-dense unital x-subalgebra Cy of C such
that « restricts to an algebraic co-action of the Hopf
algebra Ap on Cp.

In Woronowicz theory, it is customary to drop ‘co’, and
call the above co-action simply ‘action’ of the CQG on the
C* algebra. However, to avoid confusion, let's say that A
acts on a space X, or, « is an action on X to mean « is a
co-action on C(X) in the sense of the above definition.

A co-action « on C is called faithful if the %-subalgebra
generated by {(w ® id)(«(b))}, where b € C and w
varying over the set of bounded linear functionals on C, is
dense in A.



Genuine Quantum group actions on classical spaces

m Wang's quantum permutation group S, acts faithfully on
the finite set of cardinality n. In a similar way, one can get
its action on smooth manifolds with n components, so it is
a genuine CQG action for n > 4.

Smooth action m There can be faithful action of S;" on more interesting,

compact, connected sets (due to H. Hwang) formed by the
topological join of n copies of a compact connected set,
say the unit interval, gluing them at a common point. The
action ‘quantum permutes’ these copies in the natural
sense.

m There are geunine (i.e. not commutative as a C* algebra)
compact quantum group actions on connected algebraic
varieties (non-smooth!) as well: Etingof and Walton give
an example of C*(S3) action on the variety
{x,y e R: xy =0}.



Smooth action
on manifolds

m Also, there are smooth (to be defined later) faithful actions

by Hopf algebras associated with genuine locally compact
quantum groups on noncompact, smooth, connected
manifolds (e.g. R) and even (at least algebraically) on
compact connected smooth manifolds as well.

To summarize, there are genuine quantum actions on
classical connected spaces when either the space is
non-smooth or the quantum group is of non-compact
type, but if we demand the space to be compact and
smooth, the quantum group to be compact and the action
to be smooth in a natural sense at the same time, there
seems to be a problem.

This leads to the conjecture made by the speaker :

There does not exist a faithful smooth (to be
defined) action by a genuine compact quantum group
on a smooth, compact, connected manifold



Smooth action
on manifolds

Isometric actions

For a smooth action by a compact group, we can use the
averaging technique to get a Riemannian metric for which the
group action becomes isometric. Motivated by this, one can
formulate a notion of isometry for CQG action. Now, a smooth
map v on M is a Riemannian isometry if and only if the
induced map f — f oy on C*°(M) commutes with the
Laplacian £ = —d*d. Thus, it makes sense to call a CQG
action « on M isometric if for every bounded functional ¢ on
the CQG, (id ® ¢) o a« maps C°°(M) into itself and commutes
with £ there. We have:

Theorem

There exists a universal object (denoted by QISO*(M)) in the
category of CQG acting isometrically on M.



No quantum isometry for compact connected
manifolds

Now we focus on CQG actions on classical manifolds.

m Explicit computations for spheres, tori, G/K for compact
connected semisimple G quotiented by suitable subgroups,
s showed that QISO*(M) = C(ISo(M)), i.e. there are no
genuine quantum isometries.

m Banica, de Commer and Bhowmick showed that many
known genuine CQG's including SU,4(n) etc. cannot act
faithfully isometrically on a connected compact manifold.

m This supported the no-go conjecture.

m There have been several other results, both in the

algebraic and analytic set-up, which point towards the
truth of this conjecture. We mention some of them here.



Smooth action
on manifolds

m it is verified by Goswami-Joardar under the additional
condition that the action is isometric for some Riemannian
metric on the manifold.

m Etingof and Walton obtained a somewhat similar result in
the purely algebraic set up by proving that there cannot be
any finite dimensional Hopf algebra having inner faithful
action on a commutative domain.

m We should also mention the proof by A. L. Chirvasitu of
non-existence of genuine quantum isometry in the metric
space set-up for geodesic metric of negatively curved,
compact connected Riemannian manifolds.



Smooth action
on manifolds

m If we could prove that any smooth action of a CQG can be
made isometric for some Riemannian metric, the
conjecture would be verified in full generality.

m we had announced in an archived article a proof of this
fact (hence the truth of the conjecture in full generality)
but there was a gap in the averaging argument.

m Very recently, the speaker has come up with a
solution to the above problem with averaging
(thereby proving the general version of the
conjecture) using techniques from classical probability
theory, which will be briely sketched in this lecture.



