Composition operators on some analytic reproducing kernel Hilbert spaces

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH University of Science and Technology)

Operator Theory and Operator Algebras 2016 December 13-22, 2016 (Tuesday, December 20) Indian Statistical Institute, Bangalore

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

イロト イポト イヨト イヨト

Operators

- By an operator in a complex Hilbert space *H* we mean a linear mapping *A*: *H* ⊇ *D*(*A*) → *H* defined on a vector subspace *D*(*A*) of *H*, called the domain of *A*;
- We say that a densely defined operator A in \mathcal{H} is
 - *positive* if $\langle A\xi, \xi \rangle \ge 0$ for all $\xi \in \mathcal{D}(A)$; then we write $A \ge 0$,
 - selfadjoint if $A = A^*$,
 - *hyponormal* if $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*\xi|| \leq ||A\xi||$ for all $\xi \in \mathcal{D}(A)$,
 - cohyponormal if $\mathcal{D}(A^*) \subseteq \mathcal{D}(A)$ and $||A\xi|| \leq ||A^*\xi||$ for all $\xi \in \mathcal{D}(A^*)$,
 - normal if A is hyponormal and cohyponormal,
 - subnormal if there exist a complex Hilbert space M and a normal operator N in M such that H ⊆ M (isometric embedding), D(A) ⊆ D(N) and Af = Nf for all f ∈ D(A),

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

• seminormal if A is either hyponormal or cohyponormal.

Operators

- By an operator in a complex Hilbert space *H* we mean a linear mapping *A*: *H* ⊇ *D*(*A*) → *H* defined on a vector subspace *D*(*A*) of *H*, called the domain of *A*;
- We say that a densely defined operator A in \mathcal{H} is
 - *positive* if $\langle A\xi, \xi \rangle \ge 0$ for all $\xi \in \mathcal{D}(A)$; then we write $A \ge 0$,
 - selfadjoint if $A = A^*$,
 - hyponormal if $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*\xi|| \leq ||A\xi||$ for all $\xi \in \mathcal{D}(A)$,
 - cohyponormal if $\mathcal{D}(A^*) \subseteq \mathcal{D}(A)$ and $||A\xi|| \leq ||A^*\xi||$ for all $\xi \in \mathcal{D}(A^*)$,
 - normal if A is hyponormal and cohyponormal,
 - subnormal if there exist a complex Hilbert space M and a normal operator N in M such that H ⊆ M (isometric embedding), D(A) ⊆ D(N) and Af = Nf for all f ∈ D(A),

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• seminormal if A is either hyponormal or cohyponormal.

• \mathscr{F} stands for the class of all entire functions \varPhi of the form

$$\Phi(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \mathbb{C},$$
(1)

(ロ) (同) (三) (三) (三) (○)

such that $a_k \ge 0$ for all $k \ge 0$ and $a_n > 0$ for some $n \ge 1$.

• If $\Phi \in \mathscr{F}$, then, by Liouville's theorem, $\limsup_{|z|\to\infty} |\Phi(z)| = \infty.$

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

• \mathscr{F} stands for the class of all entire functions \varPhi of the form

$$\Phi(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \mathbb{C},$$
(1)

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

such that $a_k \ge 0$ for all $k \ge 0$ and $a_n > 0$ for some $n \ge 1$.

• If $\Phi \in \mathscr{F}$, then, by Liouville's theorem, $\limsup_{|z|\to\infty} |\Phi(z)| = \infty.$ • If $\Phi \in \mathscr{F}$ is as in (1), we set

$$\mathscr{Z}_{\Phi} = \{ n \in \mathbb{N} \colon a_n > 0 \}$$

and define the multiplicative group \mathfrak{G}_{Φ} by

$$\mathfrak{G}_{\varPhi} = \bigcap_{n \in \mathscr{Z}_{\varPhi}} G_n,$$

where G_n is the multiplicative group of *n*th roots of 1, i.e.,

$$G_n := \{ z \in \mathbb{C} \colon z^n = 1 \}, \quad n \ge 1.$$

The order of the group \mathfrak{G}_{Φ} can be calculated explicitly.

ヘロト ヘワト ヘビト ヘビト

H is a complex Hilbert space with inner product ⟨·,-⟩.
 If *Φ* ∈ *F*, then by the Schur product theorem, the kernel *K^Φ*: *H* × *H* → ℂ defined by

$$\mathcal{K}^{\varPhi}(\xi,\eta)=\mathcal{K}^{\varPhi,\mathcal{H}}(\xi,\eta)=\varPhi(\langle\xi,\eta
angle),\quad \xi,\eta\in\mathcal{H},$$

is positive definite.

- Φ(H) stands the reproducing kernel Hilbert space with the reproducing kernel K^Φ;
 Φ(H) consists of holomorphic functions on H.
- Reproducing property of $\Phi(\mathcal{H})$:

$$f(\xi) = \langle f, K_{\xi}^{\Phi} \rangle, \quad \xi \in \mathcal{H}, \, f \in \Phi(\mathcal{H}),$$

where

$$K^{\Phi}_{\xi}(\eta) = K^{\Phi,\mathcal{H}}_{\xi}(\eta) = K^{\Phi}(\eta,\xi), \quad \xi, \eta \in \mathcal{H}.$$

• \mathscr{K}^{Φ} = the linear span of $\{K^{\Phi}_{\varepsilon} : \xi \in \mathcal{H}\}$ is dense in $\Phi(\mathcal{H})$.

H is a complex Hilbert space with inner product ⟨·,-⟩.
 If *Φ* ∈ *F*, then by the Schur product theorem, the kernel *K^Φ*: *H* × *H* → ℂ defined by

$${\mathcal K}^{\varPhi}(\xi,\eta)={\mathcal K}^{\varPhi,{\mathcal H}}(\xi,\eta)=\varPhi(\langle\xi,\eta
angle),\quad \xi,\eta\in{\mathcal H},$$

is positive definite.

- Φ(H) stands the reproducing kernel Hilbert space with the reproducing kernel K^Φ;
 Φ(H) consists of holomorphic functions on H.
- Reproducing property of $\Phi(\mathcal{H})$:

$$f(\xi) = \langle f, K_{\xi}^{\Phi} \rangle, \quad \xi \in \mathcal{H}, \ f \in \Phi(\mathcal{H}),$$

where

$$K^{\Phi}_{\xi}(\eta) = K^{\Phi,\mathcal{H}}_{\xi}(\eta) = K^{\Phi}(\eta,\xi), \quad \xi, \eta \in \mathcal{H}.$$

• \mathscr{K}^{Φ} = the linear span of $\{K^{\Phi}_{\varepsilon} : \xi \in \mathcal{H}\}$ is dense in $\Phi(\mathcal{H})$.

H is a complex Hilbert space with inner product ⟨·,-⟩.
 If *Φ* ∈ *F*, then by the Schur product theorem, the kernel *K^Φ*: *H* × *H* → ℂ defined by

$${\mathcal K}^{\varPhi}(\xi,\eta)={\mathcal K}^{\varPhi,{\mathcal H}}(\xi,\eta)=\varPhi(\langle\xi,\eta
angle),\quad \xi,\eta\in{\mathcal H},$$

is positive definite.

Φ(H) stands the reproducing kernel Hilbert space with the reproducing kernel K^Φ;
 Φ(H) sensists of belower phis functions on H

 $\Phi(\mathcal{H})$ consists of holomorphic functions on \mathcal{H} .

Reproducing property of \$\Delta(\mathcal{H})\$:

$$f(\xi) = \langle f, K_{\xi}^{\Phi}
angle, \quad \xi \in \mathcal{H}, \ f \in \Phi(\mathcal{H}),$$

where

$$K^{\Phi}_{\xi}(\eta) = K^{\Phi,\mathcal{H}}_{\xi}(\eta) = K^{\Phi}(\eta,\xi), \quad \xi,\eta\in\mathcal{H}.$$

• \mathscr{K}^{Φ} = the linear span of $\{K_{\mathcal{E}}^{\Phi}: \xi \in \mathcal{H}\}$ is dense in $\Phi(\mathcal{H})$.

H is a complex Hilbert space with inner product ⟨·,-⟩.
 If *Φ* ∈ *F*, then by the Schur product theorem, the kernel *K^Φ*: *H* × *H* → ℂ defined by

$${\it K}^{\varPhi}(\xi,\eta)={\it K}^{\varPhi,{\cal H}}(\xi,\eta)={\it \Phi}(\langle\xi,\eta
angle), \quad \xi,\eta\in{\cal H},$$

is positive definite.

Φ(H) stands the reproducing kernel Hilbert space with the reproducing kernel K^Φ;
 Φ(H) sensists of belower phis functions on H

 $\Phi(\mathcal{H})$ consists of holomorphic functions on \mathcal{H} .

• Reproducing property of $\Phi(\mathcal{H})$:

$$f(\xi) = \langle f, K_{\xi}^{\Phi} \rangle, \quad \xi \in \mathcal{H}, \, f \in \Phi(\mathcal{H}),$$

where

$$\mathcal{K}^{\Phi}_{\xi}(\eta) = \mathcal{K}^{\Phi,\mathcal{H}}_{\xi}(\eta) = \mathcal{K}^{\Phi}(\eta,\xi), \quad \xi,\eta \in \mathcal{H}.$$

• \mathscr{K}^{Φ} = the linear span of $\{K_{\xi}^{\Phi}: \xi \in \mathcal{H}\}$ is dense in $\Phi(\mathcal{H})$.

