◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Homomorphisms of noncommutative Hardy algebras

Baruch Solel and Paul Muhly

Bangalore, India, December 2018

Given two operator algebras \mathcal{A} and \mathcal{B} , every completely contractive homomorphism $\alpha : \mathcal{A} \to \mathcal{B}$ induces a map Z from the (c.c) representations of \mathcal{B} to the (c.c.) representations of \mathcal{A} by composition.

For the class of Hardy algebras associated with correspondences we can describe the set of (c.c) representations.

We use this to study the some of the properties of Z when A and \mathcal{B} are such Hardy algebras.

Preliminaries

For the basic constructs we need the following setup:

- \diamond *M* a *W*^{*}-algebra.
- *E* a *W**-correspondence over *M*. This means that *E* is a bimodule over *M* which is endowed with an *M*-valued inner product (making it a right-Hilbert *C**-module that is self dual). The left action of *M* on *E* is given by a unital, normal, *-homomorphism φ of *M* into the (*W**-) algebra of all bounded adjointable operators *L*(*E*) on *E*.

Examples

- (Basic Example) $M = \mathbb{C}, E = \mathbb{C}^d, d \ge 1.$
- $G = (G^0, G^1, r, s)$ a finite directed graph. $M = \ell^{\infty}(G^0)$, $E = \ell^{\infty}(G^1)$, $a\xi b(e) = a(r(e))\xi(e)b(s(e))$, $a, b \in M, \xi \in E$ $\langle \xi, \eta \rangle(v) = \sum_{s(e)=v} \overline{\xi(e)}\eta(e)$, $\xi, \eta \in E$.
- *M* arbitrary , $\alpha : M \to M$ a normal unital, endomorphism. E = M with right action by multiplication, left action by $\varphi = \alpha$ and inner product $\langle \xi, \eta \rangle := \xi^* \eta$. Denote it $_{\alpha}M$.
- Φ is a normal, contractive, CP map on M. E = M ⊗_Φ M is the completion of M ⊗ M with ⟨a ⊗ b, c ⊗ d⟩ = b*Φ(a*c)d and c(a ⊗ b)d = ca ⊗ bd.

Note: If σ is a representation of M on H, $E \otimes_{\sigma} H$ is a Hilbert space with $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle_E) h_2 \rangle_H$.

Similarly, given two correspondences *E* and *F* over *M*, we can form the (internal) tensor product $E \otimes F$ by setting

$$\langle e_1 \otimes f_1, e_2 \otimes f_2 \rangle = \langle f_1, \varphi(\langle e_1, e_2 \rangle_E) f_2 \rangle_F$$

 $\varphi_{E \otimes F}(a)(e \otimes f)b = \varphi_E(a)e \otimes fb$

and applying an appropriate completion. In particular we get "tensor powers" $E^{\otimes k}$.

Also, given a sequence $\{E_k\}$ of correspondences over M, the direct sum $E_1 \oplus E_2 \oplus E_3 \oplus \cdots$ is also a correspondence (after an appropriate completion).

For a correspondence E over M we define the Fock correspondence

$$\mathcal{F}(E) := M \oplus E \oplus E^{\otimes 2} \oplus E^{\otimes 3} \oplus \cdots$$

For every $a \in M$ define the operator $\varphi_{\infty}(a)$ on $\mathcal{F}(E)$ by

$$\varphi_{\infty}(a)(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = (\varphi(a)\xi_1) \otimes \xi_2 \otimes \cdots \otimes \xi_n$$

and $\varphi_{\infty}(a)b = ab$. For $\xi \in E$, define the "shift" (or "creation") operator T_{ξ} by

$$T_{\xi}(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n.$$

and $T_{\xi}b = \xi b$. So that T_{ξ} maps $E^{\otimes k}$ into $E^{\otimes (k+1)}$.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Definition

- The norm-closed algebra generated by φ_∞(M) and {T_ξ : ξ ∈ E} will be called the **tensor algebra** of E and denoted T₊(E).
- (2) The ultra-weak closure of $\mathcal{T}_+(E)$ will be called the **Hardy** algebra of *E* and denoted $H^{\infty}(E)$.

Examples

1. If
$$M = E = \mathbb{C}$$
, $\mathcal{F}(E) = \ell^2$, $\mathcal{T}_+(E) = A(\mathbb{D})$ and $H^{\infty}(E) = H^{\infty}(\mathbb{D})$.

