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Operators

By an operator in a complex Hilbert space H we mean a
linear mapping A : H ⊇ D(A)→ H defined on a vector
subspace D(A) of H, called the domain of A;
We say that a densely defined operator A in H is

positive if 〈Aξ, ξ〉 > 0 for all ξ ∈ D(A); then we write A > 0,
selfadjoint if A = A∗,
hyponormal if D(A) ⊆ D(A∗) and ‖A∗ξ‖ 6 ‖Aξ‖ for all
ξ ∈ D(A),
cohyponormal if D(A∗) ⊆ D(A) and ‖Aξ‖ 6 ‖A∗ξ‖ for all
ξ ∈ D(A∗),
normal if A is hyponormal and cohyponormal,
subnormal if there exist a complex Hilbert spaceM and a
normal operator N inM such that H ⊆M (isometric
embedding), D(A) ⊆ D(N) and Af = Nf for all f ∈ D(A),
seminormal if A is either hyponormal or cohyponormal.
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The class F

F stands for the class of all entire functions Φ of the form

Φ(z) =
∞∑

n=0

anzn, z ∈ C, (1)

such that ak > 0 for all k > 0 and an > 0 for some n > 1.
If Φ ∈ F , then, by Liouville’s theorem,
lim sup|z|→∞ |Φ(z)| =∞.
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The group GΦ

If Φ ∈ F is as in (1), we set

ZΦ = {n ∈ N : an > 0}

and define the multiplicative group GΦ by

GΦ =
⋂

n∈ZΦ

Gn,

where Gn is the multiplicative group of nth roots of 1, i.e.,

Gn := {z ∈ C : zn = 1}, n > 1.

The order of the group GΦ can be calculated explicitly.
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The RKHS Φ(H)

H is a complex Hilbert space with inner product 〈·, -〉.
If Φ ∈ F , then by the Schur product theorem, the kernel
KΦ : H×H → C defined by

KΦ(ξ, η) = KΦ,H(ξ, η) = Φ(〈ξ, η〉), ξ, η ∈ H,

is positive definite.
Φ(H) stands the reproducing kernel Hilbert space with the
reproducing kernel KΦ;
Φ(H) consists of holomorphic functions on H.
Reproducing property of Φ(H):

f (ξ) = 〈f ,KΦ
ξ 〉, ξ ∈ H, f ∈ Φ(H),

where

KΦ
ξ (η) = KΦ,H

ξ (η) = KΦ(η, ξ), ξ, η ∈ H.

K Φ = the linear span of {KΦ
ξ : ξ ∈ H} is dense in Φ(H).
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Some examples - I

Frankfurt spaces [1975/6/7];
Multidimensional generalizations - Szafraniec [2003].
For ν, a positive Borel measure on R+ such that∫
R+

tn d ν(t) <∞ and ν((c,∞)) > 0 for all n ∈ Z+ and c > 0.

we define the positive Borel measure µ on C by

µ(∆) =
1

2π

∫ 2π

0

∫
R+

χ∆(r eiθ) d ν(r) d θ, ∆ - Borel subset of C.

Then we define the function Φ ∈ F by

Φ(z) =
∞∑

n=0

1∫
R+

t2n d ν(t)
zn, z ∈ C.
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Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH University of Science and Technology)Composition operators on some analytic reproducing kernel Hilbert spaces



Some examples - I

Frankfurt spaces [1975/6/7];
Multidimensional generalizations - Szafraniec [2003].
For ν, a positive Borel measure on R+ such that∫
R+

tn d ν(t) <∞ and ν((c,∞)) > 0 for all n ∈ Z+ and c > 0.

we define the positive Borel measure µ on C by

µ(∆) =
1

2π

∫ 2π

0

∫
R+

χ∆(r eiθ) d ν(r) d θ, ∆ - Borel subset of C.

Then we define the function Φ ∈ F by

Φ(z) =
∞∑

n=0

1∫
R+

t2n d ν(t)
zn, z ∈ C.
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Some examples - II

Frankfurt proved that Φ(C) can be described as follows

Φ(C) =
{

f : f - entire function & f ∈ L2(µ)
}

; (2)

hence the right-hand side of (2) is a reproducing kernel
Hilbert space with the reproducing kernel

C× C 3 (ξ, η) 7−→
∞∑

n=0

1∫
R+

t2n d ν(t)
ξnη̄n ∈ C.

