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Introduction

Given two operator algebras A and B, every completely contractive
homomorphism α : A → B induces a map Z from the (c.c)
representations of B to the (c.c.) representations of A by
composition.

For the class of Hardy algebras associated with correspondences we
can describe the set of (c.c) representations.

We use this to study the some of the properties of Z when A and
B are such Hardy algebras.
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Preliminaries

For the basic constructs we need the following setup:

� M - a W ∗-algebra.

� E - a W ∗-correspondence over M. This means that E is a
bimodule over M which is endowed with an M-valued inner
product (making it a right-Hilbert C ∗-module that is self
dual). The left action of M on E is given by a unital, normal,
∗-homomorphism ϕ of M into the (W ∗-) algebra of all
bounded adjointable operators L(E ) on E .
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Examples

• (Basic Example) M = C, E = Cd , d ≥ 1.

• G = (G 0,G 1, r , s)- a finite directed graph. M = `∞(G 0),
E = `∞(G 1), aξb(e) = a(r(e))ξ(e)b(s(e)) , a, b ∈ M,ξ ∈ E
〈ξ, η〉(v) =

∑
s(e)=v ξ(e)η(e), ξ, η ∈ E .

• M- arbitrary , α : M → M a normal unital, endomorphism.
E = M with right action by multiplication, left action by
ϕ = α and inner product 〈ξ, η〉 := ξ∗η. Denote it αM.

• Φ is a normal, contractive, CP map on M. E = M ⊗Φ M is
the completion of M ⊗M with 〈a⊗ b, c ⊗ d〉 = b∗Φ(a∗c)d
and c(a⊗ b)d = ca⊗ bd .

Note: If σ is a representation of M on H, E ⊗σ H is a Hilbert
space with 〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉E )h2〉H .
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Similarly, given two correspondences E and F over M, we can form
the (internal) tensor product E ⊗ F by setting

〈e1 ⊗ f1, e2 ⊗ f2〉 = 〈f1, ϕ(〈e1, e2〉E )f2〉F
ϕE⊗F (a)(e ⊗ f )b = ϕE (a)e ⊗ fb

and applying an appropriate completion.
In particular we get “tensor powers” E⊗k .

Also, given a sequence {Ek} of correspondences over M, the direct
sum E1 ⊕ E2 ⊕ E3 ⊕ · · · is also a correspondence (after an
appropriate completion).
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For a correspondence E over M we define the Fock correspondence

F(E ) := M ⊕ E ⊕ E⊗2 ⊕ E⊗3 ⊕ · · ·

For every a ∈ M define the operator ϕ∞(a) on F(E ) by

ϕ∞(a)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = (ϕ(a)ξ1)⊗ ξ2 ⊗ · · · ⊗ ξn

and ϕ∞(a)b = ab.
For ξ ∈ E , define the “shift” (or “creation”) operator Tξ by

Tξ(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn.

and Tξb = ξb. So that Tξ maps E⊗k into E⊗(k+1).
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Definition

(1) The norm-closed algebra generated by ϕ∞(M) and
{Tξ : ξ ∈ E} will be called the tensor algebra of E and
denoted T+(E ).

(2) The ultra-weak closure of T+(E ) will be called the Hardy
algebra of E and denoted H∞(E ).

Examples

1. If M = E = C, F(E ) = `2, T+(E ) = A(D) and
H∞(E ) = H∞(D).

2. If M = C and E = Cd then F(E ) = `2(F+
d ), T+(E ) is

Popescu’s Ad and H∞(E ) is F∞d (Popescu) or Ld
(Davidson-Pitts). These algebras are generated by d shifts.
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Representations

Theorem

Every completely contractive representation of T+(E ) on H is
given by a pair (σ, z) where

1 σ is a normal representation of M on H = Hσ.
(σ ∈ NRep(M))

2 z : E ⊗σ H → H is a contraction that satisfies

z(ϕ(·)⊗ IH) = σ(·)z.

We write σ × z for the representation and we have
(σ × z)(ϕ∞(a)) = σ(a) and (σ × z)(Tξ)h = z(ξ ⊗ h) for a ∈ M,
ξ ∈ E and h ∈ H.

Write I(E , σ) for the intertwining space and D(E , σ) for the open
unit ball there. Thus the c.c. representations of the tensor algebra
are parameterized by the family {D(E , σ)}σ∈NRep(M).
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Examples

(1) M = E = C. So T+(E ) = A(D), σ is the trivial representation
on H, E ⊗ H = H and D(E , σ) is the (open) unit ball in
B(Hσ).

(2) M = C, E = Cd . T+(E ) = Ad (Popescu’s algebra) and
D(E , σ) is the (open) unit ball in B(Cd ⊗ H,H). Thus the
c.c. representations are parameterized by row contractions
(T1, . . . ,Td).