Smooth CQG action

m An action « of a CQG Q on M is called smooth if it maps
C>®(M) to C*>°(M, Q) and the span of a(C>*(M))(1® Q)
is dense in C°°(M, Q) in the natural Frechet topology.

m Just as in case of a C*-action, given a smooth action «,

Smooth action following Podles, Soltan, Baum-de-Commer-Hajac, we can

on manfolds find a Frechet-dense unital *-subalgebra Co of C*°(M) on
which « is an algebraic (co)-action of the dense Hopf
x-algebra Qp of Q mentioned above.

m We use Sweedler type notation a(f) = fo) ® f1) for
f € (.

m We say that « preserves a Riemannian inner product
<. +->on Mif
< df(o), dg(o) > ®f(’;)g(1) = o< df,dg >) for all
f.g € Co.

m Isometric actions, i.e. actions commuting with Laplacian,

do preserve the corresponding Riemannain inner product.
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The isometric
no-go result

Theorem

For a smooth action «, the following are equivalent:
(i) ¥x € M, the algebra Q, generated by (x ® id)a(f) and
a(g), where x is any smooth vector field and f,g € C*(M), is
commutative.

(ii) o preserves some Riemannian inner product on the
manifold.

Theorem

Let Q be a CQG which has a faithful, isometric action on a

compact, connected, smooth Riemannian manifold. Then Q
must be classical, i.e. C(G) for some compact group G.

In other words, the quantum isometry group of any compact
connected Riemannian manifold M is C(Iso(M)).

This is proved in Goswami-Joardar (GAFA).



Averaging a smooth action

Let us fix a compact smooth connected manifold M, a faithful,
smooth action o of a CQG Q on it, with a Frechet dense
(unital, x)-subalgebra Cy of C°>°(M) on which « is algebraic.
Let us also fix some Riemannian metric << -,- >> on M and
Akl let £ be the corresponding (Hodge) Laplacian. We claim that

we can ‘average’ this Laplacian to obtain a new operator which
corresponds to a new Riemannian metric which is preserved by
the action. We state a classical fact.




Proposition

Let £L: C*(M) — C(M) be a linear map satisfying L(1) = 0,
L(f) = L(f) and (i) locality, i.e. for any x € M and any

f € C°°(M) such that f(y) =0 for all y in an open
neighbourhood of x, we must have L(f)(x) = 0;

(ii) conditionally positive definiteness, i.e.

Vf,....fk € C®(M), k> 1 and x € M, ((kc(fi, f;)(x))) is a
nonnegative definite, where

ke(f,g) = L(fg) — L(f)g — fL(g);

(iii) non-degeneracy, i.e. , Vx € M there is a choice of local
coordinates fi, ..., fm around x for which ke (f;, f;) € C>(M)
fori,j=1,...,m and ((kc(f;, f;)(x))) is invertible.

Then there is a unique Riemannian structure < -,- > on M
such that < df ,dg >.= ke(f, g)(x) for all real valued C*>
functions f, g.




Some generalities about a smooth action:

m Any CQG Q acting faithfully on C(M) must be of Kac
type, i.e the Haar state h is tracial and the antipode & is
norm-bounded on the reduced CQG Q,. So, from now on,
w.l.g we assume Q = 9, and a = a,.

m The nuclearity of C°°(M) gives a continuous extension of

the map m: O ®a, Q@ — Q (where Q° is the nuclear

space ax(C>®(M)), ax = (evx ®id) o ) to their (unique)

SCERNDS topological tensor product. Using this we get a continuous
map S :=mo (id® kK)o A: Q3 — Q which extends €(-)1
on ax(Cp). This proves injectivity of & on C*>°(M) and
then by some more standard arguments, injectivity of «
follows.

m This implies the existence of a faithful a-invariant Borel
probability measure on M, hence o = ady for some
unitary representation U on L?(M, p). Fix one such U.



Averaging a
smooth action

Denote by Mg and My the operators of left multiplication by F
(respectively f) on the Hilbert Q-module L>(M, 1) ® Q
(respectively L2(M, u)). Most often we may write simply F or
f for Mg or Mr respectively by making slight abuse of notation.