If
∫
R+

t2n d ν(t) = n! for all n ∈ Z+, then Φ = exp, µ is the
Gaussian measure on C and Φ(C) is the Segal-Bargmann
space B1 of order 1.
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Composition operators

Given a holomorphic mapping ϕ : H → H, we define the
operator Cϕ in Φ(H), called a composition operator with a
symbol ϕ, by

D(Cϕ) = {f ∈ Φ(H) : f ◦ ϕ ∈ Φ(H)},
Cϕf = f ◦ ϕ, f ∈ D(Cϕ).

Cϕ is always closed.
If Φ(0) 6= 0 and Cϕ ∈ B(Φ(H)), then r(Cϕ) > 1 and thus
‖Cϕ‖ > 1.
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Maximality of Cφ

Theorem
Let Φ ∈ F and ϕ,ψ : H → H be holomorphic mappings.
Assume that the operators Cϕ and Cψ are densely defined in
Φ(H). Then the following conditions are equivalent:

1 Cϕ ⊆ Cψ,
2 Cϕ = Cψ,
3 there exists α ∈ GΦ such that ϕ(ξ) = α · ψ(ξ) for every
ξ ∈ H.
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Boundedness of Cϕ – necessity

Proposition

Suppose Φ ∈ F , ϕ : H → H is a holomorphic mapping and
D(Cϕ) = Φ(H). Then Cϕ is bounded and there exists a unique
pair (A,b) ∈ B(H)×H such that ϕ = A + b, i.e.,
ϕ(ξ) = Aξ + b, ξ ∈ H.

The Segal-Bargmann space over Cd [B. J. Carswell, B. D.
MacCluer, A. Schuster 2003]
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Fock’s type model for CA

Theorem

Suppose Φ ∈ F , Q is a conjugation on H and A ∈ B(H). Then
there exists a unitary isomorphism
U = UΦ,Q : Φ(H)→

⊕
n∈ZΦ

H�n such that

C∗A = U−1ΓΦ(ΞQ(A))U,

where ΞQ(A) = QAQ, ΓΦ(T ) =
⊕

n∈ZΦ
T�n and T�n is the nth

symmetric tensor power of T ∈ B(H).
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The adjoint of C∗A

Theorem
Suppose Φ ∈ F and A ∈ B(H). Then

(i) C∗A = CA∗ ,
(ii) K Φ is a core for CA.
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Boundedness of CA

Theorem

Suppose Φ ∈ F and A ∈ B(H). Seta m = min ZΦ and
n = sup ZΦ. Then

1 if n <∞, then CA ∈ B(Φ(H)),

2 if n =∞, then CA ∈ B(Φ(H)) if and only if ‖A‖ 6 1.

3 Moreover, if CA ∈ B(Φ(H)), then
‖CA‖ = qm,n(‖A‖) and r(CA) = qm,n(r(A)).

a Note that 0 is a zero of Φ of multiplicity m and ∞ is a pole of Φ of order n.

If m ∈ Z+ and n ∈ Z+ ∪ {∞}, then

qm,n(ϑ) = ϑm max{1, ϑn−m}, ϑ ∈ [0,∞),

where ϑ0 = 1 for ϑ ∈ [0,∞), ϑ∞ =∞ for ϑ ∈ (1,∞),
ϑ∞ = 0 for ϑ ∈ [0,1) and 1∞ = 1.
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When is CA an isometry, ..., a partial isometry?

Proposition

Suppose Φ ∈ F and A ∈ B(H). Then CA is an isometry (resp.:
a coisometry, a unitary operator) if and only if A is a coisometry
(resp.: an isometry, a unitary operator).

Proposition

Let Φ ∈ F and P ∈ B(H). Then CP is an orthogonal projection
if and only if there exists α ∈ GΦ such that αP is an orthogonal
projection.

