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Let Ω be a bounded domain in C. Assume that ∂Ω consists of
n + 1 analytic Jordan curves.
Set Ω∗ = {z̄ | z ∈ Ω}. Here we study operators in B1(Ω∗), first
introduced by Cowen and Douglas.

Definition 1 (Cowen-Douglas class of operators: (1978))

An operator T acting on a complex separable Hilbert space H, is
said to be in the class B1(Ω∗) if it meets the following
requirements:

1 ran(T − w) = H, w ∈ Ω∗,

2
∨

w∈Ω∗ ker(T − w) = H and

3 dim(ker(T − w)) = 1, w ∈ Ω∗.

These conditions ensure the existence of a rank 1 Hermitian
holomorphic vector bundle ET over Ω∗, that is,

ET := {(w , v) ∈ Ω∗ ×H : v ∈ Ker(T − w)}, π(w , v) = w

and there exist a holomorphic frame w → γ(w) with the property
Ker(T − w) = span {γ(w)}.
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The Hermitian structure of the vector bundle ET at the point
w with respect to the frame γ(w) is obtained from that of the
subspace ker(T − w) of the Hilbert space H and we denote it
by h(w) = 〈γ(w), γ(w)〉H.

The curvature Kγ of the bundle ET w.r.t the frame γ is given by
the following formula

Kγ(w) =
∂

∂w̄

(
h−1(w)

∂

∂w
h(w)

)
dw̄ ∧ dw

=
∂

∂w

∂

∂w̄
log(h(w))dw̄ ∧ dw = Kγ(w)dw ∧ dw̄

Kγ(w) = − ∂
∂w

∂
∂w̄ log(h(w)) = −‖γ(w)‖2‖γ′(w)‖2−|〈γ(w),γ′(w)〉|2

‖γ(w)‖4 .

The expression of the curvature Kγ(w) is independent of the
choice of the frame γ. So, we call it curvature of the operator
T and denote it by KT (w).
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Theorem 2 (Cowen-Douglas)

Two operators T1 and T2 in B1(Ω∗) are unitarily equivalent if and
only if the associated bundle ET1 and ET2 are equivalent as
Hermitian holomorphic vector bundle if and only if
KT1(w) = KT2(w) for every w in Ω∗.

Every T ∈ B1(Ω∗) is unitarily equivalent to the adjoint M∗ of
the operator of multiplication M by the coordinate function
on some Hilbert space HK consisting of holomorphic function
on Ω possessing a reproducing kernel K .

The kernel K is complex valued function defined on Ω× Ω,
which is holomorphic in the first and anti-holomorphic in the
second variable and is positive semi-definite in the sense that((
K (zi , zj)

))
is positive semi-definite for every subset

{z1, . . . , zn} of Ω.
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The curvature KT of the operator T is then equal to

KT (w̄) = − ∂2

∂z∂z̄
logKT (z , z)|z=w

= −
‖Kw‖2

∥∥∂̄Kw

∥∥2 − |〈Kw , ∂̄Kw 〉|2

(K (w ,w))2
, w ∈ Ω.

The space ker(M∗ − w̄)2 = span{Kw , ∂̄Kw} is an invariant
subspace for M∗.

Representing the restriction of the operator M∗ to this
subspace with respect to an orthonormal basis as a 2× 2
matrix, we have

M∗| ker(M∗−w̄)2 =
(

w̄
1√

−KT (w̄)
0 w̄

)
.

5 / 31



The curvature KT of the operator T is then equal to

KT (w̄) = − ∂2

∂z∂z̄
logKT (z , z)|z=w

= −
‖Kw‖2

∥∥∂̄Kw

∥∥2 − |〈Kw , ∂̄Kw 〉|2

(K (w ,w))2
, w ∈ Ω.

The space ker(M∗ − w̄)2 = span{Kw , ∂̄Kw} is an invariant
subspace for M∗.

Representing the restriction of the operator M∗ to this
subspace with respect to an orthonormal basis as a 2× 2
matrix, we have

M∗| ker(M∗−w̄)2 =
(

w̄
1√

−KT (w̄)
0 w̄

)
.

