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Abstract. LetX be an abstract L-space and let Y be any Banach

spaces. Motivated by a classical result of T. J. Abatzoglou that

describes smooth points of the space of operators on a Hilbert

space, we give a characterization of very smooth points in the space

of operators from X to Y .

1. Introduction

Let X, Y be a real Banach space. Let L(X,Y ) denote

the space of bounded linear operators. A non-zero vector

x0 ∈ X is said to be a smooth point, if there is a unique

unit vector x∗ ∈ X∗ such that x∗(x0) = ∥x0∥. It is said to

be a very smooth point, if under the canonical embedding

of X in its bidual X∗∗, x0 is a smooth point of X∗∗, see

[6]. Let SX denote the set of unit vectors of X. For a

Hilbert space H, by a classical result of Abatzoglou ([1]),

T ∈ L(H) is a smooth point if and only if there exists a

x0 ∈ SH such that T attains its norm only at ±x0 and

sup{∥T (y)∥ :< y, x0 >= 0, y ∈ SH} < ∥T∥.

In this paper we are interested in formulating an abstract

analogue of the above theorem for L(X, Y ) when X is an

2000 Mathematics Subject Classification. Primary 46 B 42, 47 L 05, 46 B20 .

Key words and phrases. Abstract L-spaces, Very smooth points, spaces of

operators.
1



2 RAO

abstract L-space (see [4] Chapter 1 and Section 15 of Chap-

ter 5). We show that if T ∈ L(X, Y ) is a smooth point that

attains its norm only at a±x0 ∈ SX , then T (x0) is a smooth

point of Y and if P denotes the band projection associated

with span{x0}, then ∥T ◦ (I − P )∥ < ∥T∥. Conversely if

T ∈ L(X,Y ) attains its norm only at a ±x0 ∈ SX , T (x0)

is a smooth point of Y and ∥T ◦ (I − P )∥ < ∥T∥ then T is

a smooth point of L(X, Y ).

Under some additional assumptions of approximation prop-

erty on X∗, we show that if T ∈ L(X, Y ) is a very smooth

point, then T attains its norm only at a ±x0 ∈ SX , and

T (x0) is a very smooth point of Y . We recall that x ∈
X is said to be Birkhoff-James orthogonal to y ∈ X if

∥x∥ ≤ ∥x + λy∥ for all real numbers λ. Since for any

band projection P in an L-space X, for x ∈ ker(P ) and

y ∈ P (X), ∥x∥ ≤ ∥x∥+ |λ|∥y∥ = ∥x+ λy∥, we also get the

orthogonality aspect of Abatzoglou’s result, now in terms

of Birkhoff-James orthogonality.

This work was partially funded by the project ‘Advances

in noncommutative mathematics’ of the Indian Statistical

Institute.

2. Main Results

For a Banach space X, let X1 denote the unit ball and

∂eX1 denote the set of extreme points. For x∗∗ ∈ X∗∗ and

y∗ ∈ Y ∗, we denote by x∗∗⊗y∗ the linear functional defined

on the space of operators by (x∗∗⊗y∗)(T ) = x∗∗(T ∗(y∗)), for
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any operator T and note that ∥x∗∗ ⊗ y∗∥ = ∥x∗∗∥∥y∗∥. We

denote a rank one operator by x∗⊗y, so that (x∗∗⊗y∗)(x∗⊗
y) = x∗∗(x∗)y∗(y). We recall from [5] that for the space of

compact operators K(X, Y ), ∂eK(X,Y )∗1 = {x∗∗⊗y∗ : x∗∗ ∈
∂eX

∗∗
1 , y∗ ∈ ∂eY

∗
1 }.

We need a lemma which is perhaps part of the folklore.

Let X = M
⊕

∞N (ℓ∞-direct sum) for closed subspaces

M,N ⊂ X. We note that X∗∗ = M ∗∗⊕
∞N ∗∗.

Lemma 1. Let X = M
⊕

∞N . Let x ∈ SX and x = m+n

for m ∈ M , n ∈ N . If ∥m∥ = 1 = ∥n∥ then x is not a

smooth point. If ∥m∥ < 1 then x is a smooth point (very

smooth point) of X if and only if n is a smooth point (very

smooth point) of N .