(3) M general, E =α M for an automorphism α.
T+(E ) = the analytic crossed product.
The intertwining space can be identified with
{X ∈ B(H) : σ(α(T ))X = Xσ(T ),T ∈ B(H)} and the c.c.
representations are σ × z where z is a contraction there.
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Representations of H∞(E )
The representations of H∞(E ) are given by the representations of
T+(E ) that extend to an ultraweakly continuous representations of
H∞(E ).
For a given σ, we write AC(E , σ) for the set of all z ∈ D(E , σ)
such that σ × z is a representation of H∞(E ).
We have

Theorem

D(E , σ) ⊆ AC(E , σ) ⊆ D(E , σ).

Example

When M = E = C, H∞(E ) = H∞(D) and AC(E , σ) is the set of
all contractions in B(Hσ) that have an H∞-functional calculus.
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Fix σ. Given z ∈ AC(E , σ) and X ∈ H∞(E ), we write

X̂ (z) = (σ × z)(X ).

In this way we view elements of H∞(E ) as (operator valued)
functions (on AC(E , σ)).

(If σ is not fixed, we write X̂σ instead of X̂ .)
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NP for homomorphisms

From now on we consider the following SETUP.
M is a W ∗-algebra and M0 ⊆ M is a sub W ∗-algebra. Let E be a
W ∗-correspondence over M and F is a W ∗-correspondence over
M0. Fix a normal representation σ of M and σ0 is the restriction
of σ to M0.
Then
Every completely contractive ultraweakly continuous
homomorphism α : H∞(F )→ H∞(E ) that maps ϕF∞(a) to
ϕE∞(a) (a ∈ M0) gives rise to a map from the c.c. uw-c
representations of H∞(E ) to the c.c. uw-c representations of
H∞(F ) (by composition). I. e.,

σ × z 7→ (σ × z) ◦ α = σ0 ×w

where z ∈ AC(E , σ) and w ∈ AC(F , σ0). What can be said
about the map Z : z 7→ w?
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Theorem

Suppose that n distinct points z1, . . . , zn are given in D(E , σ) and
n points w1, . . . ,wn are given in I(F , σ0). Define the map Φη on
Mn(σ(M)′) by the formula Φz((aij)) = (zi (IE ⊗ aij)z

∗
j ) and,

similarly, Φw((aij)) = (wi (IF ⊗ aij)w
∗
j ) (on Mn(σ0(M0))′).

Then the Pick operator P := (I − Φw) ◦ (I − Φz)
−1 is completely

positive if and only if there is a completely contractive
homomorphism α : T+(F )→ H∞(E ) such that
α(ϕF∞(a)) = ϕE∞(a) for a ∈ M0 and, for every X ∈ T+(F ),

α̂(X )(zj) = X̂ (wj)

(Equivalently, Z maps zj to wj).
for every 1 ≤ j ≤ n. Moreover, if wj ∈ AC(F , σ0) and
(I − rΦw) ◦ (I − Φz)

−1 is completely positive for some r > 1, then
α extends to a completely contractive ultraweakly homomorphism
on H∞(F ).
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Theorem

Let H be a Hilbert space and fix an operator b ∈ B(H) that has an
H∞-calculus (e.g. ||b|| < 1) and a row contraction
A = (a1, . . . , ad) where all ai are operators in B(H). Then the
following statements are equivalent.

1 (1) There are functions f1, . . . , fd in H∞(D) such that∑
k |fk |2 ≤ 1 and, for every k, fk(b) = ak .

2 (2) Whenever p ≥ 1 and x = (xij), in Mp(B(H)), satisfies
x ≥ 0, (bxijb

∗) ≤ x and (bnxijb
∗n)↘ 0, we have∑

k(akxija
∗
k) ≤ x.

If ||b|| < 1, the condition (bnxijb
∗n)→ 0 (in (2)) is automatic

and (1) and (2) are also equivalent to

3 (3) The map (id − AdA) ◦ (id − Adb)−1 : B(H)→ B(H) is
completely positive.

In particular, condition (2) (or (3)) implies that all the ak ’s are
contained in the ultraweakly closed algebra generated by b (since
this, clearly, follows from (1)).
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The proof: Let M = M0 = C, F = Cd , E = C (for d <∞) and σ
is the representation of C on a Hilbert space H. It follows that
I(E , σ) = B(H) and I(F , σ0) = B(Cd ⊗ H,H).
We apply the theorem to this case.
Since T+(F ) is the algebra T+(Cd), generated by the d shifts,
S1, . . . ,Sd on the Fock space of Cd , and H∞(E ) = H∞(D), the
existence of a unital completely contractive homomorphism α from
T+(F ) to H∞(E ) is equivalent to the existence of a row
contraction of elements in H∞(D), (f1, . . . , fd) (where α(Si ) = fi ).

