ON A THEOREM OF ABATZOGLOU FOR OPERATORS ON ABSTRACT *L*-SPACES

T. S. S. R. K. RAO

ABSTRACT. Let X be an abstract L-space and let Y be any Banach spaces. Motivated by a classical result of T. J. Abatzoglou that describes smooth points of the space of operators on a Hilbert space, we give a characterization of very smooth points in the space of operators from X to Y.

1. INTRODUCTION

Let X, Y be a real Banach space. Let $\mathcal{L}(X, Y)$ denote the space of bounded linear operators. A non-zero vector $x_0 \in X$ is said to be a smooth point, if there is a unique unit vector $x^* \in X^*$ such that $x^*(x_0) = ||x_0||$. It is said to be a very smooth point, if under the canonical embedding of X in its bidual X^{**} , x_0 is a smooth point of X^{**} , see [6]. Let S_X denote the set of unit vectors of X. For a Hilbert space H, by a classical result of Abatzoglou ([1]), $T \in \mathcal{L}(H)$ is a smooth point if and only if there exists a $x_0 \in S_H$ such that T attains its norm only at $\pm x_0$ and $sup\{||T(y)|| :< y, x_0 >= 0, y \in S_H\} < ||T||.$

In this paper we are interested in formulating an abstract analogue of the above theorem for $\mathcal{L}(X, Y)$ when X is an

²⁰⁰⁰ Mathematics Subject Classification. Primary 46 B 42, 47 L 05, 46 B20 .

Key words and phrases. Abstract *L*-spaces, Very smooth points, spaces of operators.

abstract *L*-space (see [4] Chapter 1 and Section 15 of Chapter 5). We show that if $T \in \mathcal{L}(X, Y)$ is a smooth point that attains its norm only at a $\pm x_0 \in S_X$, then $T(x_0)$ is a smooth point of *Y* and if *P* denotes the band projection associated with $span\{x_0\}$, then $||T \circ (I - P)|| < ||T||$. Conversely if $T \in \mathcal{L}(X, Y)$ attains its norm only at a $\pm x_0 \in S_X$, $T(x_0)$ is a smooth point of *Y* and $||T \circ (I - P)|| < ||T||$ then *T* is a smooth point of $\mathcal{L}(X, Y)$.

Under some additional assumptions of approximation property on X^* , we show that if $T \in \mathcal{L}(X, Y)$ is a very smooth point, then T attains its norm only at a $\pm x_0 \in S_X$, and $T(x_0)$ is a very smooth point of Y. We recall that $x \in$ X is said to be Birkhoff-James orthogonal to $y \in X$ if $||x|| \leq ||x + \lambda y||$ for all real numbers λ . Since for any band projection P in an L-space X, for $x \in \ker(P)$ and $y \in P(X), ||x|| \leq ||x|| + |\lambda|||y|| = ||x + \lambda y||$, we also get the orthogonality aspect of Abatzoglou's result, now in terms of Birkhoff-James orthogonality.

This work was partially funded by the project 'Advances in noncommutative mathematics' of the Indian Statistical Institute.

2. Main Results

For a Banach space X, let X_1 denote the unit ball and $\partial_e X_1$ denote the set of extreme points. For $x^{**} \in X^{**}$ and $y^* \in Y^*$, we denote by $x^{**} \otimes y^*$ the linear functional defined on the space of operators by $(x^{**} \otimes y^*)(T) = x^{**}(T^*(y^*))$, for

 $\mathbf{2}$

any operator T and note that $||x^{**} \otimes y^*|| = ||x^{**}|| ||y^*||$. We denote a rank one operator by $x^* \otimes y$, so that $(x^{**} \otimes y^*)(x^* \otimes y) = x^{**}(x^*)y^*(y)$. We recall from [5] that for the space of compact operators $\mathcal{K}(X,Y)$, $\partial_e \mathcal{K}(X,Y)_1^* = \{x^{**} \otimes y^* : x^{**} \in \partial_e X_1^{**}, y^* \in \partial_e Y_1^*\}$.

We need a lemma which is perhaps part of the folklore. Let $X = M \bigoplus_{\infty} N$ (ℓ^{∞} -direct sum) for closed subspaces $M, N \subset X$. We note that $X^{**} = M^{**} \bigoplus_{\infty} N^{**}$.

Lemma 1. Let $X = M \bigoplus_{\infty} N$. Let $x \in S_X$ and x = m+nfor $m \in M$, $n \in N$. If ||m|| = 1 = ||n|| then x is not a smooth point. If ||m|| < 1 then x is a smooth point (very smooth point) of X if and only if n is a smooth point (very smooth point) of N.

Theorem 2. Let X be an L-space and Y a Banach space. Let $T \in \mathcal{L}(X, Y)$ be a smooth point such that T attains its norm and only at $\pm x_0$ for some $x_0 \in \partial_e X_1$. Then $T(x_0)$ is a smooth point of Y and if $P : X \to \text{span}\{x_0\}$ is the band projection, then $||T \circ (I - P)|| < ||T||$. Conversely suppose T attains its norm only at $\pm x_0 \in \partial_e X_1$ and $T(x_0)$ is a smooth point of Y. If $||T \circ (I - P)|| < ||T||$, then T is a smooth point of $\mathcal{L}(X, Y)$.

