
Coarse geometry for noncommutative spaces

Tathagata Banerjee

December 20, 2016

Tathagata Banerjee Coarse geometry for noncommutative spaces 1 / 19



Outline

1 Coarse structure and Higson compactification

2 Rieffel deformation and Crossed products

3 Noncommutative coarse equivalence

Tathagata Banerjee Coarse geometry for noncommutative spaces 2 / 19



Outline

1 Coarse structure and Higson compactification

2 Rieffel deformation and Crossed products

3 Noncommutative coarse equivalence

Tathagata Banerjee Coarse geometry for noncommutative spaces 2 / 19



Outline

1 Coarse structure and Higson compactification

2 Rieffel deformation and Crossed products

3 Noncommutative coarse equivalence

Tathagata Banerjee Coarse geometry for noncommutative spaces 2 / 19



What is Coarse Geometry?

Coarse geometry is about the large scale aspect of the topology. On a
space X , it is defined by a collection E of subsets E ⊂ X × X satisfying
certain axioms.

Example

Given a metric space (X , d), there is a natural coarse structure defined by
taking a collection of subsets of X × X generated under the appropriate
axioms of coarse geometry by the subsets Er := {(x , y) : d(x , y) ≤ r} for
all r ≥ 0.

Example

The space of integers Z is equivalent to the space of real numbers R.

Example

Any compact topological space X is equivalent to a point {∗}.
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Compatibility with topology

Definition

A subset B ⊂ X is a bounded set of the coarse structure if there exists a
point x in X such that B × {x} is a controlled set of the coarse structure.

Definition

A coarse structure (X , E) on a paracompact, locally compact Hausdorff
space X is proper if:

1 The bounded sets of the coarse structure are all relatively compact.

2 There exists a countable uniformly bounded open cover of X .

Example

The canonical coarse structure on a metric space (X , d) is proper if and
only if d is a proper metric. Like the Euclidean or hyperbolic metric on
R2n.
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Proper coarse structures and compactifications

Definition

Given a proper coarse structure (X , E) consider functions f ∈ Cb(X ) such
that for df (x , y) := |f (x)− f (y)|, df ∈ C0(E ) for all E ∈ E . All such
functions form a unital C∗-subalgebra of Cb(X ) and corresponds to the
Higson compactification of X .

Definition

Given a compactification X of X , one can define a canonical coarse
structure by taking subsets E ⊂ X × X such that E intersects the
boundary ∂X × ∂X only at the diagonal ∆∂X×∂X .It is called the

topological coarse structure on X given by the compactification X .

Example

The topological coarse structure corresponding to a second countable
compactification is proper.
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Compactifications as coarse structures

Lemma (B., Meyer)

The topological coarse structure on a σ-compact, locally compact and
Hausdorff space X given by a compactification X with metrizable
boundary ∂X is proper.

Theorem (Roe)

Given a proper metric space (X , d), the topological coarse structure of its
Higson compactification is the original metric coarse structure.

Theorem (Roe)

For the topological coarse structure of a second countable
compactification, the Higson compactification of this proper coarse
structure is the original compactification.
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Noncommutative coarse structures

Definition

Given a non-unital C∗-algebra A, the Multiplier algebra M(A) of A is the
maximal unital C∗-algebra that contains A as an essential ideal.

Definition

Given a non-unital C∗-algebra A, a unital C∗-subalgebra of the Multiplier
algebra M(A) of A that contains A as an essential ideal is a unitization of
A.

Definition

Given a non-unital C∗-algebra A, a unitization A defines a
noncommutative coarse structure on A.

So by noncommutative coarse structure on a non-unital C∗-algebra A, we
mean an essential extension of the form

0→ A→ A→ A/A→ 0
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Morphisms in the Coarse Category

Definition

a) A map f : X → Y is proper if it pulls back bounded sets to bounded
sets. It is bornologous if it maps the controlled sets of EX to controlled
sets of EY .
c)A not necessarily continuous map f : X → Y is coarse if it is both
proper and bornologous.

Definition

A noncommutative coarse map between noncommutative coarse structures
(A,A), (B,B) is defined to be the following commuting diagram of maps

0 // A //

φ

��

A //

φ
��

A/A //

∂φ
��

0

0 // B // B // B/B // 0
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The equivalence relation on coarse maps

For a coarse space X , two maps f , g : S → X are close if
{(f (s), g(s)) : s ∈ S} is a controlled set in X .

Theorem (Roe)

For proper coarse structures on X ,Y , if two coarse maps f , g : X → Y are
close then the boundary maps νf : νX → νY and νg : νX → νY are the
same.

Definition

Two strictly continuous completely positive maps φ, ψ : A→ B are close if
their completely positive extensions φ, ψ : A→ B satisfy φ(a)− ψ(a) ∈ B
for all a ∈ A.
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Equivalent objects in the coarse category

Definition

A coarse map f : X → Y is a coarse equivalence iff there exists a coarse
map g : Y → X such that f ◦ g is close to idY and g ◦ f is close to idX .

Remark

A coarse equivalence induces a homeomorphism between the Higson
coronas.

Definition

A noncommutative coarse map φ : A→ B with ∂φ : A/A→ B/B a
∗-isomorphism is a noncommutative coarse equivalence iff there exists an
opposite noncommutative coarse map ψ : B → A such that ∂ψ is inverse
to ∂φ.
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Rieffel deformation by actions of Rd

Data: A C∗-dynamical system (A,Rd , α) and an anti-symmetric
matrix J on Rd .
Consider the smooth Fréchet sub-algebra A ⊂ A. Then define the
following deformed product on elements of A and call it AJ

a×J b :=

∫
Rd×Rd

αJu(a)αv (b)e2πi〈u,v〉dudv ; ∀a, b ∈ A

Definition

The completion of AJ under a deformed C∗-norm is the Rieffel
deformation AJ of A.