Some examples - I

- Frankfurt spaces [1975/6/7]; Multidimensional generalizations - Szafraniec [2003].
- For ν , a positive Borel measure on \mathbb{R}_+ such that

 $\int_{\mathbb{R}_+} t^n \, \mathrm{d}\, \nu(t) < \infty \text{ and } \nu((c,\infty)) > 0 \text{ for all } n \in \mathbb{Z}_+ \text{ and } c > 0.$

we define the positive Borel measure μ on $\mathbb C$ by

$$\mu(\varDelta) = \frac{1}{2\pi} \int_0^{2\pi} \int_{\mathbb{R}_+} \chi_{\varDelta}(r \, \mathrm{e}^{\mathrm{i}\theta}) \, \mathrm{d}\, \nu(r) \, \mathrm{d}\, \theta, \quad \varDelta \text{ - Borel subset of } \mathbb{C}.$$

• Then we define the function $\Phi \in \mathscr{F}$ by

$$\Phi(z) = \sum_{n=0}^{\infty} \frac{1}{\int_{\mathbb{R}_+} t^{2n} \operatorname{d} \nu(t)} z^n, \quad z \in \mathbb{C}.$$

・ロト ・ 日本・ ・ 日本・

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

Some examples - I

- Frankfurt spaces [1975/6/7]; Multidimensional generalizations - Szafraniec [2003].
- For ν , a positive Borel measure on \mathbb{R}_+ such that

$$\int_{\mathbb{R}_+} t^n \operatorname{d}
u(t) < \infty ext{ and }
u((c,\infty)) > 0 ext{ for all } n \in \mathbb{Z}_+ ext{ and } c > 0.$$

we define the positive Borel measure μ on $\mathbb C$ by

$$\mu(\varDelta) = \frac{1}{2\pi} \int_0^{2\pi} \int_{\mathbb{R}_+} \chi_{\varDelta}(r e^{i\theta}) d\nu(r) d\theta, \quad \varDelta \text{ - Borel subset of } \mathbb{C}.$$

• Then we define the function $\Phi \in \mathscr{F}$ by

$$\Phi(z) = \sum_{n=0}^{\infty} \frac{1}{\int_{\mathbb{R}_+} t^{2n} \operatorname{d} \nu(t)} z^n, \quad z \in \mathbb{C}.$$

米間 とくほとくほど

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

Some examples - I

- Frankfurt spaces [1975/6/7]; Multidimensional generalizations - Szafraniec [2003].
- For ν , a positive Borel measure on \mathbb{R}_+ such that

$$\int_{\mathbb{R}_+} t^n \operatorname{d}
u(t) < \infty ext{ and }
u((c,\infty)) > 0 ext{ for all } n \in \mathbb{Z}_+ ext{ and } c > 0.$$

we define the positive Borel measure μ on $\mathbb C$ by

$$\mu(\varDelta) = \frac{1}{2\pi} \int_0^{2\pi} \int_{\mathbb{R}_+} \chi_{\varDelta}(r \, \mathrm{e}^{\mathrm{i}\theta}) \, \mathrm{d}\, \nu(r) \, \mathrm{d}\, \theta, \quad \varDelta \text{ - Borel subset of } \mathbb{C}.$$

• Then we define the function $\Phi\in \mathscr{F}$ by

$$\Phi(z) = \sum_{n=0}^{\infty} \frac{1}{\int_{\mathbb{R}_+} t^{2n} \operatorname{d} \nu(t)} z^n, \quad z \in \mathbb{C}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Some examples - II

Frankfurt proved that 𝒫(ℂ) can be described as follows

$$\Phi(\mathbb{C}) = \left\{ f \colon f \text{ - entire function \& } f \in L^2(\mu) \right\};$$
(2)

 hence the right-hand side of (2) is a reproducing kernel Hilbert space with the reproducing kernel

$$\mathbb{C} \times \mathbb{C} \ni (\xi, \eta) \longmapsto \sum_{n=0}^{\infty} \frac{1}{\int_{\mathbb{R}_+} t^{2n} \,\mathrm{d}\, \nu(t)} \,\xi^n \bar{\eta}^n \in \mathbb{C}.$$

• If $\int_{\mathbb{R}_+} t^{2n} d\nu(t) = n!$ for all $n \in \mathbb{Z}_+$, then $\Phi = \exp, \mu$ is the Gaussian measure on \mathbb{C} and $\Phi(\mathbb{C})$ is the Segal-Bargmann space \mathcal{B}_1 of order 1.

ヘロト 人間 ト ヘヨト ヘヨト

Some examples - II

Frankfurt proved that 𝒫(ℂ) can be described as follows

$$\Phi(\mathbb{C}) = \left\{ f \colon f \text{ - entire function \& } f \in L^2(\mu) \right\}; \qquad (2)$$

 hence the right-hand side of (2) is a reproducing kernel Hilbert space with the reproducing kernel

$$\mathbb{C}\times\mathbb{C}\ni(\xi,\eta)\longmapsto\sum_{n=0}^{\infty}\frac{1}{\int_{\mathbb{R}_+}t^{2n}\,\mathrm{d}\,\nu(t)}\,\xi^n\bar{\eta}^n\in\mathbb{C}.$$

• If $\int_{\mathbb{R}_+} t^{2n} d\nu(t) = n!$ for all $n \in \mathbb{Z}_+$, then $\Phi = \exp, \mu$ is the Gaussian measure on \mathbb{C} and $\Phi(\mathbb{C})$ is the Segal-Bargmann space \mathcal{B}_1 of order 1.

(ロ) (同) (三) (三) (三) (○)

Some examples - II

Frankfurt proved that 𝒫(ℂ) can be described as follows

$$\Phi(\mathbb{C}) = \left\{ f \colon f \text{ - entire function \& } f \in L^2(\mu) \right\}; \qquad (2)$$

 hence the right-hand side of (2) is a reproducing kernel Hilbert space with the reproducing kernel

$$\mathbb{C}\times\mathbb{C}\ni(\xi,\eta)\longmapsto\sum_{n=0}^{\infty}\frac{1}{\int_{\mathbb{R}_+}t^{2n}\,\mathrm{d}\,\nu(t)}\,\xi^n\bar{\eta}^n\in\mathbb{C}.$$

• If $\int_{\mathbb{R}_+} t^{2n} d\nu(t) = n!$ for all $n \in \mathbb{Z}_+$, then $\Phi = \exp, \mu$ is the Gaussian measure on \mathbb{C} and $\Phi(\mathbb{C})$ is the Segal-Bargmann space \mathcal{B}_1 of order 1.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Given a holomorphic mapping φ: H → H, we define the operator C_φ in Φ(H), called a *composition operator* with a *symbol* φ, by

$$\mathcal{D}(\mathcal{C}_{arphi}) = \{ f \in \varPhi(\mathcal{H}) \colon f \circ arphi \in \varPhi(\mathcal{H}) \}, \ \mathcal{C}_{arphi} f = f \circ arphi, \quad f \in \mathcal{D}(\mathcal{C}_{arphi}).$$

- C_{ϕ} is always closed.
- If $\Phi(0) \neq 0$ and $C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$, then $r(C_{\varphi}) \ge 1$ and thus $\|C_{\varphi}\| \ge 1$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

Given a holomorphic mapping φ: H → H, we define the operator C_φ in Φ(H), called a *composition operator* with a *symbol* φ, by

$$\mathcal{D}(\mathcal{C}_{arphi}) = \{ f \in \varPhi(\mathcal{H}) \colon f \circ arphi \in \varPhi(\mathcal{H}) \}, \ \mathcal{C}_{arphi} f = f \circ arphi, \quad f \in \mathcal{D}(\mathcal{C}_{arphi}).$$

- C_{φ} is always closed.
- If $\Phi(0) \neq 0$ and $C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$, then $r(C_{\varphi}) \geq 1$ and thus $\|C_{\varphi}\| \geq 1$.

Given a holomorphic mapping φ: H → H, we define the operator C_φ in Φ(H), called a *composition operator* with a *symbol* φ, by

$$\mathcal{D}(\mathcal{C}_{arphi}) = \{ f \in \varPhi(\mathcal{H}) \colon f \circ arphi \in \varPhi(\mathcal{H}) \}, \ \mathcal{C}_{arphi} f = f \circ arphi, \quad f \in \mathcal{D}(\mathcal{C}_{arphi}).$$

- C_{φ} is always closed.
- If $\Phi(0) \neq 0$ and $C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$, then $r(C_{\varphi}) \geq 1$ and thus $\|C_{\varphi}\| \geq 1$.

(ロ) (同) (三) (三) (三) (○)

Let $\Phi \in \mathscr{F}$ and $\varphi, \psi \colon \mathcal{H} \to \mathcal{H}$ be holomorphic mappings. Assume that the operators C_{φ} and C_{ψ} are densely defined in $\Phi(\mathcal{H})$. Then the following conditions are equivalent:

$$\ \, \bullet \ \, \mathsf{C}_{\varphi}\subseteq \mathsf{C}_{\psi},$$

2
$$C_arphi=C_\psi$$
 ,

3 there exists $\alpha \in \mathfrak{G}_{\Phi}$ such that $\varphi(\xi) = \alpha \cdot \psi(\xi)$ for every $\xi \in \mathcal{H}$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Proposition

Suppose $\Phi \in \mathscr{F}$, $\varphi \colon \mathcal{H} \to \mathcal{H}$ is a holomorphic mapping and $\mathbb{D}(C_{\varphi}) = \Phi(\mathcal{H})$. Then C_{φ} is bounded and there exists a unique pair $(A, b) \in \mathbf{B}(\mathcal{H}) \times \mathcal{H}$ such that $\varphi = A + b$, i.e., $\varphi(\xi) = A\xi + b$, $\xi \in \mathcal{H}$.

The Segal-Bargmann space over \mathbb{C}^d [B. J. Carswell, B. D. MacCluer, A. Schuster 2003]

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Suppose $\Phi \in \mathscr{F}$, Q is a conjugation on \mathcal{H} and $A \in B(\mathcal{H})$. Then there exists a unitary isomorphism $U = U_{\Phi,Q} \colon \Phi(\mathcal{H}) \to \bigoplus_{n \in \mathscr{X}_{\Phi}} \mathcal{H}^{\odot n}$ such that

$$C_{\mathcal{A}}^* = U^{-1} \Gamma_{\Phi}(\Xi_{\mathcal{Q}}(\mathcal{A})) U,$$

where $\Xi_Q(A) = QAQ$, $\Gamma_{\Phi}(T) = \bigoplus_{n \in \mathscr{Z}_{\Phi}} T^{\odot n}$ and $T^{\odot n}$ is the nth symmetric tensor power of $T \in \mathbf{B}(\mathcal{H})$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - ∽○○

Suppose $\Phi \in \mathscr{F}$ and $A \in \boldsymbol{B}(\mathcal{H})$. Then

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

◆ロ▶ ◆■▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Boundedness of C_A

Theorem

Suppose
$$\Phi \in \mathscr{F}$$
 and $A \in B(\mathcal{H})$. Set^a $m = \min \mathscr{L}_{\Phi}$ and $n = \sup \mathscr{L}_{\Phi}$. Then

1) if
$$n < \infty$$
, then $C_A \in B(\Phi(\mathcal{H}))$,

2) if $n = \infty$, then $C_A \in \boldsymbol{B}(\Phi(\mathcal{H}))$ if and only if $||A|| \leq 1$.

3 Moreover, if
$$C_A \in B(\Phi(H))$$
, then
 $||C_A|| = q_{m,n}(||A||)$ and $r(C_A) = q_{m,n}(r(A))$.

^{*a*} Note that 0 is a zero of Φ of multiplicity *m* and ∞ is a pole of Φ of order *n*.