Proof. Suppose ||T|| = 1, T is a smooth point and $||T(x_0)|| = 1$. 1. Let $y^* \in \partial_e Y_1^*$ be such that $y^*(T(x_0)) = 1$. Since $(x_0 \otimes y^*)(T) = 1$, as T is a smooth point, it is easy to see that $T(x_0)$ is a smooth point and $x_0 \in \partial_e X_1$. Since X is an L-space, by Kakutani's representation theorem of X as $L^1(\mu)$ for a positive measure μ , x_0 corresponds to a normalized measure atom (see Section 15 of Chapter 5 in [4]). Thus there is a projection $P : X \to span\{x_0\}$ such that ||P(x)|| + ||x - P(x)|| = ||x|| for all $x \in X$. By taking adjoints, it is easy to see that $||S|| = max\{||S \circ$ $P||, ||S \circ (I - P)||\}$ for all $S \in \mathcal{L}(X, Y)$. In particular since $||T(P(x_0))|| = 1$ we have $||T \circ P|| = 1$. As T is a smooth point by Lemma 1 we get that $||T \circ (I - P)|| < 1$.

Conversely suppose that T attains its norm only at $\pm x_0 \in \partial_e X_1$ and $T(x_0)$ is a smooth point of Y, $||T \circ (I - P)|| < 1$. Since $T(x_0)$ is a smooth point, it is easy to see that $T \circ P$ is a smooth point of $\{S \circ P : S \in \mathcal{L}(X, Y)\}$. Thus again by Lemma 1 we get that T is a smooth point of $\mathcal{L}(X, Y)$. \Box

To get a complete analogue of Abatzoglou's result, mild approximation theoretic assumptions some times can be used to achieve norm attainment. We are able to do it only for a very smooth point T. The following theorem illustrates this. The conditions assumed here are satisfied by an L-space (see [4] Chapter 5). We note that $x \in S_X$ is smooth point if and only if there is a unique $x^* \in \partial_e X_1^*$ such that $x^*(x) = 1$. It is a very smooth point if and only if x^* has a unique norm preserving extension in X^{***} . This is equivalent to x^* being a point of weak*-weak continuity for the identity map on X_1^* . See Lemma III.2.14 in [2].

4

Theorem 3. Let X be a Banach space. Suppose there is a net $\{T_{\alpha}\}_{\alpha \in \Delta} \subset \mathcal{K}(X)_1$ such that both T_{α} and its adjoint converge point-wise to the identity operator. If $T \in \mathcal{L}(X, Y)$ is a very smooth point, then T attains its norm at $x_0 \in \partial_e X_1$ and $T(x_0)$ is a very smooth point of Y.