Theorem 2. Let X be an L-space and Y a Banach space.

Let T ∈ L(X,Y ) be a smooth point such that T attains its

norm and only at ±x0 for some x0 ∈ ∂eX1. Then T (x0)

is a smooth point of Y and if P : X → span{x0} is the

band projection, then ∥T ◦ (I − P )∥ < ∥T∥. Conversely

suppose T attains its norm only at ±x0 ∈ ∂eX1 and T (x0)

is a smooth point of Y . If ∥T ◦ (I − P )∥ < ∥T∥, then T is

a smooth point of L(X, Y ).

Proof. Suppose ∥T∥ = 1, T is a smooth point and ∥T (x0)∥ =

1. Let y∗ ∈ ∂eY
∗
1 be such that y∗(T (x0)) = 1. Since

(x0 ⊗ y∗)(T ) = 1, as T is a smooth point, it is easy to

see that T (x0) is a smooth point and x0 ∈ ∂eX1. Since

X is an L-space, by Kakutani’s representation theorem of
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X as L1(µ) for a positive measure µ, x0 corresponds to

a normalized measure atom (see Section 15 of Chapter 5

in [4]). Thus there is a projection P : X → span{x0}
such that ∥P (x)∥ + ∥x − P (x)∥ = ∥x∥ for all x ∈ X. By

taking adjoints, it is easy to see that ∥S∥ = max{∥S ◦
P∥, ∥S ◦ (I − P )∥} for all S ∈ L(X, Y ). In particular since

∥T (P (x0))∥ = 1 we have ∥T ◦ P∥ = 1. As T is a smooth

point by Lemma 1 we get that ∥T ◦ (I − P )∥ < 1.

Conversely suppose that T attains its norm only at ±x0 ∈
∂eX1 and T (x0) is a smooth point of Y , ∥T ◦ (I −P )∥ < 1.

Since T (x0) is a smooth point, it is easy to see that T ◦ P
is a smooth point of {S ◦P : S ∈ L(X, Y )}. Thus again by

Lemma 1 we get that T is a smooth point of L(X,Y ). �

To get a complete analogue of Abatzoglou’s result, mild

approximation theoretic assumptions some times can be

used to achieve norm attainment. We are able to do it

only for a very smooth point T . The following theorem

illustrates this. The conditions assumed here are satisfied

by an L-space (see [4] Chapter 5). We note that x ∈ SX

is smooth point if and only if there is a unique x∗ ∈ ∂eX
∗
1

such that x∗(x) = 1. It is a very smooth point if and only

if x∗ has a unique norm preserving extension in X∗∗∗. This

is equivalent to x∗ being a point of weak∗-weak continuity

for the identity map on X∗
1 . See Lemma III.2.14 in [2].
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Theorem 3. Let X be a Banach space. Suppose there is a

net {Tα}α∈∆ ⊂ K(X)1 such that both Tα and its adjoint con-

verge point-wise to the identity operator. If T ∈ L(X, Y ) is

a very smooth point, then T attains its norm at x0 ∈ ∂eX1

and T (x0) is a very smooth point of Y .

Proof. Following the ideas from [3] we will define a lin-

ear contractive projection P : L(X,Y )∗ → L(X,Y )∗ such

that ker(P ) = K(X,Y )⊥. It is easy to see that for any

Λ ∈ L(X,Y )∗, P (Λ) is a norm preserving extension of

Λ|K(X,Y ) and hence K(X, Y )∗ is isometric to the range

of P . By going through a subnet if necessary, we assume

that Tα → ϕ in the weak∗-topology, for some ϕ ∈ K(X)∗∗1 .

For S ∈ L(X,Y ), Λ ∈ L(X, Y )∗, let SΛ : K(X) → R be

the continuous functional SΛ(K) = Λ(SK), forK ∈ K(X).

