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Introduction

Introduction

Given two operator algebras A and B, every completely contractive
homomorphism « : A — B induces a map Z from the (c.c)
representations of B to the (c.c.) representations of .4 by
composition.

For the class of Hardy algebras associated with correspondences we
can describe the set of (c.c) representations.

We use this to study the some of the properties of Z when A and
B are such Hardy algebras.



The Hardy algebras

Preliminaries

For the basic constructs we need the following setup:

o M - a W*-algebra.

o E - a W*-correspondence over M. This means that E is a
bimodule over M which is endowed with an M-valued inner
product (making it a right-Hilbert C*-module that is self
dual). The left action of M on E is given by a unital, normal,
*-homomorphism ¢ of M into the (W*-) algebra of all
bounded adjointable operators L(E) on E.



Examples

e (Basic Example) M =C, E=C9, d > 1.

e G =(G°% G, r,s)- a finite directed graph. M = ¢>°(G"),
E = >°(G"), a¢b(e) = a(r(e))é(e)b(s(e)) , a,be M € E
Em(v) = Xse)=v E(e)nle). & € E.

e M- arbitrary , & : M — M a normal unital, endomorphism.
E = M with right action by multiplication, left action by
© = « and inner product (£,n) := £*n. Denote it , M.

e ® is a normal, contractive, CP mapon M. E = M ®¢ M is
the completion of M ® M with (a® b, c ® d) = b*®(a*c)d
and c(a® b)d = ca® bd.

Note: If o is a representation of M on H, E ®, H is a Hilbert
space with (§1 ® h1,& @ h2) = (h1, 0((€1,&2)E) 2) -



The Hardy algebras

Similarly, given two correspondences E and F over M, we can form
the (internal) tensor product E ® F by setting

(a1 ® f,e0 @ h) = (f,p((e1, &2)E)R)F
veeF(a)(e® f)b= pe(a)e® fb

and applying an appropriate completion.
In particular we get “tensor powers’ E®K.

Also, given a sequence {Eg} of correspondences over M, the direct
sum E; @ E; @ E3 @ -+ is also a correspondence (after an
appropriate completion).



The Hardy algebras

For a correspondence E over M we define the Fock correspondence
FE)=MoEOE®?oESg...
For every a € M define the operator po.(a) on F(E) by
poo(a)(E1® L@ - ®&) = (p(a)e) L ® - @&

and poo(a)b = ab.
For £ € E, define the “shift” (or “creation”) operator T by

T(1®60 - ®E6)=(06HR6L® - ®&,

and T¢b = £b. So that T¢ maps E®K into E®(k+1),



Definition

(1) The norm-closed algebra generated by ¢ (M) and
{T¢ : £ € E} will be called the tensor algebra of E and

denoted 75 (E).

(2) The ultra-weak closure of 71(E) will be called the Hardy
algebra of E and denoted H*(E).

1. fM=E=C, F(E) =, T,(E) = A(D) and
H>(E) = H>*(D).

2. If M =C and E = C? then F(E) = (3(F}), T-(E) is
Popescu's Ay and H*(E) is F3° (Popescu) or Ly
(Davidson-Pitts). These algebras are generated by d shifts.
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Representations

Theorem

Every completely contractive representation of T (E) on H is
given by a pair (o,3) where

© o is a normal representation of M on H = H,.
(o € NRep(M))

@ ;: E®, H— H is a contraction that satisfies

3(0() ® In) = o(-)3.

We write o X 3 for the representation and we have
(0 x3)(poc(a)) = 0(a) and (o x 3)(Te)h = 3(§ ® h) for a e M,
Ee€EandheH.

Write Z(E, o) for the intertwining space and D(E, o) for the open
unit ball there. Thus the c.c. representations of the tensor algebra
are parameterized by the family {D(E, o)} senrep(m)-




Representations

(1) M=E =C. So T+(E) = A(D), o is the trivial representation
on H, E® H=H and D(E, o) is the (open) unit ball in
B(H,).

(2) M=C, E=C? T.(E) = Ay (Popescu’s algebra) and
D(E, o) is the (open) unit ball in B(CY ® H, H). Thus the
c.C. representations are parameterized by row contractions
(T1,..., Tq).

(3) M general, E =4, M for an automorphism c.

T+ (E) = the analytic crossed product.