2. If $M = \mathbb{C}$ and $E = \mathbb{C}^d$ then $\mathcal{F}(E) = \ell^2(\mathbb{F}_d^+)$, $\mathcal{T}_+(E)$ is Popescu's \mathcal{A}_d and $H^{\infty}(E)$ is F_d^{∞} (Popescu) or \mathcal{L}_d (Davidson-Pitts). These algebras are generated by d shifts.

Representations

Theorem

Every completely contractive representation of $\mathcal{T}_+(E)$ on H is given by a pair (σ, \mathfrak{z}) where

- σ is a normal representation of M on $H = H_{\sigma}$. ($\sigma \in NRep(M)$)
- **2** $\mathfrak{z}: E \otimes_{\sigma} H \to H$ is a contraction that satisfies

 $\mathfrak{z}(\varphi(\cdot)\otimes I_H)=\sigma(\cdot)\mathfrak{z}.$

We write $\sigma \times \mathfrak{z}$ for the representation and we have $(\sigma \times \mathfrak{z})(\varphi_{\infty}(a)) = \sigma(a)$ and $(\sigma \times \mathfrak{z})(T_{\xi})h = \mathfrak{z}(\xi \otimes h)$ for $a \in M$, $\xi \in E$ and $h \in H$.

Write $\mathcal{I}(E, \sigma)$ for the intertwining space and $\mathbb{D}(E, \sigma)$ for the open unit ball there. Thus the c.c. representations of the tensor algebra are parameterized by the family $\{\overline{\mathbb{D}(E, \sigma)}\}_{\sigma \in NBep(M)}$; is the second s

Examples

- (1) $M = E = \mathbb{C}$. So $\mathcal{T}_+(E) = A(\mathbb{D})$, σ is the trivial representation on H, $E \otimes H = H$ and $\mathbb{D}(E, \sigma)$ is the (open) unit ball in $B(H_{\sigma})$.
- (2) M = C, E = C^d. T₊(E) = A_d (Popescu's algebra) and D(E, σ) is the (open) unit ball in B(C^d ⊗ H, H). Thus the c.c. representations are parameterized by row contractions (T₁,..., T_d).
- (3) *M* general, $E =_{\alpha} M$ for an automorphism α . $\mathcal{T}_{+}(E) =$ the analytic crossed product. The intertwining space can be identified with $\{X \in B(H) : \sigma(\alpha(T))X = X\sigma(T), T \in B(H)\}$ and the c.c. representations are $\sigma \times \mathfrak{z}$ where \mathfrak{z} is a contraction there.

Representations of $H^{\infty}(E)$

The representations of $H^{\infty}(E)$ are given by the representations of $\mathcal{T}_{+}(E)$ that extend to an ultraweakly continuous representations of $H^{\infty}(E)$.

For a given σ , we write $\mathcal{AC}(E, \sigma)$ for the set of all $\mathfrak{z} \in \overline{\mathbb{D}(E, \sigma)}$ such that $\sigma \times \mathfrak{z}$ is a representation of $H^{\infty}(E)$.

We have

Theorem

$$\mathbb{D}(E,\sigma) \subseteq \mathcal{AC}(E,\sigma) \subseteq \overline{\mathbb{D}(E,\sigma)}.$$

Example

When $M = E = \mathbb{C}$, $H^{\infty}(E) = H^{\infty}(\mathbb{D})$ and $\mathcal{AC}(E, \sigma)$ is the set of all contractions in $B(H_{\sigma})$ that have an H^{∞} -functional calculus.

Fix σ . Given $\mathfrak{z} \in \mathcal{AC}(E, \sigma)$ and $X \in H^{\infty}(E)$, we write $\widehat{X}(\mathfrak{z}) = (\sigma \times \mathfrak{z})(X).$

In this way we view elements of $H^{\infty}(E)$ as (operator valued) functions (on $\mathcal{AC}(E, \sigma)$). (If σ is not fixed, we write $\widehat{X_{\sigma}}$ instead of \widehat{X} .)

NP for homomorphisms

From now on we consider the following **SETUP**.

M is a *W*^{*}-algebra and $M_0 \subseteq M$ is a sub *W*^{*}-algebra. Let *E* be a *W*^{*}-correspondence over *M* and *F* is a *W*^{*}-correspondence over M_0 . Fix a normal representation σ of *M* and σ_0 is the restriction of σ to M_0 .