Proposition

Let Φ ∈ F and A ∈ B(H). Then CA is a partial isometry if and
only if A is a partial isometry.
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Positivity of CA

Theorem
Suppose Φ ∈ F and A ∈ B(H). Then the following conditions
are equivalent:

1 CA > 0,
2 there exists α ∈ GΦ such that αA > 0,
3 there exists B ∈ B(H) such that B > 0 and CA = CB.
4 Moreover, if A > 0, then CA is selfadjoint and

CA = C∗A1/2CA1/2 .

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH University of Science and Technology)Composition operators on some analytic reproducing kernel Hilbert spaces



Powers of a positive CA

Theorem

Let Φ ∈ F , A ∈ B(H) and t ∈ (0,∞). Suppose A > 0. Then
1 CA is selfadjoint and CA > 0,
2 Ct

A = CAt ,
3 D(CAt ) ⊆ D(CAs ) for every s ∈ (0, t).
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The polar decomposition of CA

Theorem

Suppose that Φ ∈ F and A ∈ B(H). Let A = U|A| be the polar
decomposition of A. Then CA = CUC|A∗| is the polar
decomposition of CA. In particular, |CA| = C|A∗|.
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Seminormality of CA

Theorem
If Φ ∈ F and A,B ∈ B(H), then the following conditions are
equivalent:

1 D(CB) ⊆ D(CA) and ‖CAf‖ 6 ‖CBf‖ for all f ∈ D(CB),

2 ‖CAf‖ 6 ‖CBf‖ for all f ∈ K Φ,

3 ‖A∗ξ‖ 6 ‖B∗ξ‖ for all ξ ∈ H.

Theorem

If Φ ∈ F and A ∈ B(H), then the following conditions are
equivalent:

1 CA is cohyponormal (resp., hyponormal),

2 A is hyponormal (resp., cohyponormal).
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Inequalities

Theorem
Let Φ ∈ F and let A,B ∈ B+(H). Then the following conditions
are equivalent:

1 CA 4 CB,
2 〈CAf , f 〉 6 〈CBf , f 〉 for all f ∈ K Φ,
3 A 6 B.
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Generalized inverses

Suppose A ∈ B(H) is selfadjoint. It is well-known (and
easy to verify) that A|R(A) : R(A)→ R(A) is a bijection.

Hence, we may define a generalized inverse A−1 of A by

A−1 =
(
A|R(A)

)−1
.

A−1 is an operator in H (not necessarily densely defined)
such that

D(A−1) = R(A), R(A−1) = R(A),

AA−1 = IR(A) and A−1A = P,

where IR(A) is the identity operator on R(A) and P is the
orthogonal projection of H onto R(A).
If A ∈ B+(H), then we write

A−t = (At )−1, t ∈ (0,∞).
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If A ∈ B+(H), then we write

A−t = (At )−1, t ∈ (0,∞).
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The partial order 4

Given two operators A,B ∈ B+(H), we write B−1 4 A−1 if

D(A−1/2) ⊆ D(B−1/2),

‖B−1/2f‖ 6 ‖A−1/2f‖, f ∈ D(A−1/2).

If R(A) = R(B) = H (⇐⇒ A−1,B−1 ∈ B(H)), then
B−1 4 A−1 if and only if B−1 6 A−1

(i.e., 〈B−1f , f 〉 6 〈A−1f , f 〉 for all f ∈ H.)

Lemma

If A,B ∈ B+(H) and ε ∈ (0,∞), then TFAE:

(i) B−1 4 A−1,

(ii) A 6 B,

(iii) (ε+ B)−1 6 (ε+ A)−1.
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Ranges of WOT limits

Lemma
Assume {AP}P∈P ⊆ B+(H) is a monotonically decreasing net
which converges in WOT to A ∈ B+(H). If ξ ∈ H, then TFAE:

(i) ξ ∈ R(A1/2),

(ii) for every P ∈ P, ξ ∈ R(A1/2
P ) and c := supP∈P ‖A

−1/2
P ξ‖ <∞.

Moreover, if ξ ∈ R(A1/2), then c = ‖A−1/2ξ‖.

Apply

Theorem (Mac Nerney-Shmul’yan theorem)

If A ∈ B+(H) and ξ ∈ H, then TFAE:

(i) ξ ∈ R(A1/2),

(ii) there exists c ∈ R+ such that |〈ξ,h〉| 6 c‖A1/2h‖ for all h ∈ H.