The condition α̂(X )(z) = X̂ (w) in the theorem (note that m = 1
here), when applied to X = Si , z = b and w = A , is fi (b) = ai .
Note also that Φη = Adb (i.e. Φη(x) = bxb∗) and

Φξ(x) = AdA(x) =
∑d

i=1 aixa∗i .
Thus, applying the theorem , completes the proof.
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Theorem

Let H0 and H1 be two Hilbert spaces and fix b ∈ B(H1) and
A = (a1, . . . , ad) with ai ∈ B(H0 ⊗ H1) and such that ||b|| < 1
.Then the following statements are equivalent.

1 (1) There are f1, . . . , fd in H∞(D,B(H0)) such that∑
k fk f ∗k ≤ I and such that, for every k, f̂k(b) = ak .

2 (2) For every p ≥ 1 and x = (xij) ≥ 0 in Mp(B(H1)) that
satisfies (bxijb

∗) ≤ x, we have
∑

k(ak(IH0 ⊗ xij)a∗k) ≤ IH0 ⊗ x.
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Schur class maps

For z,w ∈ D(E , σ) we write θz,w : σ(M)′ → σ(M)′ for the map
θz,w(a) = z(IE ⊗ a)w∗.

Definition

A map Z : Ω ⊆ D(E , σ)→ I(F , σ0) is said to be a Schur class
map if the kernel

kZ (z,w) = (id − θZ(z),Z(w)) ◦ (id − θz,z)−1

is a CP kernel; i.e., for every z1, . . . , zk ∈ Ω, the map from
Mk(σ(M)′) to Mk(σ0(M0)′) defined by the k × k matrix of maps

(id − θZ(zi ),Z(zj )) ◦ (id − θzi ,zj )
−1

is completely positive.
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Theorem

Let M, M0, E , F , σ and σ0 be as above with σ faithful. Suppose
Ω is a subset of D(E , σ) and Z : Ω→ I(F , σ0) is a Schur class
map. Then there is a Hilbert space H and a normal representation
τ of σ(M)′ on H and operators A,B,C and D satisfying
appropriate intertwining properties and such that
the operator matrix

W =

(
A B
C D

)
:

(
H

F ⊗σ0 Hσ

)
→
(
I(E , σ)∗ ⊗τ H

Hσ

)
is a co-isometry (and, if E is full, it is a unitary operator) and, for
every z ∈ Ω, Z satisfies the realization formula

Z (z) = D + C (I − zA)−1zB.
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Theorem

Suppose E is a full W ∗-correspondence over the W ∗-algebra M
and F , M0, σ and σ0 be as above with σ faithful. Suppose
Z : D(E , σ)→ I(F , σ0) has the realization property (in
particular, if it is a Schur class map). Then there is a completely
contractive homomorphism α : T+(F )→ H∞(E ) such that, for
every X ∈ T+(F ) and every z ∈ D(E , σ),

α̂(X )(z) = X̂ (Z (z))
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Theorem

With M,M0,E ,F , σ, σ0 as above, if α : T+(F )→ H∞(E ) is a
completely contractive homomorphism whose restriction to
ϕF∞(M0) maps ϕF∞(a) to ϕE∞(a) (a ∈ M0) then there is a
Schur class function Z : D(Eσ)→ I(F , σ0) such that for every
X ∈ T+(F ) and every z ∈ D(E , σ),

α̂(X )(z) = X̂ (Z (z)).

Corollary

Every Schur class map Z0 defined on a finite subset of D(E , σ) can
be extended to a Schur class map on D(E , σ).
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Consider all representations: Matricial maps

Given X ∈ H∞(E ), we define a family {X̂σ}σ∈NRep(M) of (operator
valued) functions.
Each function X̂σ is defined on AC(E , σ) (or on D(E , σ)) and
takes values in B(Hσ) :

X̂σ(z) = (σ × z)(X ).

Here NRep(M) is the set of all normal representations of M.
Note that the family of domains (either {AC(σ)} or {D(E , σ)}) is
a matricial family in the following sense.

Definition

A family of sets {U(σ)}σ∈NRep(M), with U(σ) ⊆ I(E , σ), satisfying
U(σ)⊕ U(τ) ⊆ U(σ ⊕ τ) is called a matricial family of sets.
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Definition

Suppose {U(σ)}σ∈NRep(M) is a matricial family of sets and suppose
that for each σ ∈ NRep(M), fσ : U(σ)→ B(Hσ) is a function. We
say that f := {fσ}σ∈NRep(M) is a matricial family of functions in
case

Cfσ(z) = fτ (w)C (1)

for every z ∈ U(σ), every w ∈ U(τ) and every C ∈ I(σ × z, τ ×w)
(equivalently, C ∈ I(σ, τ) and C z = w(IE ⊗ C )).

Theorem

Suppose that f = {fσ}σ is a family of maps, with
fσ : AC(E , σ)→ AC(F , σ0). Then f is a matricial family of maps
(that is, preserves intertwiners) if and only if there is an
ultraweakly continuous homomorphism α : H∞(F )→ H∞(E ) such
that for every z ∈ AC(E , σ) and every X ∈ H∞(F ),

α̂(X )(z) = X̂ (fσ(z)). (2)
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Thank You !
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