Then

Every completely contractive ultraweakly continuous homomorphism $\alpha : H^{\infty}(F) \to H^{\infty}(E)$ that maps $\varphi_{F\infty}(a)$ to $\varphi_{E\infty}(a) \ (a \in M_0)$ gives rise to a map from the c.c. uw-c representations of $H^{\infty}(E)$ to the c.c. uw-c representations of $H^{\infty}(F)$ (by composition). I. e.,

$$\sigma \times \mathfrak{z} \mapsto (\sigma \times \mathfrak{z}) \circ \alpha = \sigma_0 \times \mathfrak{w}$$

where $\mathfrak{z} \in \mathcal{AC}(E, \sigma)$ and $\mathfrak{w} \in \mathcal{AC}(F, \sigma_0)$. What can be said about the map $Z : \mathfrak{z} \mapsto \mathfrak{w}$?

Theorem

Suppose that n distinct points $\mathfrak{z}_1, \ldots, \mathfrak{z}_n$ are given in $\mathbb{D}(E, \sigma)$ and n points $\mathfrak{w}_1, \ldots, \mathfrak{w}_n$ are given in $\mathcal{I}(F, \sigma_0)$. Define the map Φ_η on $M_n(\sigma(M)')$ by the formula $\Phi_\mathfrak{z}((\mathfrak{a}_{ij})) = (\mathfrak{z}_i(I_E \otimes \mathfrak{a}_{ij})\mathfrak{z}_j^*)$ and, similarly, $\Phi_\mathfrak{w}((\mathfrak{a}_{ij})) = (\mathfrak{w}_i(I_F \otimes \mathfrak{a}_{ij})\mathfrak{w}_j^*)$ (on $M_n(\sigma_0(M_0))'$). Then the Pick operator $P := (I - \Phi_\mathfrak{w}) \circ (I - \Phi_\mathfrak{z})^{-1}$ is completely positive if and only if there is a completely contractive homomorphism $\alpha : \mathcal{T}_+(F) \to H^\infty(E)$ such that $\alpha(\varphi_{F\infty}(\mathfrak{a})) = \varphi_{E\infty}(\mathfrak{a})$ for $\mathfrak{a} \in M_0$ and, for every $X \in \mathcal{T}_+(F)$, $\widehat{\alpha(X)}(\mathfrak{z}_i) = \widehat{X}(\mathfrak{w}_i)$

(Equivalently, Z maps \mathfrak{z}_j to \mathfrak{w}_j). for every $1 \leq j \leq n$. Moreover, if $\mathfrak{w}_j \in \mathcal{AC}(F, \sigma_0)$ and $(I - r\Phi_{\mathfrak{w}}) \circ (I - \Phi_{\mathfrak{z}})^{-1}$ is completely positive for some r > 1, then α extends to a completely contractive ultraweakly homomorphism on $H^{\infty}(F)$.

Theorem

Let H be a Hilbert space and fix an operator $b \in B(H)$ that has an H^{∞} -calculus (e.g. ||b|| < 1) and a row contraction $A = (a_1, \ldots, a_d)$ where all a_i are operators in B(H). Then the following statements are equivalent.

- (1) There are functions f_1, \ldots, f_d in $H^{\infty}(\mathbb{D})$ such that $\sum_k |f_k|^2 \le 1$ and, for every k, $f_k(b) = a_k$.
- (2) Whenever p ≥ 1 and x = (x_{ij}), in M_p(B(H)), satisfies
 x ≥ 0, (bx_{ij}b^{*}) ≤ x and (bⁿx_{ij}b^{*n}) ↘ 0, we have
 $\sum_{k} (a_{k}x_{ij}a_{k}^{*}) ≤ x.$ If ||b|| < 1, the condition (bⁿx_{ij}b^{*n}) → 0 (in (2)) is automatic
 and (1) and (2) are also equivalent to
- 3 (3) The map $(id AdA) \circ (id Adb)^{-1} : B(H) \rightarrow B(H)$ is completely positive.

In particular, condition (2) (or (3)) implies that all the a_k 's are contained in the ultraweakly closed algebra generated by b (since this, clearly, follows from (1)).