Proof. Following the ideas from [3] we will define a linear contractive projection $P: \mathcal{L}(X,Y)^* \to \mathcal{L}(X,Y)^*$ such that $\ker(P) = \mathcal{K}(X, Y)^{\perp}$. It is easy to see that for any $\Lambda \in \mathcal{L}(X,Y)^*, P(\Lambda)$ is a norm preserving extension of $\Lambda | \mathcal{K}(X, Y)$ and hence $\mathcal{K}(X, Y)^*$ is isometric to the range of P. By going through a subnet if necessary, we assume that $T_{\alpha} \to \phi$ in the weak*-topology, for some $\phi \in \mathcal{K}(X)_1^{**}$. For $S \in \mathcal{L}(X,Y)$, $\Lambda \in \mathcal{L}(X,Y)^*$, let $S\Lambda : \mathcal{K}(X) \to \mathbb{R}$ be the continuous functional $S\Lambda(K) = \Lambda(SK)$, for $K \in \mathcal{K}(X)$. Let $P(\Lambda)(S) = \lim_{\alpha} (T_{\alpha})(S\Lambda) = \phi(S\Lambda)$. It is easy to see that P is a linear contraction and $\ker(P) = \mathcal{K}(X, Y)^{\perp}$. We next verify that for $x^{**} \in X^{**}, y^* \in Y^*, P(x^{**} \otimes y^*) = x^{**} \otimes y^*$ y^* . Let $S \in \mathcal{L}(X, Y)$, with the above notation, we note that $S x^{**} \otimes y^* = x^{**} \otimes S^*(y^*)$. Thus $P(x^{**} \otimes y^*)(S) = \lim_{\alpha} (x^{**} \otimes y^*)(S)$ $S^{*}(y^{*}))(T_{\alpha}) = \lim_{\alpha} x^{**}(T^{*}_{\alpha}(S^{*}(y^{*})))$. Since $T^{*}_{\alpha}(S^{*}(y^{*})) \rightarrow$ $S^{*}(y^{*})$, we get $P(x^{**} \otimes y^{*})(S) = (x^{**} \otimes y^{*})(S)$. For any $S \in \mathcal{L}(X, Y)$, we have $||S|| = \sup\{|(x^{**} \otimes y^*)(S)| : x^{**} \in X^*$ X_1^{**} , $y^* \in Y_1^*$. By a standard separation theorem argument, we get $\mathcal{L}(X,Y)_1^* = (P(\mathcal{L}(X,Y)^*)_1)$, where the closure is taken in the weak^{*}-topology. Now since T is a very smooth point, let $\Lambda \in \partial_e \mathcal{L}(X,Y)_1^*$ be such that $\Lambda(T) = ||T||$. Since Λ is also a point of weak*-weak continuity for the identity map, we see that $\Lambda \in P(\mathcal{L}(X,Y)^*)_1$ (this set under the canonical isometry is $\mathcal{K}(X,Y)_1^*$, a norm and hence weakly closed convex set). As Λ is an extreme point, we get by the result of Ruess and Stegall (5) that $\Lambda = x^{**} \otimes y^*$, for some $x^{**} \in \partial_e X^{**}$ and $y^* \in \partial_e Y_1^*$. Thus $||T^*|| = ||T^*(y^*)||$. We next claim that x^{**} is a point of weak*-weak continuity for the identity map on X_1^{**} . Since X_1 is weak*-dense in X_1^{**} , this in particular shows that $x^{**} = x_0 \in \partial_e X_1$ and thus T attains its norm. Let $\{x^{**}_{\alpha}\} \in$ X_1^{**} be a net such that $x^{**} \to x^{**}$ in the weak*-topology. For any $S \in \mathcal{L}(X, Y)$, we have $(x_{\alpha}^{**} \otimes y^{*})(S) = x_{\alpha}^{**}((S^{*})(y^{*})) \rightarrow$ $x^{**}((S^*(y^*))) = (x^{**} \otimes y^*)(S)$. Thus the net $x^{**}_{\alpha} \otimes y^* \in$ $\mathcal{L}(X,Y)_1^*$ converges in the weak*-topology to $x^{**} \otimes y^*$. Therefore by weak^{*}-weak continuity, we get that this convergence is also in the weak topology. We recall from Chapter VI of [2] that the injective tensor product, $X^* \hat{\otimes}_{\epsilon} Y \subset \mathcal{L}(X,Y)$ and thus by duality $(X^* \hat{\otimes}_{\epsilon} Y)^{**} \subset \mathcal{L}(X,Y)^{**}$. It is easy to see that $X^{***} \hat{\otimes}_{\epsilon} Y \subset (X^* \hat{\otimes}_{\epsilon} Y)^{**}$ such that under the canonical embedding, $(\tau \otimes y)(x^{**} \otimes y^*) = \tau(x^{**})y^*(y)$, for $\tau \in X^{***}, y \in Y$. See page 265 of [2]. This implies that $x_{\alpha}^{**} \to x^{**}$ in the weak topology. Thus x^{**} is a point of weak*-weak continuity. Similarly one can show that y^* is a point of weak*-weak continuity for the identity map on Y_1^* . By using Lemma III.2.14 of [2] again, we get that y^* has unique norm preserving extension in Y^{***} so that $T(x_0)$ is a very smooth point.

6

One can now use the above theorem and Lemma 1 to prove the following complete analogue of Abatzoglou's result for very smooth points of $\mathcal{L}(X, Y)$.

Theorem 4. Let X be an L-space and Y a Banach space. Let $T \in \mathcal{L}(X, Y)$ be a very smooth point. Then T attains its norm only at $\pm x_0$ for some $x_0 \in \partial_e X_1$. $T(x_0)$ is a very smooth point of Y and if $P : X \to \text{span}\{x_0\}$ is the band projection, then $||T \circ (I - P)|| < ||T||$. Conversely suppose T attains its norm only at $\pm x_0 \in \partial_e X_1$ and $T(x_0)$ is a very smooth point of Y. If $||T \circ (I - P)|| < ||T||$, then T is a very smooth point of $\mathcal{L}(X, Y)$.

References

- T. J. Abatzoglou, Norm derivatives on spaces of operators, Math. Ann. 239 (1979) 129–135.
- [2] P. Harmand, D. Werner and W. Werner, *M-ideals in Banach spaces and Banach algebras*, Lecture Notes in Mathematics, 1547. Springer-Verlag, Berlin, 1993. viii+387 pp.
- [3] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979) 304-311.
- [4] H. E. Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg, 1974. x+270 pp.
- [5] W. Ruess and C. Stegall, *Extreme points in duals of operator spaces*, Math. Ann. 261 (1982) 535-546.
- [6] F. Sullivan, Geometric properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977) 315-331.

(T. S. S. R. K. Rao) THEORETICAL STATISTICS AND MATHEMATICS UNIT, INDIAN STATISTICAL INSTITUTE, R. V. COLLEGE P.O., BANGALORE 560059, INDIA, *E-mail : srin@fulbrightmail.org, tss@isibang.ac.in*