Moreover, if ξ ∈ R(A1/2), then the smallest c ∈ R+ in (ii) is
equal to ‖A−1/2ξ‖.
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Boundedness of Cϕ in exp(H)

Theorem (main)
Let Φ = exp, ϕ : H → H be a holomorphic mapping and
P ⊆ B(H) be an upward-directed partially ordered set of
orthogonal projections of finite rank such that

∨
P∈P R(P) = H.

Then the following conditions are equivalent:
(i) Cϕ ∈ B(exp(H)),
(ii) ϕ = A + b, where A ∈ B(H), ‖A‖ 6 1, b ∈ R(I − |A∗|P|A∗|)

for every P ∈ P and

S(A,b) := sup{〈(I − |A∗|P|A∗|)−1b,b〉 : P ∈ P} <∞,

(iii) ϕ = A + b, where A ∈ B(H), ‖A‖ 6 1 and
b ∈ R((I − AA∗)1/2).
Moreover, if Cϕ ∈ B(exp(H)), then

‖Cϕ‖2 = exp(‖(I − AA∗)−1/2b‖2) = exp(S(A,b)).
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Comments

The case of H = Cn was proved by Carswell, MacCluer
and Schuster in 2003 (of course without (ii)).
In fact, our statement differs from the above, however they
are equivalent if dimH <∞.
Trieu Le
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Sketch of the proof 1

We begin with the following proposition.

Proposition
If Φ ∈ F , ϕ : H → H is a holomorphic mapping and
D(Cϕ) = Φ(H), then Cϕ is bounded and there exists a unique
pair (A,b) ∈ B(H)×H such that ϕ = A + b.

In view of the above proposition, there is no loss of
generality in assuming that ϕ = A + b, where A ∈ B(H)
and b ∈ H, i.e., ϕ is an affine mapping.
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Sketch of the proof 2

An idea the proof of the Proposition.
Noting that for all ξ ∈ H \ {0},

Φ(‖ϕ(ξ)‖2)

Φ(‖ξ‖2)
=
‖KΦ

ϕ(ξ)‖
2

‖KΦ
ξ ‖2

=

∥∥∥∥C∗ϕ

(
KΦ
ξ

‖KΦ
ξ ‖

)∥∥∥∥2

6 ‖Cϕ‖2,

and using

Lemma (The cancellation principle)

If Φ ∈ F and f ,g : H → [0,∞) are such that
lim inf‖ξ‖→∞ g(ξ) > 0 and lim sup‖ξ‖→∞

Φ(f (ξ))
Φ(g(ξ)) <∞, then

lim sup‖ξ‖→∞
f (ξ)
g(ξ) <∞.

we see that lim sup‖ξ‖→∞
‖ϕ(ξ)‖
‖ξ‖ <∞. Since ϕ is an entire

function, we conclude that [!] ϕ is of the form ϕ = A + b.
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Sketch of the proof 3

The proof of (i)⇔(ii) and ‖Cϕ‖2 = exp(S(A,b)):

Proposition

If Φ ∈ F , ϕ = A + b and ψ = |A∗|+ b (A ∈ B(H), b ∈ H), then
(i) Cϕ ∈ B(Φ(H)) if and only if Cψ ∈ B(Φ(H)),

(ii) ‖Cϕ‖ = ‖Cψ‖ provided Cϕ ∈ B(Φ(H)).

Lemma (A version of (i)⇔(ii) of the main result when A > 0)

Suppose A ∈ B+(H), b ∈ H and P ⊆ B(H) is an
upward-directed partially ordered set of finite rank orthogonal
projections such that

∨
P∈P R(P) = H. Then TFAE:

(i) CA+b ∈ B(exp(H)),

(ii) ‖A‖ 6 1, b ∈ R(I − APA) for every P ∈ P and

S(A,b) := sup{〈(I − APA)−1b,b〉 : P ∈ P} <∞.

Moreover, if (ii) holds, then ‖CA+b‖2 = exp(S(A,b)).
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Sketch of the proof 4

Proof of the Lemma.
(i)⇒(ii) One can show [!] that CA+b ∈ B(exp(H)) implies
that ‖A‖ 6 1 and b ∈ R((I − A2)1/2). Take P ∈ P. Since
APA 6 A2, we see that I − APA > I − A2 > 0. By the
Douglas theorem we have

b ∈ R((I − A2)1/2) ⊆ R((I − APA)1/2) = R(I − APA).