• If $m \in \mathbb{Z}_+$ and $n \in \mathbb{Z}_+ \cup \{\infty\}$, then

 $q_{m,n}(\vartheta) = \vartheta^m \max\{1, \vartheta^{n-m}\}, \quad \vartheta \in [0, \infty),$

where $\vartheta^0 = 1$ for $\vartheta \in [0, \infty)$, $\vartheta^\infty = \infty$ for $\vartheta \in (1, \infty)$, $\vartheta^\infty = 0$ for $\vartheta \in [0, 1)$ and $1^\infty = 1$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

Boundedness of C_A

Theorem

Suppose
$$\Phi \in \mathscr{F}$$
 and $A \in B(\mathcal{H})$. Set^a $m = \min \mathscr{Z}_{\Phi}$ and $n = \sup \mathscr{Z}_{\Phi}$. Then

1) if
$$n < \infty$$
, then $C_A \in B(\Phi(\mathcal{H}))$,

2) if $n = \infty$, then $C_A \in \boldsymbol{B}(\Phi(\mathcal{H}))$ if and only if $||A|| \leq 1$.

3 Moreover, if
$$C_A ∈ B(Φ(H))$$
, then
 $||C_A|| = q_{m,n}(||A||)$ and $r(C_A) = q_{m,n}(r(A))$.

^a Note that 0 is a zero of Φ of multiplicity *m* and ∞ is a pole of Φ of order *n*.

• If
$$m \in \mathbb{Z}_+$$
 and $n \in \mathbb{Z}_+ \cup \{\infty\}$, then

$$q_{m,n}(\vartheta) = \vartheta^m \max\{1, \vartheta^{n-m}\}, \quad \vartheta \in [0, \infty),$$

where
$$\vartheta^0 = 1$$
 for $\vartheta \in [0, \infty)$, $\vartheta^\infty = \infty$ for $\vartheta \in (1, \infty)$,
 $\vartheta^\infty = 0$ for $\vartheta \in [0, 1)$ and $1^\infty = 1$.

1

When is C_A an isometry, ..., a partial isometry?

Proposition

Suppose $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then C_A is an isometry (resp.: a coisometry, a unitary operator) if and only if A is a coisometry (resp.: an isometry, a unitary operator).

Proposition

Let $\Phi \in \mathscr{F}$ and $P \in \mathbf{B}(\mathcal{H})$. Then C_P is an orthogonal projection if and only if there exists $\alpha \in \mathfrak{G}_{\Phi}$ such that αP is an orthogonal projection.

Proposition

Let $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then C_A is a partial isometry if and only if A is a partial isometry.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

イロト イポト イヨト イヨト

э

When is C_A an isometry, ..., a partial isometry?

Proposition

Suppose $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then C_A is an isometry (resp.: a coisometry, a unitary operator) if and only if A is a coisometry (resp.: an isometry, a unitary operator).

Proposition

Let $\Phi \in \mathscr{F}$ and $P \in \mathbf{B}(\mathcal{H})$. Then C_P is an orthogonal projection if and only if there exists $\alpha \in \mathfrak{G}_{\Phi}$ such that αP is an orthogonal projection.

Proposition

Let $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then C_A is a partial isometry if and only if A is a partial isometry.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

イロト イポト イヨト イヨト

э

When is C_A an isometry, ..., a partial isometry?

Proposition

Suppose $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then C_A is an isometry (resp.: a coisometry, a unitary operator) if and only if A is a coisometry (resp.: an isometry, a unitary operator).

Proposition

Let $\Phi \in \mathscr{F}$ and $P \in \mathbf{B}(\mathcal{H})$. Then C_P is an orthogonal projection if and only if there exists $\alpha \in \mathfrak{G}_{\Phi}$ such that αP is an orthogonal projection.

Proposition

Let $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then C_A is a partial isometry if and only if A is a partial isometry.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

ヘロト ヘワト ヘビト ヘビト

э

Suppose $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Then the following conditions are equivalent:

- $C_A \geqslant 0,$
- 2 there exists $\alpha \in \mathfrak{G}_{\Phi}$ such that $\alpha A \ge 0$,
- **(3)** there exists $B \in \mathbf{B}(\mathcal{H})$ such that $B \ge 0$ and $C_A = C_B$.
- Moreover, if $A \ge 0$, then C_A is selfadjoint and $C_A = C_{A^{1/2}}^* C_{A^{1/2}}$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Let $\Phi \in \mathscr{F}$, $A \in \boldsymbol{B}(\mathcal{H})$ and $t \in (0, \infty)$. Suppose $A \ge 0$. Then

•
$$C_A$$
 is selfadjoint and $C_A \ge 0$,

$$\ 2 \ C_{\mathcal{A}}^t = C_{\mathcal{A}^t},$$

③
$$\mathcal{D}(C_{A^t}) \subseteq \mathcal{D}(C_{A^s})$$
 for every $s \in (0, t)$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

<□> <同> <同> <三> <三> <三> <三> <三> <三> <○<

Suppose that $\Phi \in \mathscr{F}$ and $A \in B(\mathcal{H})$. Let A = U|A| be the polar decomposition of A. Then $C_A = C_U C_{|A^*|}$ is the polar decomposition of C_A . In particular, $|C_A| = C_{|A^*|}$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

(ロ) (同) (三) (三) (三) (○)

If $\Phi \in \mathscr{F}$ and $A, B \in B(\mathcal{H})$, then the following conditions are equivalent:

 $2 ||C_A f|| \leq ||C_B f|| \text{ for all } f \in \mathscr{K}^{\Phi},$

3)
$$\|A^*\xi\| \leq \|B^*\xi\|$$
 for all $\xi \in \mathcal{H}$.

Theorem

If $\Phi \in \mathscr{F}$ and $A \in \mathbf{B}(\mathcal{H})$, then the following conditions are equivalent:

C_A is cohyponormal (resp., hyponormal),

A is hyponormal (resp., cohyponormal).

イロト イポト イヨト イヨト

3

If $\Phi \in \mathscr{F}$ and $A, B \in B(\mathcal{H})$, then the following conditions are equivalent:

 $2 ||C_A f|| \leq ||C_B f|| \text{ for all } f \in \mathscr{K}^{\Phi},$

$$\Im \|A^*\xi\| \leqslant \|B^*\xi\|$$
 for all $\xi \in \mathcal{H}$.

Theorem

If $\Phi \in \mathscr{F}$ and $A \in \mathbf{B}(\mathcal{H})$, then the following conditions are equivalent:

1 C_A is cohyponormal (resp., hyponormal),

2 A is hyponormal (resp., cohyponormal).

ヘロト ヘアト ヘビト ヘビト

э.

Let $\Phi \in \mathscr{F}$ and let $A, B \in \mathbf{B}_{+}(\mathcal{H})$. Then the following conditions are equivalent:

ヘロト 人間 ト ヘヨト ヘヨト

3

Generalized inverses

Suppose A ∈ B(H) is selfadjoint. It is well-known (and easy to verify) that A|_{R(A)}: R(A) → R(A) is a bijection.

• Hence, we may define a generalized inverse A^{-1} of A by

$$A^{-1} = \left(A|_{\overline{\mathcal{R}(A)}}\right)^{-1}.$$

• A^{-1} is an operator in \mathcal{H} (not necessarily densely defined) such that

$$\mathcal{D}(A^{-1}) = \mathcal{R}(A), \quad \mathcal{R}(A^{-1}) = \overline{\mathcal{R}(A)},$$

 $AA^{-1} = I_{\mathcal{R}(A)} \quad \text{and} \quad A^{-1}A = P,$

where $I_{\mathcal{R}(A)}$ is the identity operator on $\mathcal{R}(A)$ and P is the orthogonal projection of \mathcal{H} onto $\overline{\mathcal{R}(A)}$.

• If $A \in B_+(\mathcal{H})$, then we write

$$A^{-t} = (A^t)^{-1}, \quad t \in (0,\infty).$$

ヘロン 人間 とくほ とくほ とう

Generalized inverses

- Suppose A ∈ B(H) is selfadjoint. It is well-known (and easy to verify) that A|_{R(A)}: R(A) → R(A) is a bijection.
- Hence, we may define a generalized inverse A^{-1} of A by

$$A^{-1} = \left(A|_{\overline{\mathcal{R}(A)}}\right)^{-1}$$

• A^{-1} is an operator in \mathcal{H} (not necessarily densely defined) such that

$$\mathcal{D}(A^{-1}) = \mathcal{R}(A), \quad \mathcal{R}(A^{-1}) = \overline{\mathcal{R}(A)},$$

 $AA^{-1} = I_{\mathcal{R}(A)} \quad \text{and} \quad A^{-1}A = P,$

where $I_{\mathcal{R}(A)}$ is the identity operator on $\mathcal{R}(A)$ and P is the orthogonal projection of \mathcal{H} onto $\overline{\mathcal{R}(A)}$.

• If $A \in \boldsymbol{B}_+(\mathcal{H})$, then we write

$$A^{-t} = (A^t)^{-1}, \quad t \in (0,\infty).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Generalized inverses

- Suppose A ∈ B(H) is selfadjoint. It is well-known (and easy to verify) that A|_{R(A)}: R(A) → R(A) is a bijection.
- Hence, we may define a generalized inverse A^{-1} of A by

$$A^{-1}=\big(A|_{\overline{\mathcal{R}(A)}}\big)^{-1}.$$

 A⁻¹ is an operator in H (not necessarily densely defined) such that

$$\mathcal{D}(A^{-1}) = \mathcal{R}(A), \quad \mathcal{R}(A^{-1}) = \overline{\mathcal{R}(A)},$$

 $AA^{-1} = I_{\mathcal{R}(A)} \text{ and } A^{-1}A = P,$

where $I_{\mathcal{R}(A)}$ is the identity operator on $\mathcal{R}(A)$ and P is the orthogonal projection of \mathcal{H} onto $\overline{\mathcal{R}(A)}$.

• If $A \in B_+(\mathcal{H})$, then we write

$$A^{-t} = (A^t)^{-1}, \quad t \in (0, \infty).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Generalized inverses

- Suppose A ∈ B(H) is selfadjoint. It is well-known (and easy to verify) that A|_{R(A)}: R(A) → R(A) is a bijection.
- Hence, we may define a generalized inverse A^{-1} of A by

$$A^{-1}=\big(A|_{\overline{\mathcal{R}(A)}}\big)^{-1}.$$

 A⁻¹ is an operator in H (not necessarily densely defined) such that

$$\mathcal{D}(A^{-1}) = \mathcal{R}(A), \quad \mathcal{R}(A^{-1}) = \overline{\mathcal{R}(A)},$$

 $AA^{-1} = I_{\mathcal{R}(A)} \text{ and } A^{-1}A = P,$

where $I_{\mathcal{R}(A)}$ is the identity operator on $\mathcal{R}(A)$ and P is the orthogonal projection of \mathcal{H} onto $\overline{\mathcal{R}(A)}$.