The intertwining space can be identified with

{XeB(H): o(a(T))X = Xo(T), T € B(H)} and the c.c.
representations are o x 3 where 3 is a contraction there.




Representations

Representations of H>°(E)

The representations of H*°(E) are given by the representations of
T+(E) that extend to an ultraweakly continuous representations of
H>(E).

For a given o, we write AC(E, o) for the set of all 3 € D(E, o)
such that o x 3 is a representation of H>(E).

We have

Theorem

D(E,o) C AC(E,0) C D(E, o).

| \

Example
When M = E = C, H*(E) = H*(D) and AC(E, o) is the set of
all contractions in B(H,) that have an H*°-functional calculus.




Representations

Fix 0. Given 3 € AC(E, o) and X € H>(E), we write

X(3) = (o x 3)(X).

In this way we view elements of H*>°(E) as (operator valued)
functions (on AC(E, 0)).
(If o is not fixed, we write X, instead of X.)
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NP for homomorphisms

From now on we consider the following SETUP.

M is a W*-algebra and My C M is a sub W*-algebra. Let E be a
W*-correspondence over M and F is a W*-correspondence over
Mjy. Fix a normal representation o of M and oy is the restriction
of o to My.

Then

Every completely contractive ultraweakly continuous
homomorphism a : H>(F) — H>°(E) that maps pr.o(a) to
©YEo(a) (a € Mp) gives rise to a map from the c.c. uw-c
representations of H>°(E) to the c.c. uw-c representations of
H>(F) (by composition). . e.,

ox3(0x3)oa=0p %Xt

where 3 € AC(E, o) and w € AC(F,00). What can be said
about the map Z : 3 — 10?



Homomorphisms

Theorem

Suppose that n distinct points 31, ...,3n are given in D(E, o) and
n points wq, ..., w, are given in Z(F,oq). Define the map , on
Mn(a(M)') by the formula ®;((a;)) = (3:(le ® aj)37) and,
similarly, ®w((a;)) = (w;(lF ® aj)r0}) (on Mp(oo(Mo))')-

Then the Pick operator P := (I — ®y) o (I — ®;)~1 is completely
positive if and only if there is a completely contractive
homomorphism « : T+ (F) — H*>(E) such that

a(pFo(a)) = wE(a) for a € My and, for every X € T (F),

—

a(X)(3;) = X(1))

(Equivalently, Z maps 3; to w;).

for every 1 < j < n. Moreover, if w; € AC(F,09) and

(I — rdy) o (I — ®;)~L is completely positive for some r > 1, then
« extends to a completely contractive ultraweakly homomorphism
on H>®(F).




Homomorphisms

Theorem

Let H be a Hilbert space and fix an operator b € B(H) that has an
H>-calculus (e.g. ||b|| < 1) and a row contraction

A= (a1,...,aq) where all a; are operators in B(H). Then the
following statements are equivalent.

© (1) There are functions fi, ..., fy in H*(D) such that
> |fkl? < 1 and, for every k, f(b) = ax.
@ (2) Whenever p > 1 and x = (xjj), in Mp(B(H)), satisfies
x >0, (bx;ib*) < x and (b"x;;b*") \, 0, we have
> (akxijap) < x.
If ||b]| < 1, the condition (b"x;b*") — 0 (in (2)) is automatic
and (1) and (2) are also equivalent to
© (3) The map (id — AdA) o (id — Adb)~' : B(H) — B(H) is
completely positive.
In particular, condition (2) (or (3)) implies that all the ay’s are
contained in the ultraweakly closed algebra generated by b (since
this, clearly, follows from (1)).
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The proof: Let M =My =C, F = cd E=C (for d < >0) and o
is the representation of C on a Hilbert space H. It follows that
I(E,o) = B(H) and Z(F, 00) = B(CY ® H, H).

We apply the theorem to this case.

Since T(F) is the algebra 7 (C9), generated by the d shifts,
Si,...,S4 on the Fock space of C?, and H®(E) = H®(D), the
existence of a unital completely contractive homomorphism « from
T+(F) to H>®(E) is equivalent to the existence of a row
contraction of elements in H*(D), (f1,..., fy) (where a(S;) = £;).
The condition 04/()?)(3) = X(iv) in the theorem (note that m = 1
here), when applied to X = S;, 5 =band w = A , is fi(b) = a;.
Note also that ®,, = Adb (i.e. ®,(x) = bxb*) and

Pe(x) = AdA(x) = Zflzl ajxar.