This, the fact that dimR((APA)1/2) <∞ and

Proposition

Suppose A ∈ B+(H), b ∈ H and dimR(A) <∞. Then
CA+b ∈ B(exp(H)) if and only if ‖A‖ 6 1 and b ∈ R(I − A2).
Moreover, if CA+b ∈ B(exp(H)), then

‖CA+b‖2 = exp(〈(I − A2)−1b,b〉).

yield C(APA)1/2+b ∈ B(exp(H)).

Jan Stochel (Uniwersytet Jagielloński) Jerzy Stochel (AGH University of Science and Technology)Composition operators on some analytic reproducing kernel Hilbert spaces



Sketch of the proof 4

Proof of the Lemma.
(i)⇒(ii) One can show [!] that CA+b ∈ B(exp(H)) implies
that ‖A‖ 6 1 and b ∈ R((I − A2)1/2). Take P ∈ P. Since
APA 6 A2, we see that I − APA > I − A2 > 0. By the
Douglas theorem we have

b ∈ R((I − A2)1/2) ⊆ R((I − APA)1/2) = R(I − APA).

This, the fact that dimR((APA)1/2) <∞ and

Proposition

Suppose A ∈ B+(H), b ∈ H and dimR(A) <∞. Then
CA+b ∈ B(exp(H)) if and only if ‖A‖ 6 1 and b ∈ R(I − A2).
Moreover, if CA+b ∈ B(exp(H)), then

‖CA+b‖2 = exp(〈(I − A2)−1b,b〉).

yield C(APA)1/2+b ∈ B(exp(H)).
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Sketch of the proof 5

Since CP is an orthogonal projection [!],
CAP+b = CPCA+b ∈ B(exp(H)) and ‖CB+b‖ = ‖C|B∗|+b‖,
one can deduce that (with B = AP)

exp(〈(I − APA)−1b,b〉) = ‖C(APA)1/2+b‖
2

= ‖CAP+b‖2 = ‖CPCA+b‖2 6 ‖CA+b‖2.

This implies that exp(S(A,b)) 6 ‖CA+b‖2.
(ii)⇒(i) Take P ∈ P. Using the Proposition from the
previous slide, we see that CAP+b ∈ B(exp(H)),
C(APA)1/2+b ∈ B(exp(H)), ‖CAP+b‖ = ‖C(APA)1/2+b‖ and

‖CPCA+bf‖2 = ‖CAP+bf‖2

6 ‖C(APA)1/2+b‖
2‖f‖2

= exp(〈(I − APA)−1b,b〉)‖f‖2

6 exp(S(A,b))‖f‖2, f ∈ D(CA+b).
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Sketch of the proof 6

Now applying

Proposition

If Φ ∈ F and P ⊆ B(H) is an upward-directed partially ordered
set of orthogonal projections, then

lim
P∈P

CP f = CQf , f ∈ Φ(H),

where Q is the orthogonal projection of H onto
∨

P∈P R(P).

we deduce that

‖CA+bf‖2 6 exp(S(A,b))‖f‖2, f ∈ D(CA+b).

Since composition operators are closed and CA+b is
densely defined [!], this implies that CA+b ∈ B(exp(H)) and
‖CA+b‖2 6 exp(S(A,b)), which completes the proof of the
Lemma.
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Sketch of the proof 7

The proof of (ii)⇔(iii) of the main result.
Without loss of generality we may assume that A is a
contraction. Set AP = I − |A∗|P|A∗| for P ∈ P. Then
AP ∈ B+(H) for all P ∈ P. Since

∨
P∈P R(P) = H, we see

that {P}P∈P is a monotonically increasing net which
converges in the SOT to the identity operator I.
This implies that {AP}P∈P ⊆ B+(H) is a monotonically
decreasing net which converges in the WOT to I − |A∗|2.
Since dimR(|A∗|P|A∗|) <∞ for all P ∈ P, one can show [!]
that R(AP) is closed and R(AP) = R(A1/2