• If $A \in \boldsymbol{B}_+(\mathcal{H})$, then we write

$$\mathbf{A}^{-t} = (\mathbf{A}^t)^{-1}, \quad t \in (0,\infty).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

The partial order \preccurlyeq

• Given two operators $A, B \in \mathbf{B}_+(\mathcal{H})$, we write $B^{-1} \preccurlyeq A^{-1}$ if

$$\mathcal{D}(A^{-1/2}) \subseteq \mathcal{D}(B^{-1/2}), \\ \|B^{-1/2}f\| \leqslant \|A^{-1/2}f\|, \quad f \in \mathcal{D}(A^{-1/2}).$$

• If
$$\mathcal{R}(A) = \mathcal{R}(B) = \mathcal{H} \ (\iff A^{-1}, B^{-1} \in \boldsymbol{B}(\mathcal{H}))$$
, then $B^{-1} \preccurlyeq A^{-1}$ if and only if $B^{-1} \preccurlyeq A^{-1}$
(i.e., $\langle B^{-1}f, f \rangle \preccurlyeq \langle A^{-1}f, f \rangle$ for all $f \in \mathcal{H}$.)

Lemma

```
If A, B \in \mathbf{B}_{+}(\mathcal{H}) and \varepsilon \in (0, \infty), then TFAE:

(i) B^{-1} \preccurlyeq A^{-1},

(ii) A \leqslant B,

(iii) (\varepsilon + B)^{-1} \leqslant (\varepsilon + A)^{-1}.
```

The partial order \preccurlyeq

• Given two operators $A, B \in \mathbf{B}_+(\mathcal{H})$, we write $B^{-1} \preccurlyeq A^{-1}$ if

$$\mathcal{D}(A^{-1/2}) \subseteq \mathcal{D}(B^{-1/2}),$$
$$\|B^{-1/2}f\| \leqslant \|A^{-1/2}f\|, \quad f \in \mathcal{D}(A^{-1/2}).$$

• If
$$\mathcal{R}(A) = \mathcal{R}(B) = \mathcal{H}$$
 ($\iff A^{-1}, B^{-1} \in \mathbf{B}(\mathcal{H})$), then $B^{-1} \preccurlyeq A^{-1}$ if and only if $B^{-1} \leqslant A^{-1}$
(i.e., $\langle B^{-1}f, f \rangle \leqslant \langle A^{-1}f, f \rangle$ for all $f \in \mathcal{H}$.)

Lemma

If $A, B \in \mathbf{B}_{+}(\mathcal{H})$ and $\varepsilon \in (0, \infty)$, then TFAE: (i) $B^{-1} \preccurlyeq A^{-1}$, (ii) $A \leqslant B$, (iii) $(\varepsilon + B)^{-1} \leqslant (\varepsilon + A)^{-1}$.

The partial order \preccurlyeq

• Given two operators $A, B \in \mathbf{B}_+(\mathcal{H})$, we write $B^{-1} \preccurlyeq A^{-1}$ if

$$\mathcal{D}(A^{-1/2}) \subseteq \mathcal{D}(B^{-1/2}),$$
$$\|B^{-1/2}f\| \leqslant \|A^{-1/2}f\|, \quad f \in \mathcal{D}(A^{-1/2}).$$

• If
$$\mathcal{R}(A) = \mathcal{R}(B) = \mathcal{H}$$
 ($\iff A^{-1}, B^{-1} \in \mathbf{B}(\mathcal{H})$), then $B^{-1} \preccurlyeq A^{-1}$ if and only if $B^{-1} \leqslant A^{-1}$
(i.e., $\langle B^{-1}f, f \rangle \leqslant \langle A^{-1}f, f \rangle$ for all $f \in \mathcal{H}$.)

Lemma

If $A, B \in \mathbf{B}_{+}(\mathcal{H})$ and $\varepsilon \in (0, \infty)$, then TFAE: (i) $B^{-1} \preccurlyeq A^{-1}$, (ii) $A \leqslant B$, (iii) $(\varepsilon + B)^{-1} \leqslant (\varepsilon + A)^{-1}$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

イロン 不同 とくほ とくほ とう

ъ

Ranges of WOT limits

Lemma

Assume $\{A_P\}_{P \in \mathcal{P}} \subseteq \mathbf{B}_+(\mathcal{H})$ is a monotonically decreasing net which converges in WOT to $A \in \mathbf{B}_+(\mathcal{H})$. If $\xi \in \mathcal{H}$, then TFAE: (i) $\xi \in \mathcal{R}(A^{1/2})$,

(ii) for every $P \in \mathcal{P}, \xi \in \mathcal{R}(A_P^{1/2})$ and $c := \sup_{P \in \mathcal{P}} \|A_P^{-1/2}\xi\| < \infty$. Moreover, if $\xi \in \mathcal{R}(A^{1/2})$, then $c = \|A^{-1/2}\xi\|$.

Apply

Theorem (Mac Nerney-Shmul'yan theorem)

If $A \in B_+(\mathcal{H})$ and $\xi \in \mathcal{H}$, then TFAE:

(i) $\xi \in \mathcal{R}(A^{1/2})$,

(ii) there exists $c \in \mathbb{R}_+$ such that $|\langle \xi, h \rangle| \leq c ||A^{1/2}h||$ for all $h \in \mathcal{H}$.

Moreover, if $\xi \in \mathcal{R}(A^{1/2})$, then the smallest $c \in \mathbb{R}_+$ in (ii) is equal to $||A^{-1/2}\xi||$.

Ranges of WOT limits

Lemma

Assume $\{A_P\}_{P \in \mathcal{P}} \subseteq \mathbf{B}_+(\mathcal{H})$ is a monotonically decreasing net which converges in WOT to $A \in \mathbf{B}_+(\mathcal{H})$. If $\xi \in \mathcal{H}$, then TFAE: (i) $\xi \in \mathcal{R}(A^{1/2})$,

(ii) for every $P \in \mathcal{P}, \xi \in \mathcal{R}(A_P^{1/2})$ and $c := \sup_{P \in \mathcal{P}} \|A_P^{-1/2}\xi\| < \infty$. Moreover, if $\xi \in \mathcal{R}(A^{1/2})$, then $c = \|A^{-1/2}\xi\|$.

Apply

Theorem (Mac Nerney-Shmul'yan theorem)

If $A \in B_+(\mathcal{H})$ and $\xi \in \mathcal{H}$, then TFAE:

(i) $\xi \in \mathcal{R}(A^{1/2})$,

(ii) there exists $c \in \mathbb{R}_+$ such that $|\langle \xi, h \rangle| \leq c \|A^{1/2}h\|$ for all $h \in \mathcal{H}$.

Moreover, if $\xi \in \mathcal{R}(A^{1/2})$, then the smallest $c \in \mathbb{R}_+$ in (ii) is equal to $||A^{-1/2}\xi||$.

Boundedness of C_{φ} in $\exp(\mathcal{H})$

Theorem (main)

Let $\Phi = \exp, \varphi \colon \mathcal{H} \to \mathcal{H}$ be a holomorphic mapping and $\mathcal{P} \subseteq \mathbf{B}(\mathcal{H})$ be an upward-directed partially ordered set of orthogonal projections of finite rank such that $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P) = \mathcal{H}$. Then the following conditions are equivalent:

(i)
$$C_{\varphi} \in \boldsymbol{B}(\exp(\mathcal{H})),$$

(ii)
$$\varphi = A + b$$
, where $A \in B(\mathcal{H})$, $||A|| \leq 1$, $b \in \mathcal{R}(I - |A^*|P|A^*|)$
for every $P \in \mathcal{P}$ and

$$\mathcal{S}(\textit{A},\textit{b}) := \sup\{\langle (\textit{I} - |\textit{A}^*|\textit{P}|\textit{A}^*|)^{-1}\textit{b},\textit{b}
angle : \textit{P} \in \mathcal{P} \} < \infty,$$

(iii)
$$\varphi = A + b$$
, where $A \in B(\mathcal{H})$, $||A|| \leq 1$ and $b \in \mathcal{R}((I - AA^*)^{1/2})$.

• Moreover, if $C_{\varphi} \in \boldsymbol{B}(\exp(\mathcal{H}))$, then

$$\|C_{\varphi}\|^2 = \exp(\|(I - AA^*)^{-1/2}b\|^2) = \exp(S(A, b)).$$

- The case of H = Cⁿ was proved by Carswell, MacCluer and Schuster in 2003 (of course without (ii)).
- In fact, our statement differs from the above, however they are equivalent if dim H < ∞.
- Trieu Le

ヘロア 人間 アメヨア 人口 ア

1

- The case of H = Cⁿ was proved by Carswell, MacCluer and Schuster in 2003 (of course without (ii)).
- In fact, our statement differs from the above, however they are equivalent if dim H < ∞.

Trieu Le

ヘロン 人間 とくほ とくほ とう

∃ <2 <</p>

- The case of H = Cⁿ was proved by Carswell, MacCluer and Schuster in 2003 (of course without (ii)).
- In fact, our statement differs from the above, however they are equivalent if dim H < ∞.
- Trieu Le

ヘロト ヘアト ヘビト ヘビト

∃ <2 <</p>

• We begin with the following proposition.

Proposition

If $\Phi \in \mathscr{F}$, $\varphi \colon \mathcal{H} \to \mathcal{H}$ is a holomorphic mapping and $\mathcal{D}(C_{\varphi}) = \Phi(\mathcal{H})$, then C_{φ} is bounded and there exists a unique pair $(A, b) \in \mathbf{B}(\mathcal{H}) \times \mathcal{H}$ such that $\varphi = A + b$.

In view of the above proposition, there is no loss of generality in assuming that $\varphi = A + b$, where $A \in B(\mathcal{H})$ and $b \in \mathcal{H}$, i.e., φ is an affine mapping.

イロト 不得 とくほ とくほとう

• We begin with the following proposition.

Proposition

If $\Phi \in \mathscr{F}$, $\varphi \colon \mathcal{H} \to \mathcal{H}$ is a holomorphic mapping and $\mathcal{D}(C_{\varphi}) = \Phi(\mathcal{H})$, then C_{φ} is bounded and there exists a unique pair $(A, b) \in \mathbf{B}(\mathcal{H}) \times \mathcal{H}$ such that $\varphi = A + b$.