5 / 31



Spectral set

Definition 3 (Spectral Set)

A compact subset X ⊆ C is said to be a spectral set for an
operator A in L(H), if σ(A) ⊆ X and the homomorphism
ρA : Rat(X )→ L(H) defined by ρA(r) = r(A) is contractive.

where Rat(X ) denotes the algebra of rational functions whose
poles are off X , equipped with sup norm on X .

If X = D, then by Von Neuman inequality X is a spectral set
for an operator T if and only if T is a contraction.
The spectrum of a subnormal operator is a spectral set for the
subnormal operator.

Now assume Ω∗, the closure of Ω∗, is a spectral set for an operator
M∗ in B1(Ω∗). For an arbitrary fixed point w ∈ Ω and
r ∈ Rat(Ω∗), we have

r(M∗)| ker(M∗−w̄)2 =
(

r(w̄)
r ′(w̄)√
−KT (w̄)

0 r(w̄)

)
.
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sup{ |r ′(w̄)|
1− |r(w̄)|2

: ‖r‖∞ ≤ 1, r ∈ Rat(Ω∗)} = 2π(SΩ∗(w̄ , w̄)),

where SΩ∗(z ,w), the Sz̈ego kernel of Ω∗, is the reproducing kernel
for the Hardy space (H2(Ω∗), ds).

Contractivity condition gives a curvature inequality :

Curvature Inequality 1

KT (w̄) ≤ −4π2(SΩ∗(w̄ , w̄))2, w̄ ∈ Ω∗.

Equivalently, since SΩ(z ,w) = SΩ∗(w̄ , z̄), the curvature inequality
takes the form

Curvature Inequality 2

∂2

∂w∂w̄ logKT (w ,w) ≥ 4π2(SΩ(w ,w))2, w ∈ Ω.
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The reproducing kernel of the Hardy space, as is well-known,
is the Sz̈ego kernel SD of the unit disc D. It is given by the
formula SD(z ,w) = 1

2π(1−zw̄) , for all z ,w in D.

KM∗(w) = − ∂2

∂w∂w̄
logSD(w ,w) = −4π2(SD(w ,w))2, w ∈ D.

If the region Ω is simply connected, then using the Riemann
map and the transformation rule for the Sz̈ego kernel together
with the chain rule for composition, we see that

∂2

∂w∂w̄
logSΩ(w ,w) = 4π2(SΩ(w ,w))2, w ∈ Ω.

For simply connected domain, M∗ on (H2(Ω), ds) is an
extremal operator.
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Pointwise equality and a uniqueness question of Douglas

For a contraction T in B1(D), if KT (ζ) = −4π2SD(ζ, ζ)2 for some
fixed ζ in D, then does it follow that T must be unitarily
equivalent to M∗ on (H2(D), ds)?

Answer: No.

Misra(’84) provided a counterexample.
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However, he proved that

Theorem 4

For a homogeneous contraction T in B1(D), if
KT (ζ) = −4π2SD(ζ, ζ)2 for some fixed ζ in D, then T must be
unitarily equivalent to M∗ on (H2(D), ds).

Theorem 5

Let T be an operator in B1(D) whose adjoint is a subnormal
contraction. Let ζ be a fixed but arbitrary point in D. Assume that
polynomials are dense in Hφζ(T ) and that KT (ζ) = − 1

(1−|ζ|2)2 ,

then T is unitarily equivalent to U∗+, the standard unilateral
backward shift operator. (where Hφζ(T ) is the normalized
reproducing kernel associated to the operator φζ(T ) )
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On the other hand, if the region is not simply connected, then
Suita(’76) has shown that

∂2

∂w∂w̄
logSΩ(w ,w) > 4π2(SΩ(w ,w))2, w ∈ Ω.

If Ω is not simply connected, then the operator M∗ on
(H2(Ω), ds) fails to be extremal.

We don’t know if there exists an operator T in B1(Ω∗),
admitting Ω∗ as a spectral set for which

KT (w) = −4π2(SΩ∗(w ,w))2, w ∈ Ω∗.
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The question of equality at just one fixed but arbitrary point ζ̄
in Ω∗ was answered by Misra (’84).

For an arbitrary fixed point ζ in Ω∗, he has shown the
existence of a subnormal operator M such that
KM∗(ζ) = −4π2(SΩ∗(ζ, ζ))2.
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Uniqueness in finitely connected domain

Fix a point ζ in Ω∗. We have already seen the existence of a
co-subnormal operator M∗ζ such that KM∗ζ

(ζ) = −4π2(SΩ∗(ζ, ζ))2.