Lemma

For F € Co ®a1g Qo C C*(M, Q), we have
(id ® h)(UTMEU) = Mg,
where F* = (id ® h)(U~(F)) € Co.

Using this, we can prove that the map

F — W(F) := (id ® h)(U 1 MgU) extends to a unital
completely positive map from C(M, Q) to C(M) satisfying
aoV = (V®id)o (id® A) (invariance). In particular,
evp o (id ® h) (U™ - U) extends to a well-defined state on
C(M)



Averaging a
smooth action

Define A
L(f) = (id® h) (UH((£ @id)(a(F))V)

for f € C*°(M). Our goal is to prove that L is a
nondegenerate, conditionally completely positive, local operator
and hence by the proposition mentioned before, induces a
Riemannian structure. This Riemannian structure is easily seen
to be « invariant from the definition of £ and the invariance of
the map V. It is also not difficult to prove the conditionally
complete positivity and nondegeneracy. The main challenge is
to prove the locality, as « is not a local map. We do this by
adapting a probabilistic proof using stopping time. To this,
end, we recall some basics of Brownian motion on manifolds.



Averaging a
smooth action

Brownian motion and other probabilistic basics

Let M C R" isometrically and let X; to be the unique solution
of the stochastic differential equation

dXe = D11 XePi(Xt) 0 dWi(t), Xo € M, where Pi(x) denotes
the projection of the /-th coordinate unit vector of R” on the
tangent space T, M and (Wi(t),..., W,(t)) denotes the
standard Brownian motion of R”, defined on a probability
space (2, F, P) (say) starting at the origin. For x € M let
Xt(x,w) be the the solution with Xo = x. The heat semigroup
generated by the Laplacian L is given by

T:(f)(x) := Ep(f(Xe(x,-)). Moreover, for almost all w in the
sample space, the following hold:

(i) The random map 7¢(w) given by x — X¢(x,w) is a
diffeomorphism for every t,

(ii) (x, t) — Xi(x,w) is continuous.

(iii) Xegps(x,w) = Xe(Xs(x, w), w).




Averaging a
smooth action

m A stopping time adapted to the Brownian filtration

(Ft)e>0, where Fr = o(Xs, 0 <s < t), is a [0, o0]-valued
random variable such that {w : 7(w) < t} € F; for all
teR,.

A family (M;)>0 of a seprable Banach space Z-valued
(F¢)-adapted random variables is called a (F;)-martingale
if E(]|M¢||) < oo for each t and E(M;|Fs) = Ms (almost
surely) for all 0 < s < t < 0.

Optional Sampling Theorem: For a Z-valued martingale
s.t. t+— M;(w) is right continuous for almost all w and
any bounded stopping time 7, the process M, : is a
martingale, where a A b := min(a, b).



Let E={U*MgU: Fe C(M,Q)} =U"1C(M,Q)U,
clearly a separable C*-algebra.

m For F € C(M, Q) let j;(F) € L>(Q, C(M, Q)) given by
Je(F)(w)(x) = F(Xi(x,w)).

m Define J; : C(M, Q) — L>®(Q,E) by
Ji(F)(w) = UYjo(F)(w) U, vieweing j:(F)(w) as left
multiplication operator.

oot oo mlet Ty := T, ®ido, £=L®id on C°(M, Q).

m Define a unital x-homomorphism I; : C(M) — L>*(£, )

by M¢(f) = Ji(a(f)). Using Eg 0 js 1+ = js o T¢ for s,t >0,

we prove the the following is a right continuous

F-martingale:

Mf:l‘lt(f)—/o Jo(£(a(F)))ds.



Averaging a
smooth action

Let Y;(t) = M¢(x;). Observe Y;(0) = y; ® 1.
To show the locality of £ at p = (p1,...,pn) of M C R",
consider f = ¢(xi,...,xn), where ¢ is a smooth function on
R", such that ¢ vanishes on E.(p) ()M, where E.(p) is a cube
of side-length ¢y > 0 around p. By the continuity of the
Brownian flow, t — J;(F)(w) is norm continuous almost surely
for any fixed F € C®(M, Q). Choose F = £(a(f)) and define

two stopping times 7/, 7/ (e > 0):

7 =inf{t > 0: ||J(F)(w) — Jo(F)(w)| > €},

=1inf{t > 0: ||Yi(t,w) — y; ® 1| > € for somei}.