In view of the above proposition, there is no loss of generality in assuming that $\varphi = A + b$, where $A \in B(\mathcal{H})$ and $b \in \mathcal{H}$, i.e., φ is an affine mapping.

ヘロン 人間 とくほ とくほ とう

An idea the proof of the Proposition.
 Noting that for all ξ ∈ H \ {0},

$$rac{\Phi(\|arphi(\xi)\|^2)}{\Phi(\|\xi\|^2)} = rac{\|\mathcal{K}^{\Phi}_{arphi(\xi)}\|^2}{\|\mathcal{K}^{\Phi}_{\xi}\|^2} = \left\|\mathcal{C}^*_{arphi}\left(rac{\mathcal{K}^{\Phi}_{\xi}}{\|\mathcal{K}^{\Phi}_{\xi}\|}
ight)
ight\|^2 \leqslant \|\mathcal{C}_{arphi}\|^2,$$

and using

Lemma (The cancellation principle)

If $\Phi \in \mathscr{F}$ and $f, g: \mathcal{H} \to [0, \infty)$ are such that $\liminf_{\|\xi\|\to\infty} g(\xi) > 0$ and $\limsup_{\|\xi\|\to\infty} \frac{\Phi(f(\xi))}{\Phi(g(\xi))} < \infty$, then $\limsup_{\|\xi\|\to\infty} \frac{f(\xi)}{g(\xi)} < \infty$.

we see that $\limsup_{\|\xi\|\to\infty} \frac{\|\varphi(\xi)\|}{\|\xi\|} < \infty$. Since φ is an entire function, we conclude that [!] φ is of the form $\varphi = A + b$.

<ロ> (四) (四) (三) (三) (三) (三)

An idea the proof of the Proposition.
 Noting that for all ξ ∈ H \ {0},

$$\frac{\Phi(\|\varphi(\xi)\|^2)}{\Phi(\|\xi\|^2)} = \frac{\|\mathcal{K}^{\varPhi}_{\varphi(\xi)}\|^2}{\|\mathcal{K}^{\varPhi}_{\xi}\|^2} = \left\|\mathcal{C}^*_{\varphi}\left(\frac{\mathcal{K}^{\varPhi}_{\xi}}{\|\mathcal{K}^{\varPhi}_{\xi}\|}\right)\right\|^2 \leqslant \|\mathcal{C}_{\varphi}\|^2,$$

and using

Lemma (The cancellation principle)

$$\begin{split} & \text{If } \Phi \in \mathscr{F} \text{ and } f,g \colon \mathcal{H} \to [0,\infty) \text{ are such that} \\ & \liminf_{\|\xi\| \to \infty} g(\xi) > 0 \text{ and } \limsup_{\|\xi\| \to \infty} \frac{\Phi(f(\xi))}{\Phi(g(\xi))} < \infty, \text{ then} \\ & \limsup_{\|\xi\| \to \infty} \frac{f(\xi)}{g(\xi)} < \infty. \end{split}$$

we see that $\limsup_{\|\xi\|\to\infty} \frac{\|\varphi(\xi)\|}{\|\xi\|} < \infty$. Since φ is an entire function, we conclude that [!] φ is of the form $\varphi = A + b$.

An idea the proof of the Proposition.
 Noting that for all ξ ∈ H \ {0},

$$\frac{\Phi(\|\varphi(\xi)\|^2)}{\Phi(\|\xi\|^2)} = \frac{\|\mathcal{K}^{\varPhi}_{\varphi(\xi)}\|^2}{\|\mathcal{K}^{\varPhi}_{\xi}\|^2} = \left\|\mathcal{C}^*_{\varphi}\left(\frac{\mathcal{K}^{\varPhi}_{\xi}}{\|\mathcal{K}^{\varPhi}_{\xi}\|}\right)\right\|^2 \leqslant \|\mathcal{C}_{\varphi}\|^2,$$

and using

Lemma (The cancellation principle)

 $\begin{array}{l} \textit{If } \Phi \in \mathscr{F} \textit{ and } f,g \colon \mathcal{H} \to [0,\infty) \textit{ are such that} \\ \liminf_{\|\xi\| \to \infty} g(\xi) > 0 \textit{ and } \limsup_{\|\xi\| \to \infty} \frac{\Phi(f(\xi))}{\Phi(g(\xi))} < \infty, \textit{ then} \\ \limsup_{\|\xi\| \to \infty} \frac{f(\xi)}{g(\xi)} < \infty. \end{array}$

we see that $\limsup_{\|\xi\|\to\infty} \frac{\|\varphi(\xi)\|}{\|\xi\|} < \infty$. Since φ is an entire function, we conclude that [!] φ is of the form $\varphi = A + b$.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → り Q (?)

• The proof of (i) \Leftrightarrow (ii) and $||C_{\varphi}||^2 = \exp(S(A, b))$:

Proposition

If $\Phi \in \mathscr{F}$, $\varphi = A + b$ and $\psi = |A^*| + b$ ($A \in B(\mathcal{H})$, $b \in \mathcal{H}$), then (i) $C_{i\alpha} \in B(\Phi(\mathcal{H}))$ if and only if $C_{i\beta} \in B(\Phi(\mathcal{H}))$.

(ii) $\|C_{\varphi}\| = \|C_{\psi}\|$ provided $C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H})).$

Lemma (A version of (i) \Leftrightarrow (ii) of the main result when $A \ge 0$)

Suppose $A \in \mathbf{B}_{+}(\mathcal{H})$, $b \in \mathcal{H}$ and $\mathcal{P} \subseteq \mathbf{B}(\mathcal{H})$ is an upward-directed partially ordered set of finite rank orthogonal projections such that $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P) = \mathcal{H}$. Then TFAE:

(i) $C_{A+b} \in \boldsymbol{B}(\exp(\mathcal{H})),$

(ii) $||A|| \leq 1$, $b \in \mathcal{R}(I - APA)$ for every $P \in \mathcal{P}$ and

 $S(A,b) := \sup\{\langle (I - APA)^{-1}b, b \rangle \colon P \in \mathcal{P}\} < \infty.$

Moreover, if (ii) holds, then $||C_{A+b}||^2 = \exp(S(A, b))$.

• The proof of (i) \Leftrightarrow (ii) and $||C_{\varphi}||^2 = \exp(S(A, b))$:

Proposition

If $\Phi \in \mathscr{F}$, $\varphi = \mathsf{A} + b$ and $\psi = |\mathsf{A}^*| + b$ ($\mathsf{A} \in \mathsf{B}(\mathcal{H})$, $b \in \mathcal{H}$), then

(i) $C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$ if and only if $C_{\psi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$,

(ii) $\|C_{\varphi}\| = \|C_{\psi}\|$ provided $C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H})).$

Lemma (A version of (i) \Leftrightarrow (ii) of the main result when $A \ge 0$).

Suppose $A \in B_+(\mathcal{H})$, $b \in \mathcal{H}$ and $\mathcal{P} \subseteq B(\mathcal{H})$ is an upward-directed partially ordered set of finite rank orthogonal projections such that $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P) = \mathcal{H}$. Then TFAE:

(i) $C_{A+b} \in \boldsymbol{B}(\exp(\mathcal{H})),$

(ii) $||A|| \leq 1$, $b \in \mathcal{R}(I - APA)$ for every $P \in \mathcal{P}$ and

 $S(A,b) := \sup\{\langle (I - APA)^{-1}b, b \rangle \colon P \in \mathcal{P}\} < \infty.$

Moreover, if (ii) holds, then $||C_{A+b}||^2 = \exp(S(A, b))$.

• The proof of (i) \Leftrightarrow (ii) and $||C_{\varphi}||^2 = \exp(S(A, b))$:

Proposition

If $\Phi \in \mathscr{F}$, $\varphi = \mathsf{A} + b$ and $\psi = |\mathsf{A}^*| + b$ ($\mathsf{A} \in \mathsf{B}(\mathcal{H})$, $b \in \mathcal{H}$), then

(i)
$$C_{\varphi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$$
 if and only if $C_{\psi} \in \boldsymbol{B}(\Phi(\mathcal{H}))$,

(ii)
$$\|C_{\varphi}\| = \|C_{\psi}\|$$
 provided $C_{\varphi} \in B(\Phi(\mathcal{H})).$

Lemma (A version of (i) \Leftrightarrow (ii) of the main result when $A \ge 0$)

Suppose $A \in B_+(\mathcal{H})$, $b \in \mathcal{H}$ and $\mathcal{P} \subseteq B(\mathcal{H})$ is an upward-directed partially ordered set of finite rank orthogonal projections such that $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P) = \mathcal{H}$. Then TFAE:

(i) $C_{A+b} \in \boldsymbol{B}(\exp(\mathcal{H})),$

(ii) $||A|| \leq 1$, $b \in \mathcal{R}(I - APA)$ for every $P \in \mathcal{P}$ and

 $S(A, b) := \sup\{\langle (I - APA)^{-1}b, b \rangle \colon P \in \mathcal{P}\} < \infty.$

Moreover, if (ii) holds, then $||C_{A+b}||^2 = \exp(S(A, b))$.

Proof of the Lemma.

(i) \Rightarrow (ii) One can show [!] that $C_{A+b} \in B(\exp(\mathcal{H}))$ implies that $||A|| \leq 1$ and $b \in \mathcal{R}((I - A^2)^{1/2})$. Take $P \in \mathcal{P}$. Since $APA \leq A^2$, we see that $I - APA \geq I - A^2 \geq 0$. By the Douglas theorem we have

$$b \in \mathcal{R}((I - A^2)^{1/2}) \subseteq \mathcal{R}((I - APA)^{1/2}) = \mathcal{R}(I - APA).$$

This, the fact that dim $\mathcal{R}((APA)^{1/2}) < \infty$ and

Proposition

Suppose $A \in \mathbf{B}_{+}(\mathcal{H})$, $b \in \mathcal{H}$ and dim $\mathcal{R}(A) < \infty$. Then $C_{A+b} \in \mathbf{B}(\exp(\mathcal{H}))$ if and only if $||A|| \leq 1$ and $b \in \mathcal{R}(I - A^{2})$. Moreover, if $C_{A+b} \in \mathbf{B}(\exp(\mathcal{H}))$, then

$$\|C_{A+b}\|^2 = \exp(\langle (I-A^2)^{-1}b,b\rangle).$$

yield $C_{(APA)^{1/2}+b} \in \boldsymbol{B}(\exp(\mathcal{H})).$

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

イロト イポト イヨト イヨト

Proof of the Lemma.