In fact Mζ is a pure, rationally cyclic, subnormal operator
whose spectrum equal to Ω and normal spectrum equal to ∂Ω.

Abrahamse and Douglas(’76) has characterized the unitary
equivalence class of such operator. These are called bundle shift of
multiplicity one. Their results also proves that adjoint of each of
the bundle shift lies in B1(Ω∗) having Ω∗ as a spectral set.

13 / 31



Uniqueness in finitely connected domain

Fix a point ζ in Ω∗. We have already seen the existence of a
co-subnormal operator M∗ζ such that KM∗ζ

(ζ) = −4π2(SΩ∗(ζ, ζ))2.

In fact Mζ is a pure, rationally cyclic, subnormal operator
whose spectrum equal to Ω and normal spectrum equal to ∂Ω.

Abrahamse and Douglas(’76) has characterized the unitary
equivalence class of such operator. These are called bundle shift of
multiplicity one. Their results also proves that adjoint of each of
the bundle shift lies in B1(Ω∗) having Ω∗ as a spectral set.

13 / 31



Bundle shift of multiplicity 1:

Let α be an element in Hom(π1(Ω),T). Such a homomorphism is
also called a character. Each of these character induces a flat
unitary bundle Eα of rank 1 on Ω.

Theorem 6

Two rank one flat unitary vector bundle Eα and Eβ are equivalent
as a flat unitary vector bundle if and only if their inducing
characters are equal that is α = β.

Fix a character α. Let H2
Eα

be the linear space of those
holomorphic sections f of Eα such that the subharmonic function
‖f (z)‖2 on Ω is majorized by a harmonic function on Ω.
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Fix a point p ∈ Ω. Then the norm of a section f in H2
α(Ω) is

defined by

‖f ‖2 =

∫
∂Ω
‖f (z)‖2 ds.

The linear space (H2
Eα
, ds) is complete with respect to this

norm making it into a Hilbert space.

A bundle shift TEα is simply the operator of multiplication by
the coordinate function on (H2

Eα
, ds).
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Theorem 7 (Abrahamse and Douglas’76)

Let Eα and Eβ be two rank one flat unitary vector bundles induced
by the homomorphisms α and β respectively. Then the bundle
shift TEα is unitarily equivalent to the bundle shift TEβ

if and only
if Eα and Eβ are equivalent as flat unitary vector bundles.

It is not very hard to verify that TEα is a pure cyclic subnormal
operator with spectrum Ω and normal spectrum ∂Ω.

Theorem 8 (Abrahamse and Douglas ’76)

Every pure cyclic subnormal operator with spectrum Ω and normal
spectrum contained in ∂Ω is unitarily equivalent to a bundle shift
TEα for some character α.
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Weighted Hardy space and bundle shift

Let λ be a positive continuous function on ∂Ω. Define an
equivalent norm on H2(Ω) in the following way

‖f ‖2
λds =

∫
∂Ω
|f (z)|2λ(z)ds(z).

Let
(
H2(Ω), λds

)
denote the linear space H2(Ω) endowed with the

norm λds.

the operator M on it is cyclic, pure subnormal, its spectrum is
equal to Ω and finally its normal spectrum is equal to ∂Ω.
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Weighted Hardy space and bundle shift

The operator M on
(
H2(Ω), λds

)
must be unitarily equivalent

to the bundle shift TEα on
(
H2
Eα

(Ω), ds
)

for some character α.

The character α is determined by the following n-tuple of numbers:

cj(λ) = −
∫
∂Ωj

∂

∂ηz

(
uλ(z)

)
ds(z), for j = 1, 2, . . . , n,

where uλ is the harmonic function on Ω with continuous boundary
value 1

2 log λ.

α =
(

exp
(
ic1(λ), . . . , exp

(
icn(λ)

)
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Weighted Hardy space and bundle shift

Theorem 9

Let λ, µ be two positive continuous function on ∂Ω. Then the
operators M on the Hilbert spaces

(
H2(Ω), λds

)
and

(
H2(Ω), µds

)
are unitarily equivalent if and only if

exp
(
icj(λ)

)
= exp

(
icj(µ)

)
, j = 1, . . . , n.