Let P (Λ)(S) = limα(Tα)(SΛ) = ϕ(SΛ). It is easy to see

that P is a linear contraction and ker(P ) = K(X,Y )⊥. We

next verify that for x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, P (x∗∗⊗y∗) = x∗∗⊗
y∗. Let S ∈ L(X, Y ), with the above notation, we note that

S x∗∗⊗y∗ = x∗∗⊗S∗(y∗). Thus P (x∗∗⊗y∗)(S) = limα(x
∗∗⊗

S∗(y∗))(Tα) = limα x
∗∗(T ∗

α(S
∗(y∗)). Since T ∗

α(S
∗(y∗)) →

S∗(y∗), we get P (x∗∗ ⊗ y∗)(S) = (x∗∗ ⊗ y∗)(S). For any

S ∈ L(X,Y ), we have ∥S∥ = sup{|(x∗∗ ⊗ y∗)(S)| : x∗∗ ∈
X∗∗

1 , y∗ ∈ Y ∗
1 }. By a standard separation theorem ar-

gument, we get L(X,Y )∗1 = (P (L(X, Y )∗)1), where the

closure is taken in the weak∗-topology. Now since T is

a very smooth point, let Λ ∈ ∂eL(X, Y )∗1 be such that
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Λ(T ) = ∥T∥. Since Λ is also a point of weak∗-weak conti-

nuity for the identity map, we see that Λ ∈ P (L(X, Y )∗)1

(this set under the canonical isometry is K(X,Y )∗1, a norm

and hence weakly closed convex set). As Λ is an extreme

point, we get by the result of Ruess and Stegall ([5]) that

Λ = x∗∗ ⊗ y∗, for some x∗∗ ∈ ∂eX
∗∗ and y∗ ∈ ∂eY

∗
1 . Thus

∥T ∗∥ = ∥T ∗(y∗)∥. We next claim that x∗∗ is a point of

weak∗-weak continuity for the identity map on X∗∗
1 . Since

X1 is weak∗-dense in X∗∗
1 , this in particular shows that

x∗∗ = x0 ∈ ∂eX1 and thus T attains its norm. Let {x∗∗α } ∈
X∗∗

1 be a net such that x∗∗ → x∗∗ in the weak∗-topology. For

any S ∈ L(X,Y ), we have (x∗∗α ⊗ y∗)(S) = x∗∗α ((S∗)(y∗)) →
x∗∗((S∗(y∗)) = (x∗∗ ⊗ y∗)(S). Thus the net x∗∗α ⊗ y∗ ∈
L(X,Y )∗1 converges in the weak∗-topology to x∗∗⊗y∗. There-

fore by weak∗-weak continuity, we get that this convergence

is also in the weak topology. We recall from Chapter VI

of [2] that the injective tensor product, X∗⊗̂ϵY ⊂ L(X, Y )

and thus by duality (X∗⊗̂ϵY )∗∗ ⊂ L(X,Y )∗∗. It is easy

to see that X∗∗∗⊗̂ϵY ⊂ (X∗⊗̂ϵY )∗∗ such that under the

canonical embedding, (τ ⊗ y)(x∗∗ ⊗ y∗) = τ(x∗∗)y∗(y), for

τ ∈ X∗∗∗, y ∈ Y . See page 265 of [2]. This implies that

x∗∗α → x∗∗ in the weak topology. Thus x∗∗ is a point of

weak∗-weak continuity. Similarly one can show that y∗ is a

point of weak∗-weak continuity for the identity map on Y ∗
1 .

By using Lemma III.2.14 of [2] again, we get that y∗ has

unique norm preserving extension in Y ∗∗∗ so that T (x0) is

a very smooth point. �
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One can now use the above theorem and Lemma 1 to

prove the following complete analogue of Abatzoglou’s re-

sult for very smooth points of L(X,Y ).

Theorem 4. Let X be an L-space and Y a Banach space.

Let T ∈ L(X, Y ) be a very smooth point. Then T attains

its norm only at ±x0 for some x0 ∈ ∂eX1. T (x0) is a very

smooth point of Y and if P : X → span{x0} is the band

projection, then ∥T ◦ (I − P )∥ < ∥T∥. Conversely suppose

T attains its norm only at ±x0 ∈ ∂eX1 and T (x0) is a very

smooth point of Y . If ∥T ◦ (I − P )∥ < ∥T∥, then T is a

very smooth point of L(X, Y ).
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