(i) \Rightarrow (ii) One can show [!] that $C_{A+b} \in B(\exp(\mathcal{H}))$ implies that $||A|| \leq 1$ and $b \in \mathcal{R}((I - A^2)^{1/2})$. Take $P \in \mathcal{P}$. Since $APA \leq A^2$, we see that $I - APA \geq I - A^2 \geq 0$. By the Douglas theorem we have

$$b \in \mathcal{R}((I - A^2)^{1/2}) \subseteq \mathcal{R}((I - APA)^{1/2}) = \mathcal{R}(I - APA).$$

This, the fact that dim $\mathcal{R}((APA)^{1/2}) < \infty$ and

Proposition

Suppose $A \in B_+(\mathcal{H})$, $b \in \mathcal{H}$ and dim $\mathcal{R}(A) < \infty$. Then $C_{A+b} \in B(\exp(\mathcal{H}))$ if and only if $||A|| \leq 1$ and $b \in \mathcal{R}(I - A^2)$. Moreover, if $C_{A+b} \in B(\exp(\mathcal{H}))$, then

$$\|\mathcal{C}_{A+b}\|^2 = \exp(\langle (I-A^2)^{-1}b,b\rangle).$$

yield $C_{(APA)^{1/2}+b} \in \boldsymbol{B}(\exp(\mathcal{H})).$

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

イロト イポト イヨト イヨト

Proof of the Lemma.

(i) \Rightarrow (ii) One can show [!] that $C_{A+b} \in B(\exp(\mathcal{H}))$ implies that $||A|| \leq 1$ and $b \in \mathcal{R}((I - A^2)^{1/2})$. Take $P \in \mathcal{P}$. Since $APA \leq A^2$, we see that $I - APA \geq I - A^2 \geq 0$. By the Douglas theorem we have

$$b \in \mathcal{R}((I - A^2)^{1/2}) \subseteq \mathcal{R}((I - APA)^{1/2}) = \mathcal{R}(I - APA).$$

This, the fact that dim $\mathcal{R}((\textit{APA})^{1/2}) < \infty$ and

Proposition

Suppose $A \in B_+(\mathcal{H})$, $b \in \mathcal{H}$ and dim $\mathcal{R}(A) < \infty$. Then $C_{A+b} \in B(\exp(\mathcal{H}))$ if and only if $||A|| \leq 1$ and $b \in \mathcal{R}(I - A^2)$. Moreover, if $C_{A+b} \in B(\exp(\mathcal{H}))$, then

$$\|\mathcal{C}_{\mathcal{A}+b}\|^2 = \exp(\langle (\mathcal{I}-\mathcal{A}^2)^{-1}b,b\rangle).$$

yield $C_{(APA)^{1/2}+b} \in \boldsymbol{B}(\exp(\mathcal{H})).$

イロト イポト イヨト イヨト

Since C_P is an orthogonal projection [!], $C_{AP+b} = C_P C_{A+b} \in B(\exp(\mathcal{H}))$ and $||C_{B+b}|| = ||C_{|B^*|+b}||$, one can deduce that (with B = AP) $\exp(\langle (I - APA)^{-1}b, b \rangle) = \|C_{(APA)^{1/2}+b}\|^2$ $= \|C_{AP+b}\|^2 = \|C_P C_{A+b}\|^2 \leq \|C_{A+b}\|^2.$ This implies that $\exp(S(A, b)) \leq ||C_{A+b}||^2$. • (ii) \Rightarrow (i) Take $P \in \mathcal{P}$. Using the Proposition from the $C_{(APA)^{1/2}+b} \in B(\exp(\mathcal{H})), ||C_{AP+b}|| = ||C_{(APA)^{1/2}+b}||$ and

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

・ロト ・ 理 ト ・ ヨ ト ・

3

Since C_P is an orthogonal projection [!], $C_{AP+b} = C_P C_{A+b} \in \mathbf{B}(\exp(\mathcal{H}))$ and $||C_{B+b}|| = ||C_{|B^*|+b}||$, one can deduce that (with B = AP)

$$\exp(\langle (I - APA)^{-1}b, b \rangle) = \|C_{(APA)^{1/2}+b}\|^2$$

= $\|C_{AP+b}\|^2 = \|C_P C_{A+b}\|^2 \le \|C_{A+b}\|^2.$

This implies that $\exp(S(A, b)) \leq ||C_{A+b}||^2$.

• (ii) \Rightarrow (i) Take $P \in \mathcal{P}$. Using the Proposition from the previous slide, we see that $C_{AP+b} \in B(\exp(\mathcal{H}))$, $C_{(APA)^{1/2}+b} \in B(\exp(\mathcal{H}))$, $\|C_{AP+b}\| = \|C_{(APA)^{1/2}+b}\|$ and

$$\begin{split} \|C_P C_{A+b} f\|^2 &= \|C_{AP+b} f\|^2 \\ &\leqslant \|C_{(APA)^{1/2}+b}\|^2 \|f\|^2 \\ &= \exp(\langle (I - APA)^{-1} b, b \rangle) \|f\|^2 \\ &\leqslant \exp(S(A,b)) \|f\|^2, \quad f \in \mathcal{D}(C_{A+b}). \end{split}$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Now applying

Proposition

If $\Phi \in \mathscr{F}$ and $\mathcal{P} \subseteq \boldsymbol{B}(\mathcal{H})$ is an upward-directed partially ordered set of orthogonal projections, then

$$\lim_{\mathsf{P}\in\mathcal{P}} C_{\mathsf{P}} f = C_{\mathsf{Q}} f, \quad f \in \Phi(\mathcal{H}),$$

where Q is the orthogonal projection of \mathcal{H} onto $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P)$.

we deduce that

$$\|C_{A+b}f\|^2 \leq \exp(S(A,b))\|f\|^2, \quad f \in \mathcal{D}(C_{A+b}).$$

Since composition operators are closed and C_{A+b} is densely defined [!], this implies that $C_{A+b} \in \mathbf{B}(\exp(\mathcal{H}))$ and $\|C_{A+b}\|^2 \leq \exp(S(A, b))$, which completes the proof of the Lemma.

Now applying

Proposition

If $\Phi \in \mathscr{F}$ and $\mathcal{P} \subseteq \mathbf{B}(\mathcal{H})$ is an upward-directed partially ordered set of orthogonal projections, then

$$\lim_{\mathsf{P}\in\mathcal{P}} C_{\mathsf{P}} f = C_{\mathsf{Q}} f, \quad f \in \Phi(\mathcal{H}),$$

where Q is the orthogonal projection of \mathcal{H} onto $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P)$.

we deduce that

$$\|C_{A+b}f\|^2 \leq \exp(S(A,b))\|f\|^2, \quad f \in \mathcal{D}(C_{A+b}).$$

Since composition operators are closed and C_{A+b} is densely defined [!], this implies that $C_{A+b} \in \mathbf{B}(\exp(\mathcal{H}))$ and $\|C_{A+b}\|^2 \leq \exp(S(A, b))$, which completes the proof of the Lemma.

 The proof of (ii)⇔(iii) of the main result. Without loss of generality we may assume that A is a contraction. Set A_P = I - |A^{*}|P|A^{*}| for P ∈ P. Then A_P ∈ B₊(H) for all P ∈ P. Since V_{P∈P} R(P) = H, we see that {P}_{P∈P} is a monotonically increasing net which converges in the SOT to the identity operator *I*.

This implies that $\{A_P\}_{P\in\mathcal{P}} \subseteq B_+(\mathcal{H})$ is a monotonically decreasing net which converges in the WOT to $I - |A^*|^2$. Since dim $\mathcal{R}(|A^*|P|A^*|) < \infty$ for all $P \in \mathcal{P}$, one can show [!] that $\mathcal{R}(A_P)$ is closed and $\mathcal{R}(A_P) = \mathcal{R}(A_P^{1/2})$ for all $P \in \mathcal{P}$. Hence, by our first lemma in this presentation, $\langle A_P^{-1}\xi, \xi \rangle = ||A_P^{-1/2}\xi||^2$ for all $\xi \in \mathcal{R}(A_P)$ and $P \in \mathcal{P}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The proof of (ii)⇔(iii) of the main result. Without loss of generality we may assume that A is a contraction. Set $A_P = I - |A^*|P|A^*|$ for $P \in \mathcal{P}$. Then $A_P \in \boldsymbol{B}_+(\mathcal{H})$ for all $P \in \mathcal{P}$. Since $\bigvee_{P \in \mathcal{P}} \mathcal{R}(P) = \mathcal{H}$, we see that $\{P\}_{P \in \mathcal{P}}$ is a monotonically increasing net which converges in the SOT to the identity operator *I*. This implies that $\{A_P\}_{P \in \mathcal{P}} \subseteq \boldsymbol{B}_+(\mathcal{H})$ is a monotonically decreasing net which converges in the WOT to $I - |A^*|^2$. Since dim $\mathcal{R}(|A^*|P|A^*|) < \infty$ for all $P \in \mathcal{P}$, one can show [!] that $\mathcal{R}(A_P)$ is closed and $\mathcal{R}(A_P) = \mathcal{R}(A_P^{1/2})$ for all $P \in \mathcal{P}$. Hence, by our first lemma in this presentation, $\langle A_P^{-1}\xi,\xi\rangle = \|A_P^{-1/2}\xi\|^2$ for all $\xi \in \mathcal{R}(A_P)$ and $P \in \mathcal{P}$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Now applying

Lemma

Assume $\{A_P\}_{P \in \mathcal{P}} \subseteq B_+(\mathcal{H})$ is a monotonically decreasing net which converges in WOT to $A \in B_+(\mathcal{H})$. If $\xi \in \mathcal{H}$, then TFAE:

(i) $\xi \in \mathcal{R}(A^{1/2})$,

(ii) for every $P \in \mathcal{P}$, $\xi \in \mathcal{R}(A_P^{1/2})$ and $c := \sup_{P \in \mathcal{P}} \|A_P^{-1/2}\xi\| < \infty$.

Moreover, if $\xi \in \mathcal{R}(A^{1/2})$, then $c = \|A^{-1/2}\xi\|$.

we deduce that the conditions (ii) and (iii) are equivalent and $\exp(\|(I - AA^*)^{-1/2}b\|^2) = \exp(S(A, b))$. This completes the proof of the main result.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Now applying

Lemma

Assume $\{A_P\}_{P \in \mathcal{P}} \subseteq B_+(\mathcal{H})$ is a monotonically decreasing net which converges in WOT to $A \in B_+(\mathcal{H})$. If $\xi \in \mathcal{H}$, then TFAE:

(i)
$$\xi \in \mathcal{R}(A^{1/2})$$
,

(ii) for every $P \in \mathcal{P}$, $\xi \in \mathcal{R}(A_P^{1/2})$ and $c := \sup_{P \in \mathcal{P}} \|A_P^{-1/2}\xi\| < \infty$.