The proof: Let $M = M_0 = \mathbb{C}$, $F = \mathbb{C}^d$, $E = \mathbb{C}$ (for $d < \infty$) and σ is the representation of \mathbb{C} on a Hilbert space H. It follows that $\mathcal{I}(E,\sigma) = B(H)$ and $\mathcal{I}(F,\sigma_0) = B(\mathbb{C}^d \otimes H, H)$. We apply the theorem to this case. Since $\mathcal{T}_+(F)$ is the algebra $\mathcal{T}_+(\mathbb{C}^d)$, generated by the d shifts, S_1, \ldots, S_d on the Fock space of \mathbb{C}^d , and $H^{\infty}(E) = H^{\infty}(\mathbb{D})$, the existence of a unital completely contractive homomorphism α from $\mathcal{T}_{+}(F)$ to $H^{\infty}(E)$ is equivalent to the existence of a row contraction of elements in $H^{\infty}(\mathbb{D})$, (f_1, \ldots, f_d) (where $\alpha(S_i) = f_i$). The condition $\widehat{\alpha(X)}(\mathfrak{z}) = \widehat{X}(\mathfrak{w})$ in the theorem (note that m = 1here), when applied to $X = S_i$, $\mathfrak{z} = b$ and $\mathfrak{w} = A$, is $f_i(b) = a_i$. Note also that $\Phi_n = Adb$ (i.e. $\Phi_n(x) = bxb^*$) and $\Phi_{\mathcal{E}}(x) = AdA(x) = \sum_{i=1}^{d} a_i x a_i^*.$ Thus, applying the theorem , completes the proof.

Theorem

Let H_0 and H_1 be two Hilbert spaces and fix $b \in B(H_1)$ and $A = (a_1, \ldots, a_d)$ with $a_i \in B(H_0 \otimes H_1)$ and such that ||b|| < 1. Then the following statements are equivalent.

- (1) There are f_1, \ldots, f_d in $H^{\infty}(\mathbb{D}, B(H_0))$ such that $\sum_k f_k f_k^* \leq I$ and such that, for every k, $\widehat{f_k}(b) = a_k$.
- 2 (2) For every $p \ge 1$ and $x = (x_{ij}) \ge 0$ in $M_p(B(H_1))$ that satisfies $(bx_{ij}b^*) \le x$, we have $\sum_k (a_k(I_{H_0} \otimes x_{ij})a_k^*) \le I_{H_0} \otimes x$.

Schur class maps

For $\mathfrak{z}, \mathfrak{w} \in \mathbb{D}(E, \sigma)$ we write $\theta_{\mathfrak{z},\mathfrak{w}} : \sigma(M)' \to \sigma(M)'$ for the map $\theta_{\mathfrak{z},\mathfrak{w}}(a) = \mathfrak{z}(I_E \otimes a)\mathfrak{w}^*$.

Definition

A map $Z : \Omega \subseteq \mathbb{D}(E, \sigma) \to \mathcal{I}(F, \sigma_0)$ is said to be a **Schur class** map if the kernel

$$k_Z(\mathfrak{z},\mathfrak{w}) = (\mathit{id} - heta_{Z(\mathfrak{z}),Z(\mathfrak{w})}) \circ (\mathit{id} - heta_{\mathfrak{z},\mathfrak{z}})^{-1}$$

is a CP kernel; i.e., for every $\mathfrak{z}_1, \ldots, \mathfrak{z}_k \in \Omega$, the map from $M_k(\sigma(M)')$ to $M_k(\sigma_0(M_0)')$ defined by the $k \times k$ matrix of maps

$$(id - \theta_{Z(\mathfrak{z}_i), Z(\mathfrak{z}_j)}) \circ (id - \theta_{\mathfrak{z}_i, \mathfrak{z}_j})^{-1}$$

is completely positive.

Theorem

Let M, M_0 , E, F, σ and σ_0 be as above with σ faithful. Suppose Ω is a subset of $\mathbb{D}(E, \sigma)$ and $Z : \Omega \to \mathcal{I}(F, \sigma_0)$ is a **Schur class map**. Then there is a Hilbert space H and a normal representation τ of $\sigma(M)'$ on H and operators A, B, C and D satisfying appropriate intertwining properties and such that the operator matrix

$$W = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \begin{pmatrix} H \\ F \otimes_{\sigma_0} H_{\sigma} \end{pmatrix} \rightarrow \begin{pmatrix} \mathcal{I}(E, \sigma)^* \otimes_{\tau} H \\ H_{\sigma} \end{pmatrix}$$

is a co-isometry (and, if E is full, it is a unitary operator) and, for every $\mathfrak{z} \in \Omega$, Z satisfies the realization formula