Following a result of Abrahamse, it follows that, given any
character α, there exists a positive continuous function λ
defined on ∂Ω such that the operator M on

(
H2(Ω), λds

)
is

unitarily equivalent to the bundle shift M on
(
H2
Eα

(Ω), ds
)
.
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Weighted kernel and extremal operator at a point

(
H2(Ω), λds

)
is a reproducing kernel Hilbert space.

Let K (λ)(z ,w) denote the kernel function for
(
H2(Ω), λds

)
.

The case λ ≡ 1 gives us the Sz̈ego kernel S(z ,w) for the domain
Ω. Associated to the Sz̈ego kernel, there exists a conjugate kernel
L(z ,w), called the Garabedian kernel, which is related to the
Sz̈ego kernel via the following identity.

S(z ,w)ds =
1

i
L(z ,w)dz , w ∈ Ω and z ∈ ∂Ω

For each fixed w in Ω, the function Sw (z) is holomorphic in a
neighbourhood of Ω and Lw (z) is holomorphic in a
neighbourhood of Ω− {w} with a simple pole at w . Lw (z) is
non vanishing on Ω− {w}. The function Sw (z) is non
vanishing on ∂Ω and has exactly n zeros in Ω.
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Weighted kernel and extremal operator at a point

Nehari has extended these result for the kernel K (λ)(z ,w).

Theorem 10 (Nehari’50)

Let λ be a positive continuous function on ∂Ω. Then there exist
two analytic function K (λ)(z ,w) and L(λ)(z ,w) with the following

properties: for each fixed w in Ω, the function K
(λ)
w (z) and

L
(λ)
w (z)− (2π(z − w))−1 are holomorphic in Ω; |K (λ)

w (z)| is

continuous on Ω and |L(λ)
w (z)| is continuous in Ω− Cε, where Cε

denotes a small open disc about w; K
(λ)
w (z) and L

(λ)
w (z) are

connected by the identity

K
(λ)
w (z)λ(z)ds =

1

i
L

(λ)
w (z)dz , w ∈ Ω and z ∈ ∂Ω

These properties determine both functions uniquely.
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Characterization of extremal operator

Let {a1, . . . , an} be the zeros of the Sz̈ego kernel Sζ(z) in Ω.

Theorem 11

The operator M∗ on the Hilbert space
(
H2(Ω), λds

)
is extremal at

ζ̄, that is, ∂2

∂w∂w̄ logK (λ)(w ,w)|w=ζ = 4π2(SΩ(ζ, ζ))2 if and only if

L
(λ)
ζ (z) has {a1, a2, . . . , an} as the zero set.
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Consider the closed convex set M1 in
(
H2(Ω), λ(z)ds

)
defined

by

M1 := {f ∈
(
H2(Ω), λ(z)ds

)
: f (ζ) = 0, f ′(ζ) = 1}.

Now consider the extremal problem of finding

inf {‖f ‖2 : f ∈ M1}.

The unique function F in
(
H2(Ω), λ(z)ds

)
is a solution to the

extremal problem iff F ∈ M1 and F is orthogonal to the
subspace

H1 = {f ∈
(
H2(Ω), λ(z)ds

)
: f (ζ) = 0, f ′(ζ) = 0}

=
(
Span{K (λ)

ζ , ∂̄K
(λ)
ζ }

)⊥
.
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inf{‖f ‖2 : f ∈ M1} = 1
K (λ)(ζ,ζ)

(
∂2

∂w∂w̄ logK (λ)(w ,w)|w=ζ

)−1

.

Now consider the function g in M1 defined by

g(z) :=
K

(λ)
ζ (z)Fζ(z)

2πS(ζ, ζ)K (λ)(ζ, ζ)
, z ∈ Ω,

where Fζ(z) =
Sζ(z)
Lζ(z) denote the Ahlfors map for the domain Ω

at the point ζ

Using the reproducing property for the kernel function K (λ)

and the fact that |Fζ(z)| ≡ 1 on ∂Ω, it is straightforward to
verify that

‖g‖2
λds =

(
K (λ)(ζ, ζ)4π2S(ζ, ζ)2

)−1

.
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Consequently we have,

∂2

∂w∂w̄
logK (λ)(w ,w) |w=ζ≥ 4π2(SΩ(ζ, ζ))2.