Moreover, if $\xi \in \mathcal{R}(A^{1/2})$, then $c = \|A^{-1/2}\xi\|$.

we deduce that the conditions (ii) and (iii) are equivalent and $\exp(\|(I - AA^*)^{-1/2}b\|^2) = \exp(S(A, b))$. This completes the proof of the main result.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem (Carswell, MacCluer, Schuster)

Let $\varphi : \mathbb{C}^d \to \mathbb{C}^d$ be a holomorphic mapping $(d \in \mathbb{N})$. Then $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$ if and only if there exist $A \in \mathbf{B}(\mathbb{C}^d)$ and $b \in \mathbb{C}^d$ such that $\varphi = A + b$, $||A|| \leq 1$ and $b \in \mathcal{R}(I - AA^*)$. Moreover, if $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$, then

$$\|C_{\varphi}\|^2 = \exp(\langle (I - AA^*)^{-1}b, b \rangle).$$

• Proof

First we reduce the proof to the case of d = 1 (skipped).

ヘロト 人間 とくほ とくほ とう

э.

Theorem (Carswell, MacCluer, Schuster)

Let $\varphi : \mathbb{C}^d \to \mathbb{C}^d$ be a holomorphic mapping $(d \in \mathbb{N})$. Then $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$ if and only if there exist $A \in \mathbf{B}(\mathbb{C}^d)$ and $b \in \mathbb{C}^d$ such that $\varphi = A + b$, $||A|| \leq 1$ and $b \in \mathcal{R}(I - AA^*)$. Moreover, if $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$, then

$$\|C_{\varphi}\|^{2} = \exp(\langle (I - AA^{*})^{-1}b, b \rangle).$$

Proof

First we reduce the proof to the case of d = 1 (skipped).

ヘロト 人間 とくほ とくほ とう

э.

Lemma

Fix $\alpha \in [0, 1)$ and $b \in \mathbb{C}$. Let D be an operator in \mathcal{B}_1 given by $(Df)(z) = f(\alpha z + b) \exp(z\overline{b}), \quad z \in \mathbb{C}, \ f \in \mathcal{B}_1.$ Then $D \in \mathcal{B}(\mathcal{B}_1)$ and $\|D\| \leq \frac{\exp\left(\frac{|b|^2}{1-\alpha}\right)}{\sqrt{1-\alpha^2}}.$

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

(ロ) (同) (三) (三) (三) (○)

The case of d = 1

Proof of the Lemma:

$$\begin{split} \pi \int_{\mathbb{C}} |Df|^2 \, \mathrm{d}\,\mu_1 &= \int_{\mathbb{C}} |f(\alpha z + b)|^2 \, \mathrm{e}^{2\mathfrak{Re}(z\bar{b})} \, \mathrm{e}^{-|z|^2} \, \mathrm{d}\,V_1(z) \\ &\leq \|f\|^2 \int_{\mathbb{C}} \mathrm{e}^{|\alpha z + b|^2 + 2\mathfrak{Re}(z\bar{b}) - |z|^2} \, \mathrm{d}\,V_1(z) \\ &= \|f\|^2 \exp\left(\frac{2|b|^2}{1 - \alpha}\right) \int_{\mathbb{C}} \mathrm{e}^{-(1 - \alpha^2)|z - \frac{b}{1 - \alpha}|^2} \, \mathrm{d}\,V_1(z) \\ &= \|f\|^2 \exp\left(\frac{2|b|^2}{1 - \alpha}\right) \int_{\mathbb{C}} \mathrm{e}^{-(1 - \alpha^2)|z|^2} \, \mathrm{d}\,V_1(z) \\ &= \pi \|f\|^2 \frac{\exp\left(\frac{2|b|^2}{1 - \alpha}\right)}{1 - \alpha^2}, \quad f \in \mathcal{B}_1, \end{split}$$

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

ヘロト 人間 とくほとくほとう

E • 9 € (~

Lemma

If D is as in the previous Lemma, then

$$(D^n f)(z) = f\left(\alpha^n z + b_n\right) e^{z\overline{b}_n} \exp\left(\frac{|b|^2}{1-\alpha}\left(n-1-\frac{\alpha-\alpha^n}{1-\alpha}\right)\right),$$

for all $z \in \mathbb{C}$, $f \in \mathcal{B}_1$ and $n \in \mathbb{N}$, where $b_n = \frac{1-\alpha^n}{1-\alpha}b$ for $n \in \mathbb{N}$.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Combining the previous two Lemmata with Gelfand's formula for the spectral radius, one can prove the following.

Lemma

Let $A \in \mathbb{C}$ be such that |A| < 1 and let $b \in \mathbb{C}$. Set $\varphi(z) = Az + b$ for $z \in \mathbb{C}$. Then $C_{\varphi} \in B(\mathcal{B}_1)$ and $\|C_{\varphi}\|^2 = \exp\left(\frac{|b|^2}{1 - |A|^2}\right).$

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Powers of C_{A+b}

• If $C_{A+b} \in \boldsymbol{B}(\exp(\mathcal{H}))$, then (with $\varphi = A + b$) $\|C_{\varphi}^{n}\|^{2} = \|C_{A^{n}+b_{n}}\|^{2} = \exp(\|(I - A^{n}A^{*n})^{-1/2}b_{n}\|^{2}), \quad n \in \mathbb{Z}_{+}.$

where $b_n = (I + \ldots + A^{n-1})b$ for $n \in \mathbb{N}$.

• The rate of growth of $\{\|(I - A^n A^{*n})^{-1/2} b_n\|\}_{n=1}^{\infty}$.

Proposition

Suppose $C_{\varphi} \in \mathbf{B}(\exp(\mathcal{H}))$, where $\varphi = \mathbf{A} + \mathbf{b}$ with $\mathbf{A} \in \mathbf{B}(\mathcal{H})$ and $\mathbf{b} \in \mathcal{H}$. Then the following holds:

(i)
$$\varphi^n = A^n + b_n$$
 and $b_n \in \mathcal{R}((I - A^n A^{*n})^{1/2})$ for all $n \in \mathbb{N}$,

(ii) there exists a constant $M \in (0,\infty)$ such that

 $\|(I-A^nA^{*n})^{-1/2}b_n\| \leqslant M\sqrt{n}, \quad n \in \mathbb{N}.$

 The proof of (ii) depends on our main theorem and Gelfand's formula for the spectral radius.

Powers of C_{A+b}

• If $C_{A+b} \in \boldsymbol{B}(\exp(\mathcal{H}))$, then (with $\varphi = A + b$) $\|C_{\varphi}^{n}\|^{2} = \|C_{A^{n}+b_{n}}\|^{2} = \exp(\|(I - A^{n}A^{*n})^{-1/2}b_{n}\|^{2}), \quad n \in \mathbb{Z}_{+}.$

where $b_n = (I + \ldots + A^{n-1})b$ for $n \in \mathbb{N}$.

• The rate of growth of $\{\|(I - A^n A^{*n})^{-1/2} b_n\|\}_{n=1}^{\infty}$.

Proposition

Suppose $C_{\varphi} \in \mathbf{B}(\exp(\mathcal{H}))$, where $\varphi = \mathbf{A} + \mathbf{b}$ with $\mathbf{A} \in \mathbf{B}(\mathcal{H})$ and $\mathbf{b} \in \mathcal{H}$. Then the following holds:

(i)
$$\varphi^n = A^n + b_n$$
 and $b_n \in \mathcal{R}((I - A^n A^{*n})^{1/2})$ for all $n \in \mathbb{N}$,

(ii) there exists a constant $M \in (0, \infty)$ such that

$$\|(I-A^nA^{*n})^{-1/2}b_n\|\leqslant M\sqrt{n},\quad n\in\mathbb{N}.$$

 The proof of (ii) depends on our main theorem and Gelfand's formula for the spectral radius.

Powers of C_{A+b}

• If $C_{A+b} \in \boldsymbol{B}(\exp(\mathcal{H}))$, then (with $\varphi = A + b$) $\|C_{\varphi}^{n}\|^{2} = \|C_{A^{n}+b_{n}}\|^{2} = \exp(\|(I - A^{n}A^{*n})^{-1/2}b_{n}\|^{2}), \quad n \in \mathbb{Z}_{+}.$

where $b_n = (I + \ldots + A^{n-1})b$ for $n \in \mathbb{N}$.

• The rate of growth of $\{\|(I - A^n A^{*n})^{-1/2} b_n\|\}_{n=1}^{\infty}$.

Proposition

Suppose $C_{\varphi} \in \mathbf{B}(\exp(\mathcal{H}))$, where $\varphi = \mathbf{A} + \mathbf{b}$ with $\mathbf{A} \in \mathbf{B}(\mathcal{H})$ and $\mathbf{b} \in \mathcal{H}$. Then the following holds:

(i)
$$\varphi^n = A^n + b_n$$
 and $b_n \in \mathcal{R}((I - A^n A^{*n})^{1/2})$ for all $n \in \mathbb{N}$,

(ii) there exists a constant $M \in (0, \infty)$ such that

$$\|(I-A^nA^{*n})^{-1/2}b_n\|\leqslant M\sqrt{n},\quad n\in\mathbb{N}.$$

 The proof of (ii) depends on our main theorem and Gelfand's formula for the spectral radius.

Proposition

Suppose $\varphi = A + b$, where $A \in \mathbf{B}(\mathcal{H})$, $b \in \mathcal{H}$ and ||A|| < 1. Then $C_{\varphi} \in \mathbf{B}(\exp(\mathcal{H}))$ and $r(C_{\varphi}) = 1$. Moreover, if $b \neq 0$, then C_{φ} is not normaloid.

• Proof.

It follows from our main theorem that $C_{\varphi} \in \boldsymbol{B}(\exp(\mathcal{H}))$. Since ||A|| < 1, we deduce from C. Neumann's theorem that $(I - A)^{-1} \in \boldsymbol{B}(\mathcal{H})$ and

$$b_n=(I-A^n)(I-A)^{-1}b, \quad n\in\mathbb{N}.$$

<□> <同> <同> <三> <三> <三> <三> <三> <三> <○<

Proposition

Suppose $\varphi = A + b$, where $A \in \mathbf{B}(\mathcal{H})$, $b \in \mathcal{H}$ and ||A|| < 1. Then $C_{\varphi} \in \mathbf{B}(\exp(\mathcal{H}))$ and $r(C_{\varphi}) = 1$. Moreover, if $b \neq 0$, then C_{φ} is not normaloid.