$$Z(\mathfrak{z})=D+C(I-\mathfrak{z}A)^{-1}\mathfrak{z}B.$$

Theorem

Suppose *E* is a full *W*^{*}-correspondence over the *W*^{*}-algebra *M* and *F*, *M*₀, σ and σ_0 be as above with σ faithful. Suppose $Z : \mathbb{D}(E, \sigma) \to \mathcal{I}(F, \sigma_0)$ has the **realization property** (in particular, if it is a Schur class map). Then **there is a completely contractive homomorphism** $\alpha : \mathcal{T}_+(F) \to H^{\infty}(E)$ such that, for every $X \in \mathcal{T}_+(F)$ and every $\mathfrak{z} \in \mathbb{D}(E, \sigma)$,

$$\widehat{\alpha(X)}(\mathfrak{z}) = \widehat{X}(Z(\mathfrak{z}))$$

Theorem

With $M, M_0, E, F, \sigma, \sigma_0$ as above, if $\alpha : \mathcal{T}_+(F) \to H^{\infty}(E)$ is a **completely contractive homomorphism** whose restriction to $\varphi_{F\infty}(M_0)$ maps $\varphi_{F\infty}(a)$ to $\varphi_{E\infty}(a)$ $(a \in M_0)$ then there is a Schur class function $Z : \mathbb{D}(E^{\sigma}) \to \mathcal{I}(F, \sigma_0)$ such that for every $X \in \mathcal{T}_+(F)$ and every $\mathfrak{z} \in \mathbb{D}(E, \sigma)$,

$$\widehat{\alpha(X)}(\mathfrak{z}) = \widehat{X}(Z(\mathfrak{z})).$$

Corollary

Every Schur class map Z_0 defined on a finite subset of $\mathbb{D}(E, \sigma)$ can be extended to a Schur class map on $\mathbb{D}(E, \sigma)$.

Consider all representations: Matricial maps

Given $X \in H^{\infty}(E)$, we define a family $\{\widehat{X}_{\sigma}\}_{\sigma \in NRep(M)}$ of (operator valued) functions. Each function \widehat{X}_{σ} is defined on $\mathcal{AC}(E, \sigma)$ (or on $\mathbb{D}(E, \sigma)$) and takes values in $B(H_{\sigma})$:

 $\widehat{X}_{\sigma}(\mathfrak{z}) = (\sigma \times \mathfrak{z})(X).$

Here NRep(M) is the set of all normal representations of M. Note that the family of domains (either $\{\mathcal{AC}(\sigma)\}\$ or $\{\mathbb{D}(E,\sigma)\}$) is a matricial family in the following sense.

Definition

A family of sets $\{\mathcal{U}(\sigma)\}_{\sigma \in NRep(M)}$, with $\mathcal{U}(\sigma) \subseteq \mathcal{I}(E, \sigma)$, satisfying $\mathcal{U}(\sigma) \oplus \mathcal{U}(\tau) \subseteq \mathcal{U}(\sigma \oplus \tau)$ is called a *matricial family* of sets.

Representations

Definition

Suppose $\{\mathcal{U}(\sigma)\}_{\sigma \in NRep(M)}$ is a matricial family of sets and suppose that for each $\sigma \in NRep(M)$, $f_{\sigma} : \mathcal{U}(\sigma) \to B(H_{\sigma})$ is a function. We say that $f := \{f_{\sigma}\}_{\sigma \in NRep(M)}$ is a matricial family of functions in case

$$Cf_{\sigma}(\mathfrak{z}) = f_{\tau}(\mathfrak{w})C$$
 (1)

for every $\mathfrak{z} \in \mathcal{U}(\sigma)$, every $\mathfrak{w} \in \mathcal{U}(\tau)$ and every $C \in \mathcal{I}(\sigma \times \mathfrak{z}, \tau \times \mathfrak{w})$ (equivalently, $C \in \mathcal{I}(\sigma, \tau)$ and $C\mathfrak{z} = \mathfrak{w}(I_E \otimes C)$).

Theorem

Suppose that $f = \{f_{\sigma}\}_{\sigma}$ is a family of maps, with $f_{\sigma} : \mathcal{AC}(E, \sigma) \to \mathcal{AC}(F, \sigma_0)$. Then f is a matricial family of maps (that is, preserves intertwiners) if and only if there is an ultraweakly continuous homomorphism $\alpha : H^{\infty}(F) \to H^{\infty}(E)$ such that for every $\mathfrak{z} \in \mathcal{AC}(E, \sigma)$ and every $X \in H^{\infty}(F)$,

$$\widehat{\alpha(X)}(\mathfrak{z}) = \widehat{X}(f_{\sigma}(\mathfrak{z})).$$
⁽²⁾

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank You !