So equality holds iff g solve the extremal problem iff g is
orthogonal to the subspace H1.

g is orthogonal to H1 iff If vanishes for all f ∈ H1.

If =
∫
∂Ω f (z)K

(λ)
ζ (z)Fζ(z)λ(z)ds = 1

i

∫
∂Ω f (z)Fζ(z)L

(λ)
ζ (z)dz

= 1
2πi

∫
∂Ω

f (z)L
(λ)
ζ (z)

(
2πLζ(z)

)
Sζ(z) dz

Using residue theorem, we get that If vanishes for all f ∈ H1

iff the set of zeros of the function L
(λ)
ζ (z) in Ω is

{a1, a2, . . . , an}.
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Example of extremal operator at a point

λ(z) :=
n∏

k=1

|z − ak |2, z ∈ ∂Ω.

Then, for z ∈ ∂Ω, we have

Sζ(z)
n∏

j=1
(z̄ − āj)(ζ − aj)

λ(z)ds =
1

i

n∏
k=1

(z − ak)

n∏
k=1

(ζ − ak)

Lζ(z)dz

Hence using the uniqueness part of the Nehari’s Theorem, we get

K
(λ)
ζ (z) =

Sζ(z)
n∏

j=1
(z − aj)(ζ̄ − āj)

, L
(λ)
ζ (z) =

n∏
k=1

(z − ak)

n∏
k=1

(ζ − ak)

Lζ(z),

Clearly, {a1, a2, . . . , an} is the zero set of the function L
(λ)
ζ (z).
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Another example of extremal operator at a point

λ(z)ds =
|Sζ(z)|2

S(ζ, ζ)
ds, z ∈ ∂Ω,

Using the reproducing property of the Sz̈ego kernel, it is easy to
verify that 〈

f , 1
〉(

H2(Ω),λds
) = f (ζ)

This gives us K
(λ)
ζ (z) ≡ 1. Now for z ∈ ∂Ω, we have,

λ(z)ds =
Sζ(z)

S(ζ, ζ)
Sζ(z)ds =

1

i

Sζ(z)

S(ζ, ζ)
Lζ(z)dz ,

Again, using the uniqueness in Nehari’s Theorem we get

L
(λ)
ζ (z) = Sζ(z)Lζ(z)

(
S(ζ, ζ)

)−1
, z ∈ Ω− {ζ}.

Again, the zero set of the function L
(λ)
ζ (z) is {a1, a2, . . . , an}.
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Index of extremal bundle shift

In the above two example we, have found the associated
character α.

In both cases, the character is determined by the following
n-tuple of number{

exp
(
2πi(1− ω1(ζ))

)
, . . . , exp

(
2πi(1− ωn(ζ))

)}
.

where ωi (z) is the harmonic function on Ω with boundary
value equal to 1 when z ∈ ∂Ωi and equal to 0, when
z ∈ ∂Ω/∂Ωi .

In fact we have proved the following uniqueness theorem.
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Uniqueness of extremal operator

Theorem 12 (uniqueness of extremal bundle shift)

If the operator M∗ on the Hilbert space
(
H2(Ω), λds

)
is extremal

at ζ̄, then the operator M is unitarily equivalent to the bundle shift
TEα on

(
H2
Eα

(Ω), ds
)
, where α is uniquely determined by the

following n-tuple of complex number of unit modulus:{
exp

(
2πi(1− ω1(ζ))

)
, . . . , exp

(
2πi(1− ωn(ζ))

)}
.

n+1∑
j=1

ωj ≡ 1 and 0 < ωn+1(z) < 1, z ∈ Ω.

Therefore we get that (n − 1) <
n∑

j=1

(
1− ωj(ζ)

)
< n.

For n ≥ 2, the set of extremal operators does not include the
adjoint of many of the bundle shifts.
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Special case of doubly connected domain

Let Ω = A(0;R, 1).

In this case, ω1(ζ) = log |ζ|
log R .

So, we have ω1(Ω) = (0, 1). In this case adjoint of every
bundle shift, except the trivial one, is an extremal operator at
some point ζ̄ in Ω∗.

In fact this is true of any doubly connected bounded domain
Ω with Jordan analytic boundary. Since using connectedness
argument, in such cases, again we will have ω1(Ω) = (0, 1).
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Thank You
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