Given a noncommutative coarse structure 0→ A→ A→ A/A→ 0
with an equivariant action of Rd , Rieffel deformation for the
anti-symmetric matrix J, gives a new noncommutative coarse
structure.

0→ AJ → AJ → (A/A)J → 0
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Crossed products

Generalize Rd to a locally compact, abelian group G .

Consider the C∗-dynamical system (A,G , α), where A is a non-unital
C∗-algebra and α is a strongly continuous action of G on A.

Then the crossed product C∗-algebra Aoα G , is the C∗-completion
under a certain C∗-norm, of the algebra Cc(G ,A) with a certain
convolution product and involution.

Given π : A→ B(H), the C∗-norm on Cc(G ,A) is constructed from a
covariant representation (π,U) of (A,G ) on the Hilbert space
L2(G ,H).
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Rieffel deformation via crossed products

Consider the dual system (Aoα G , Ĝ , α̂) where
α̂γ(f )(g) := γ(g)f (g) for all f in Cc(G ,A).
Then A is called the Landstad algebra of this dual system, also known
as a G -product.
Let Ψ be a 2-cocycle on the dual group Ĝ then for each γ in Ĝ , the
function Ψ(γ, ·) in Cb(G ) embeds as a family of unitaries Uγ in
M(Aoα G ).
Twist the dual action α̂ by conjugating with these unitaries to get the
new dual action α̂Ψ

γ (a) = U∗γ α̂γ(a)Uγ for all a in Aoα G .

Let AΨ be the Landstad algebra of the new C∗-dynamical system
(Aoα G , Ĝ , α̂Ψ).

Theorem (Neshveyev)

The Landstad algebra AψJ of the deformed G-product for the 2-cocycle
ψJ(x , y) := e2πi〈Jx ,y〉 is isomorphic to the Rieffel deformation AJ of A by
G using J.
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α̂γ(f )(g) := γ(g)f (g) for all f in Cc(G ,A).
Then A is called the Landstad algebra of this dual system, also known
as a G -product.
Let Ψ be a 2-cocycle on the dual group Ĝ then for each γ in Ĝ , the
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Noncommutative coarse structure on the Moyal Plane

The Quantum Moyal Plane is Rieffel deformation of C0(R2n) under
the translation action of R2n and the standard symplectic matrix J on
R2n.

R2n carries a standard coarse structure given by its Euclidean metric.
Since the Euclidean metric is proper, the proper metric coarse
structure is uniquely determined by its Higson compactification
C (hR2n).

We define a noncommutative coarse structure on the Moyal Plane as
Rieffel deformation of the Higson compactification under an extension
of the translation action to the Higson compactification and the same
symplectic matrix J.

The Moyal plane is given the canonical noncommutative coarse
structure

0→ C0(R2n)J → C (hR2n)J → C (νR2n)J → 0
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The Noncommutative coarse structure on the Moyal Plane

Proposition (B., Meyer)

The translation action is trivial on the boundary of the Higson
compactification.

Lemma

For trivial action and any anti-symmetric matrix J, Rieffel deformation
AJ = A.

Remark

Therefore corresponding to the metric coarse structure on R2n, we get a
noncommutative coarse structure on the Moyal plane

0 → K (Rn)→ C (hR2n)J → C (νR2n)→ 0.
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Noncommutative coarse maps

Given (B, λ, ρ) a G -product.

(Kasprzak) The elements of the Landstad algebra is explicitly written
as closed linear span of the image of the map

E : (f1, b, f2) 7→
∫
Ĝ
α̂χ(f1bf2)dχ; ∀f1, f2 ∈ C ∗(G ) ∩ L2(G ), b ∈ Aoα G ).

With the deformed dual action α̂ψ, for all a ∈ A consider
a 7→

∫
K α̂

ψ
χ(faf ∗)dχ, strict limit over K compact subsets of Ĝ .

In particular choose f ∈ C ∗(G ) ∩ L2(G ), s.t., ‖f ‖L2(G) = 1 and
f = f ′ · f ′′ for some f ′′ ∈ C ∗(G ). Then consider

Eψf (a) :=

∫
Ĝ
α̂ψχ(faf ∗)dχ

The naturality of the construction of the map gives the commuting
diagram and for trivial boundary action the necessary identity
isomorphism between the boundaries.
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In particular choose f ∈ C ∗(G ) ∩ L2(G ), s.t., ‖f ‖L2(G) = 1 and
f = f ′ · f ′′ for some f ′′ ∈ C ∗(G ). Then consider

Eψf (a) :=

∫
Ĝ
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Main result

Theorem (B., Meyer)

Classical plane R2n with the metric coarse structure of its Euclidean metric
is equivalent to the noncommutative coarse structure defined on the Moyal
plane by Rieffel deformation of the Higson compactification Ch(R2n) under
the translation action of R2n and the standard symplectic matrix on R2n.
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Further example

Example

All σ-unital C∗-algebra A with noncommutative coarse structures defined
by the smallest unitization A† are equivalent in our sense of
noncommutative coarse geometry.

Example

Given a continuously square-integrable action of a locally compact group
G on a non-unital C∗-algebra A, such that the generalized fixed-point
algebra is unital. Then there exists a unitization A of A such that the
noncommutative coarse structure (A,A) is equivalent to the canonical
G-invariant coarse structure on G.
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Thank you for your attention
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