Thus, applying the theorem , completes the proof.



Homomorphisms

Let Hy and H; be two Hilbert spaces and fix b € B(H;) and
A= (a1,...,aq) with a; € B(Hy ® H1) and such that ||b|| < 1
. Then the following statements are equivalent.
Q (1) There are fi,. .., fy in H*(D, B(Hp)) such that
>k ffy < | and such that, for every k, fi(b) = ai.
Q (2) For every p > 1 and x = (x;;) > 0 in M,(B(H1)) that
satisfies (bxjjb*) < x, we have Y, (ax(IH, ® xjj)ar) < I, @ x.




Homomorphisms
Schur class maps

For 3,10 € D(E, o) we write 8, : (M) — o(M)’ for the map
0 w(a) = 3(lf @ a)w*.

Definition

A map Z:Q CD(E,o) = Z(F,00) is said to be a Schur class
map if the kernel

kz(3, 1) = (id — 07(;), 7(r0)) © (id — 0;5) "

is a CP kernel; i.e., for every 31,...,3x € Q, the map from
My (a(M)') to My(co(Mp)') defined by the k x k matrix of maps

(id — 92(3,-)72(31)) o (id — 93/:31)_1

is completely positive.




Homomorphisms

Theorem

Let M, My, E, F, o0 and oy be as above with o faithful. Suppose
Q is a subset of D(E, o) and Z : Q — Z(F,00) is a Schur class
map. Then there is a Hilbert space H and a normal representation
7 of o(M)" on H and operators A, B, C and D satisfying
appropriate intertwining properties and such that

the operator matrix

(2 8) () (E )

is a co-isometry (and, if E is full, it is a unitary operator) and, for
every 3 € 0, Z satisfies the realization formula

Z(3) =D+ C(I —3A)"13B.




Homomorphisms

Theorem

Suppose E is a full W*-correspondence over the W*-algebra M
and F, My, o and og be as above with o faithful. Suppose

Z :D(E,o) = Z(F,00) has the realization property (in
particular, if it is a Schur class map). Then there is a completely
contractive homomorphism o : 7 (F) — H*(E) such that, for
every X € Ti(F) and every 3 € D(E, o),

—

a(X)(3) = X(2(3))




Homomorphisms

Theorem

With M, My, E, F, 0,00 as above, if a: TL(F) — H>®(E) is a
completely contractive homomorphism whose restriction to
VFoo(Mo) maps prso(a) to eso(a) (a € My) then there is a
Schur class function Z : D(E?) — Z(F, 09) such that for every
X € T+(F) and every 3 € D(E, 0),

—_—

a(X)(3) = X(Z(3))-

Every Schur class map Z, defined on a finite subset of D(E, o) can
be extended to a Schur class map on D(E, o).




Matricial maps
Consider all representations: Matricial maps

Given X € H*(E), we define a family {)?g}geNRep(M) of (operator
valued) functions.

Each function X, is defined on AC(E, o) (or on D(E, o)) and
takes values in B(H,) :

~

Xo(3) = (o x 3)(X).

Here NRep(M) is the set of all normal representations of M.
Note that the family of domains (either { AC(c0)} or {D(E,o)}) is
a matricial family in the following sense.

Definition

A family of sets {U(0)}senrep(m), With U(c) C I(E, o), satisfying
U(o)dU(T) CU(0 @ 1) is called a matricial family of sets.




Matricial maps

Definition

Suppose {U(0)}scnrep(m) is @ matricial family of sets and suppose
that for each o € NRep(M), f, : U(c) — B(H,) is a function. We
say that f := {f; },cnrep(m) is @ matricial family of functions in
case

Ch,(3) = f(w)C (1)

for every 3 € U(o), every v € U(7) and every C € Z(o X 3,7 X 1)
(equivalently, C € Z(o,7) and C3 = to(/g ® C)).

Theorem

Suppose that f = {f;}, is a family of maps, with

fr : AC(E,o) — AC(F,00). Then f is a matricial family of maps
(that is, preserves intertwiners) if and only if there is an
ultraweakly continuous homomorphism o : H*(F) — H*(E) such
that for every 3 € AC(E,o) and every X € H>®(F),

—

a(X)(3) = X(£(3))- (2)




Matricial maps

Thank You !
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