Let 7. = min(7/,7/,1), which is a bounded stopping time. By

» e
Optional Sampling Theorem, E(M}l) =M=f®1
By definition of 7. and continuity of the Brownian flow,

| Js(F)(w) — Jo(F)(w)|| < € forall s <.



Hence we get

E(N,. (f)) - f®1 i

E( [y Js(F)ds)
e—0+ E(7e) e—04 E(7e)

lim = Ut L(a(F))U.

For a fixed t and w, let us denote by B; ., the commutative
unital C* algebra generated by

{N(F)(w),g®1,f, g e C(M)},

and let S be the set of states ¢ on B;,, which extends ev, on
C(M)® 1= C(M) C Bt,,. It follows by standard arguments
that any extreme point of S is a pure state of B;,. i.e. a
«-homomorphism. Now, recall that (id ® h)(Bw) € C(M), so
n = (evp ® h) € S. Moreover,

£(F)(p) = lim_ W

as f(p) = 0.



We claim that n(M,.(f)) = 0 for all sufficiently small €. As
n € S, it is enough to prove it for all extreme points of S. Let
¢ be any such extreme point, it follows from the continuity of
the Brownian path that (Y7 (t) —yi ® 1)| < € for all i. But
¢(yi ® 1) = p; by defintion of S, hence the tuple

(C(Y1(7e)), .-, ¢(Yn(7e))) € R" € Ep(e) and as (oM, is a
character of C(M), there is some point

v=(vi,...,vp) € M CR" such that o M, (f) = f(v) for all
f € C(M). In particular,

(C(Yi(7e))s -+, C(Yn(1e))) = (vi, ..., vy) € M. Thus,

CM () = S(CYA()) - C(Ya(7))) = 0 for all € < co,
proving our claim that £(f)(p) = 0.

Conclusion : Any smooth action presrerves some
Riemannian inner product on M, hence QO is
commutative.



Proof of the conjecture

Now, the steps of the no-go theorem for QISO will go through
almost verbatim. The following is crucial:

Let W be a subset with nonempty interior of some Euclidean
space RN If a faithful action a of a CQG Q on X is affine in
the sense that a leaves invariant the linear span of the
coordinate functions and the constant function 1, then

Q = C(G) for some group G.

Proof of the

EEnfEEE m We can use the commutativity of Oy to lift the action to a
(smooth) action on the total space of the unit sphere of
the cotangent bundle, and applying again the
commutativity of the corresponding first order partial
derivatives of this lifted action, we can conclude that the
upto second order partial derivatives of the original action
form a commutative algebra. We can go on like this.



Proof of the

conjecture

Commutativity of O, allows us to further lift « to a
smooth action & (say) on C*°(T(Opm)), where

E = T(Opw) is the total space of the orthonormal frame
bundle on M.

Choose a Riemannian structure on E which is preserved by

(o

As E is parallelizable, choose an embedding in some R™
with trivial normal bundle (w.r.t. the Riemannian metric
chosen above) say N(E), lift & as an inner product
preserving action ® on some suitable e-neighbourhood W
of E in the total space N = R™ of N(E).

Using commutativity of partial derivates upto second order
of ® we prove that it is affine, hence prove that Q is
commutative.



Step 4: Affine-ness of ®

2
m Let Df‘ = a%,-q)()/k) Dk ayay ®(yk), where y1,...,¥m
are the standard coordmates of R™. As Int(W) is open
connected, it suffices to show that Dg =0 for all k,i,j.

m As isometric actions satisfy second order commutativity,
Df and D, commute.

m By the isometry condition of &:
Proof of the
conjecture

N
> DID] = g;1. (1)
=1




Applying aiyk to equation (1), and using the commutativity
of D}k and D,-"s

N
> (D},Dj + Dj,D}) = 0. (2)
I=1
= Ao = ((Agi)). with Agy = Df,
Bnxn = ((Bj = D})), C := AB
Proof of the u From (2)
conjecture C(Ik)_j —|— C(_jk)l = 0 (3)
m As Ciijj = Cjiyk for all i, j, k, equation (3) gives

Cinyi = Cwiri = — ik = = Clijpk = Cugyi = i

So again by equation (3), Cj); = 0 for all i, j, k i.e.
C =0, hence A= 0 as B is unitary.
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