P ) for all P ∈ P.
Hence, by our first lemma in this presentation,
〈A−1

P ξ, ξ〉 = ‖A−1/2
P ξ‖2 for all ξ ∈ R(AP) and P ∈ P.
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P ξ‖2 for all ξ ∈ R(AP) and P ∈ P.
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Sketch of the proof 8

Now applying

Lemma
Assume {AP}P∈P ⊆ B+(H) is a monotonically decreasing net
which converges in WOT to A ∈ B+(H). If ξ ∈ H, then TFAE:

(i) ξ ∈ R(A1/2),

(ii) for every P ∈ P, ξ ∈ R(A1/2
P ) and c := supP∈P ‖A

−1/2
P ξ‖ <∞.

Moreover, if ξ ∈ R(A1/2), then c = ‖A−1/2ξ‖.

we deduce that the conditions (ii) and (iii) are equivalent
and exp(‖(I − AA∗)−1/2b‖2) = exp(S(A,b)). This
completes the proof of the main result.
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Another proof of CMS theorem

Theorem (Carswell, MacCluer, Schuster)

Let ϕ : Cd → Cd be a holomorphic mapping (d ∈ N). Then
Cϕ ∈ B(Bd ) if and only if there exist A ∈ B(Cd ) and b ∈ Cd

such that ϕ = A + b, ‖A‖ 6 1 and b ∈ R(I − AA∗). Moreover, if
Cϕ ∈ B(Bd ), then

‖Cϕ‖2 = exp(〈(I − AA∗)−1b,b〉).

Proof
First we reduce the proof to the case of d = 1 (skipped).
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The case of d = 1

Lemma
Fix α ∈ [0,1) and b ∈ C. Let D be an operator in B1 given by

(Df )(z) = f (αz + b) exp(zb̄), z ∈ C, f ∈ B1.

Then D ∈ B(B1) and

‖D‖ 6
exp

( |b|2
1−α

)
√

1− α2
.
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The case of d = 1

Proof of the Lemma:

π

∫
C
|Df |2 dµ1 =

∫
C
|f (αz + b)|2 e2Re(zb̄) e−|z|

2
d V1(z)

6 ‖f‖2
∫
C

e|αz+b|2+2Re(zb̄)−|z|2 d V1(z)

= ‖f‖2 exp
( 2|b|2

1− α

)∫
C

e−(1−α2)|z− b
1−α |

2

d V1(z)

= ‖f‖2 exp
( 2|b|2

1− α

)∫
C

e−(1−α2)|z|2 d V1(z)

= π‖f‖2
exp

(
2|b|2
1−α

)
1− α2 , f ∈ B1,
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The case of d = 1

Lemma
If D is as in the previous Lemma, then

(Dnf )(z) = f
(
αnz + bn

)
ezb̄n exp

( |b|2
1− α

(
n − 1− α− αn

1− α

))
,

for all z ∈ C, f ∈ B1 and n ∈ N, where bn = 1−αn

1−α b for n ∈ N.
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The case of d = 1

Combining the previous two Lemmata with Gelfand’s
formula for the spectral radius, one can prove the following.

Lemma
Let A ∈ C be such that |A| < 1 and let b ∈ C. Set
ϕ(z) = Az + b for z ∈ C. Then Cϕ ∈ B(B1) and

‖Cϕ‖2 = exp
( |b|2

1− |A|2
)
.
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Powers of CA+b

If CA+b ∈ B(exp(H)), then (with ϕ = A + b)

‖Cn
ϕ‖2 = ‖CAn+bn‖2 = exp(‖(I − AnA∗n)−1/2bn‖2), n ∈ Z+.

where bn = (I + . . .+ An−1)b for n ∈ N.
The rate of growth of {‖(I − AnA∗n)−1/2bn‖}∞n=1.

Proposition

Suppose Cϕ ∈ B(exp(H)), where ϕ = A + b with A ∈ B(H) and
b ∈ H. Then the following holds:

(i) ϕn = An + bn and bn ∈ R((I − AnA∗n)1/2) for all n ∈ N,

(ii) there exists a constant M ∈ (0,∞) such that

‖(I − AnA∗n)−1/2bn‖ 6 M
√

n, n ∈ N.