• Proof.

It follows from our main theorem that $C_{\varphi} \in \boldsymbol{B}(\exp(\mathcal{H}))$. Since $\|A\| < 1$, we deduce from C. Neumann's theorem that $(I - A)^{-1} \in \boldsymbol{B}(\mathcal{H})$ and

$$b_n=(I-A^n)(I-A)^{-1}b,\quad n\in\mathbb{N}.$$

(ロ) (同) (三) (三) (三) (○)

Spectral radius 2

Applying C. Neumann's theorem again, we see that

$$(I - A^n A^{*n})^{-1} \in \boldsymbol{B}(\mathcal{H})$$
 for all $n \in \mathbb{N}$ and
 $\|(I - A^n A^{*n})^{-1/2} b_n\|^2 = \langle (I - A^n A^{*n})^{-1} b_n, b_n \rangle$
 $\leq \frac{\|(I - A^n)(I - A)^{-1}b\|^2}{1 - \|A\|^{2n}}$
 $\leq \frac{4\|b\|^2}{(1 - \|A\|^{2n})(1 - \|A\|)^2}, \quad n \in \mathbb{N}.$

This, together with Gelfand's formula for the spectral radius

$$r(C_{\varphi}) = \lim_{n \to \infty} \|C_{\varphi}^{n}\|^{1/n} = \lim_{n \to \infty} \exp\left(\frac{1}{2n}\|(I - A^{n}A^{*n})^{-1/2}b_{n}\|^{2}\right).$$

gives $r(C_{\varphi}) = 1$. As $\mathcal{H} \neq \{0\}$, we infer from the equality
 $\|C_{\varphi}\|^{2} = \exp(\|(I - AA^{*})^{-1/2}b\|^{2})$ that $\|C_{\varphi}\| > 1$ whenever
 $b \neq 0$. Hence, $r(C_{\varphi}) \neq \|C_{\varphi}\|$, which means that C_{φ} is not
normaloid.

Spectral radius 2

Applying C. Neumann's theorem again, we see that

$$(I - A^n A^{*n})^{-1} \in \mathbf{B}(\mathcal{H})$$
 for all $n \in \mathbb{N}$ and
 $\|(I - A^n A^{*n})^{-1/2} b_n\|^2 = \langle (I - A^n A^{*n})^{-1} b_n, b_n \rangle$
 $\leq \frac{\|(I - A^n)(I - A)^{-1}b\|^2}{1 - \|A\|^{2n}}$
 $\leq \frac{4\|b\|^2}{(1 - \|A\|^{2n})(1 - \|A\|)^2}, \quad n \in \mathbb{N}.$

This, together with Gelfand's formula for the spectral radius

$$r(C_{\varphi}) = \lim_{n \to \infty} \|C_{\varphi}^{n}\|^{1/n} = \lim_{n \to \infty} \exp\left(\frac{1}{2n}\|(I - A^{n}A^{*n})^{-1/2}b_{n}\|^{2}\right).$$

gives $r(C_{\varphi}) = 1$. As $\mathcal{H} \neq \{0\}$, we infer from the equality
 $\|C_{\varphi}\|^{2} = \exp(\|(I - AA^{*})^{-1/2}b\|^{2})$ that $\|C_{\varphi}\| > 1$ whenever
 $b \neq 0$. Hence, $r(C_{\varphi}) \neq \|C_{\varphi}\|$, which means that C_{φ} is not
normaloid.

Spectral radius: dim $\mathcal{H} < \infty$

Theorem

If $\varphi : \mathbb{C}^d \to \mathbb{C}^d$ is a holomorphic mapping $(d \in \mathbb{N})$ such that $C_{\varphi} \in \boldsymbol{B}(\mathcal{B}_d)$, then $r(C_{\varphi}) = 1$.

The proof of this theorem is more subtle.

Theorem

Assume $\varphi = A + b$ with $A \in \mathbf{B}(\mathbb{C}^d)$ and $b \in \mathbb{C}^d$, and $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$ ($d \in \mathbb{N}$). Then the following conditions are equivalent: (i) C_{φ} is normaloid,

(ii) b = 0. Moreover, if C_{φ} is normaloid, then $r(C_{\varphi}) = ||C_{\varphi}|| = 1$.

 Hence there are no bounded seminormal composition operators on the Bargmann-Segal space B_d of finite order d whose symbols have nontrivial translation part b.

Spectral radius: dim $\mathcal{H} < \infty$

Theorem

If $\varphi : \mathbb{C}^d \to \mathbb{C}^d$ is a holomorphic mapping $(d \in \mathbb{N})$ such that $C_{\varphi} \in \boldsymbol{B}(\mathcal{B}_d)$, then $r(C_{\varphi}) = 1$.

The proof of this theorem is more subtle.

Theorem

Assume $\varphi = A + b$ with $A \in \mathbf{B}(\mathbb{C}^d)$ and $b \in \mathbb{C}^d$, and $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$ ($d \in \mathbb{N}$). Then the following conditions are equivalent: (i) C_{φ} is normaloid, (ii) b = 0.

Moreover, if C_{φ} is normaloid, then $r(C_{\varphi}) = \|C_{\varphi}\| = 1$.

 Hence there are no bounded seminormal composition operators on the Bargmann-Segal space B_d of finite order d whose symbols have nontrivial translation part b.

Spectral radius: dim $\mathcal{H} < \infty$

Theorem

If $\varphi : \mathbb{C}^d \to \mathbb{C}^d$ is a holomorphic mapping $(d \in \mathbb{N})$ such that $C_{\varphi} \in \boldsymbol{B}(\mathcal{B}_d)$, then $r(C_{\varphi}) = 1$.

The proof of this theorem is more subtle.

Theorem

Assume $\varphi = A + b$ with $A \in \mathbf{B}(\mathbb{C}^d)$ and $b \in \mathbb{C}^d$, and $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d)$ ($d \in \mathbb{N}$). Then the following conditions are equivalent: (i) C_{φ} is normaloid, (ii) b = 0.

Moreover, if C_{φ} is normaloid, then $r(C_{\varphi}) = \|C_{\varphi}\| = 1$.

 Hence there are no bounded seminormal composition operators on the Bargmann-Segal space B_d of finite order d whose symbols have nontrivial translation part b.

Theorem

Assume $\varphi = A + b$ with $A \in \mathbf{B}(\mathbb{C}^d)$ and $b \in \mathbb{C}^d$, and $C_{\varphi} \in \mathbf{B}(\mathcal{B}_d) \ (d \in \mathbb{N})$. Then TFAE: (i) C_{φ} is seminormal, (ii) C_{φ} is normal, (iii) A is normal and b = 0.

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH Unive Composition operators on some analytic reproducing kernel Hilbe

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Example

Example

Let \mathcal{H} be an infinite dimensional Hilbert space, $V \in \mathbf{B}(\mathcal{H})$ be an isometry and $b \in \mathcal{H}$. Set $\varphi = V + b$. By our main theorem, we see that

$$oldsymbol{C}_arphi\inoldsymbol{B}(\exp(\mathcal{H})) \quad \Longleftrightarrow \quad b\in\mathcal{N}(V^*).$$

Suppose *V* is not unitary, i.e., $\mathcal{N}(V^*) \neq \{0\}$. Take $b \in \mathcal{N}(V^*) \setminus \{0\}$. Then $\{V^n b\}_{n=0}^{\infty}$ is an orthogonal sequence, $\mathcal{R}((I - V^n V^{*n})^{1/2}) = \mathcal{N}(V^{*n})$ for all $n \in \mathbb{N}$ and

$$||(I - V^n V^{*n})^{-1/2} b_n||^2 = ||b_n||^2 = ||b + \ldots + V^{n-1}b||^2 = ||b||^2 n,$$

which means that the inequality in

$$\|(I-A^nA^{*n})^{-1/2}b_n\|\leqslant M\sqrt{n},\quad n\in\mathbb{N},$$

ヘロア ヘビア ヘビア・

becomes an equality with M = ||b||.

Example

Example

Let \mathcal{H} be an infinite dimensional Hilbert space, $V \in \boldsymbol{B}(\mathcal{H})$ be an isometry and $b \in \mathcal{H}$. Set $\varphi = V + b$. By our main theorem, we see that

$$oldsymbol{C}_arphi\inoldsymbol{B}(\exp(\mathcal{H})) \quad \Longleftrightarrow \quad b\in \mathbb{N}(V^*).$$

Suppose *V* is not unitary, i.e., $\mathcal{N}(V^*) \neq \{0\}$. Take $b \in \mathcal{N}(V^*) \setminus \{0\}$. Then $\{V^n b\}_{n=0}^{\infty}$ is an orthogonal sequence, $\mathcal{R}((I - V^n V^{*n})^{1/2}) = \mathcal{N}(V^{*n})$ for all $n \in \mathbb{N}$ and $\|(I - V^n V^{*n})^{-1/2} b_n\|^2 = \|b_n\|^2 = \|b + \ldots + V^{n-1}b\|^2 = \|b\|^2 n$,

which means that the inequality in

$$\|(I-A^nA^{*n})^{-1/2}b_n\|\leqslant M\sqrt{n},\quad n\in\mathbb{N},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

becomes an equality with M = ||b||.

Example

One can show that $e^{-\|b\|^2/2} C_{\varphi}$ is a coisometry. In particular, C_{φ} is cohyponormal. Hence, C_{φ} is normaloid and consequently, by our main theorem, we have

$$r(C_{\varphi}) = \|C_{\varphi}\| = e^{\|b\|^2/2}$$
. (3)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Note that C_{φ} is not normal (because if C_{φ} is hyponormal, then $b = \varphi(0) = 0$).

 In other words, if dim H ≥ ℵ0, then there always exists bounded non-normal cohyponormal composition operators in exp(H). One can show that $e^{-\|b\|^2/2} C_{\varphi}$ is a coisometry. In particular, C_{φ} is cohyponormal. Hence, C_{φ} is normaloid and consequently, by our main theorem, we have

$$r(C_{\varphi}) = \|C_{\varphi}\| = e^{\|b\|^2/2}$$
. (3)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Note that C_{φ} is not normal (because if C_{φ} is hyponormal, then $b = \varphi(0) = 0$).

 In other words, if dim H≥ ℵ0, then there always exists bounded non-normal cohyponormal composition operators in exp(H).