The proof of (ii) depends on our main theorem and
Gelfand’s formula for the spectral radius.
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Spectral radius 1

Proposition

Suppose ϕ = A + b, where A ∈ B(H), b ∈ H and ‖A‖ < 1.
Then Cϕ ∈ B(exp(H)) and r(Cϕ) = 1. Moreover, if b 6= 0, then
Cϕ is not normaloid.

Proof.
It follows from our main theorem that Cϕ ∈ B(exp(H)).
Since ‖A‖ < 1, we deduce from C. Neumann’s theorem
that (I − A)−1 ∈ B(H) and

bn = (I − An)(I − A)−1b, n ∈ N.
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Spectral radius 2

Applying C. Neumann’s theorem again, we see that
(I − AnA∗n)−1 ∈ B(H) for all n ∈ N and

‖(I − AnA∗n)−1/2bn‖2 = 〈(I − AnA∗n)−1bn,bn〉

6
‖(I − An)(I − A)−1b‖2

1− ‖A‖2n

6
4‖b‖2

(1− ‖A‖2n)(1− ‖A‖)2 , n ∈ N.

This, together with Gelfand’s formula for the spectral radius

r(Cϕ) = lim
n→∞

‖Cn
ϕ‖1/n = lim

n→∞
exp

( 1
2n
‖(I − AnA∗n)−1/2bn‖2

)
.

gives r(Cϕ) = 1. As H 6= {0}, we infer from the equality
‖Cϕ‖2 = exp(‖(I − AA∗)−1/2b‖2) that ‖Cϕ‖ > 1 whenever
b 6= 0. Hence, r(Cϕ) 6= ‖Cϕ‖, which means that Cϕ is not
normaloid.
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Spectral radius: dimH <∞

Theorem

If ϕ : Cd → Cd is a holomorphic mapping (d ∈ N) such that
Cϕ ∈ B(Bd ), then r(Cϕ) = 1.

The proof of this theorem is more subtle.

Theorem

Assume ϕ = A + b with A ∈ B(Cd ) and b ∈ Cd , and Cϕ ∈ B(Bd )
(d ∈ N). Then the following conditions are equivalent:

(i) Cϕ is normaloid,

(ii) b = 0.
Moreover, if Cϕ is normaloid, then r(Cϕ) = ‖Cϕ‖ = 1.

Hence there are no bounded seminormal composition
operators on the Bargmann-Segal space Bd of finite order
d whose symbols have nontrivial translation part b.
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Seminormality: dimH <∞

Theorem

Assume ϕ = A + b with A ∈ B(Cd ) and b ∈ Cd , and
Cϕ ∈ B(Bd ) (d ∈ N). Then TFAE:

(i) Cϕ is seminormal,

(ii) Cϕ is normal,

(iii) A is normal and b = 0.
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Example

Example
Let H be an infinite dimensional Hilbert space, V ∈ B(H)
be an isometry and b ∈ H. Set ϕ = V + b. By our main
theorem, we see that

Cϕ ∈ B(exp(H)) ⇐⇒ b ∈ N(V ∗).

Suppose V is not unitary, i.e., N(V ∗) 6= {0}. Take
b ∈ N(V ∗) \ {0}. Then {V nb}∞n=0 is an orthogonal
sequence, R((I − V nV ∗n)1/2) = N(V ∗n) for all n ∈ N and

‖(I − V nV ∗n)−1/2bn‖2 = ‖bn‖2 = ‖b + . . .+ V n−1b‖2 = ‖b‖2n, n ∈ N,

which means that the inequality in

‖(I − AnA∗n)−1/2bn‖ 6 M
√

n, n ∈ N,

becomes an equality with M = ‖b‖.
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Example

One can show that e−‖b‖
2/2 Cϕ is a coisometry. In

particular, Cϕ is cohyponormal. Hence, Cϕ is normaloid
and consequently, by our main theorem, we have

r(Cϕ) = ‖Cϕ‖ = e‖b‖
2/2 . (3)

Note that Cϕ is not normal (because if Cϕ is hyponormal,
then b = ϕ(0) = 0).
In other words, if dimH > ℵ0, then there always exists
bounded non-normal cohyponormal composition operators
in exp(H).
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