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Sidon sets in the last century

Λ ⊂ ZZ is Sidon if∑
n∈Λ

ane int ∈ C (T)⇒
∑
n∈Λ

|an| <∞

Sidon sets (and more generally “thin sets” e.g. Helson sets) were
a very active subject in the 1960’s and 1970’s: Kahane,
Varopoulos, Yves Meyer, Bonami +others (in France), Edwards &
Gaudry (Australia), Figa-Talamanca (Italy), Rudin, Hewitt & Ross,
Rider (USA), Hartman & Ryll-Nardzewski, Bożejko (Poland),
Katznelson(Israel), Herz, Drury (Canada)...
The first period culminated with Sam Drury’s solution of
“the Union problem”:
The union of two Sidon sets is again a Sidon set.
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3 definitions

Λ ⊂ ZZ is Sidon if∑
n∈Λ

ane int ∈ C (T)⇒
∑
n∈Λ

|an| <∞

Λ ⊂ ZZ is randomly Sidon if∑
n∈Λ

±ane int ∈ C (T) a.s.⇒
∑
n∈Λ

|an| <∞

Λ ⊂ ZZ is subGaussian if∑
n∈Λ

|an|2 <∞⇒
∫

exp |
∑
n∈Λ

ane int |2 <∞.
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Sidon

Λ ⊂ ZZ is Sidon if∑
n∈Λ

ane int ∈ C (T)⇒
∑
n∈Λ

|an| <∞

Equivalently: ∃C such that ∀A ⊂ Λ with |A| <∞∑
n∈A
|an| ≤ C‖

∑
n∈A

ane int‖∞
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Randomly Sidon

Λ ⊂ ZZ is randomly Sidon if∑
n∈Λ

±ane int ∈ C (T) a.s.⇒
∑
n∈Λ

|an| <∞

Equivalently: ∃C such that ∀A ⊂ Λ with |A| <∞∑
n∈A
|an| ≤ C Average±‖

∑
n∈A
±ane int‖∞
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subGaussian

Λ ⊂ ZZ is subGaussian if∑
n∈Λ
|an|2 <∞⇒

∫
exp |

∑
n∈Λ

ane int |2 <∞.

Equivalently: ∃C such that

‖
∑

n∈Λ
ane int‖ψ2 ≤ C (

∑
n∈Λ
|an|2)1/2

where
ψ2(x) = exp x2 − 1

and ‖f ‖ψ2 is the norm in associated Orlicz space

In terms of Λ(p)-set
subGaussian ⇔ ∃C ∀2 ≤ p <∞

‖
∑
n∈Λ

ane int‖p ≤ C
√

p(
∑
n∈Λ

|an|2)1/2

⇔ Λ(p)-set with constant O(
√

p) when p →∞
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They are all equivalent !

Obviously Sidon ⇒ randomly Sidon

Rudin (1961): Sidon ⇒ subGaussian

Rider (1975) : Sidon ⇔ randomly Sidon

P (1978) : Sidon ⇔ subGaussian

Results hold more generally for any subset Λ ⊂ Ĝ
when G is any compact Abelian group
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They are all equivalent !

Obviously Sidon ⇒ randomly Sidon

Rudin (1961): Sidon ⇒ subGaussian

Rider (1975) : Sidon ⇔ randomly Sidon
(Note: This refines Drury’s celebrated 1970 union Theorem)

P (1978) : Sidon ⇔ subGaussian

Results hold more generally for any subset Λ ⊂ Ĝ
when G is any compact Abelian group
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Examples

Hadamard lacunary sequences n1 < n2 < · · · < nk , · · · such that

inf
k

nk+1

nk
> 1

Explicit example
nk = 2k

Basic Example: Quasi-independent sets
Λ is quasi-independent if all the sums

{
∑
n∈A

n | A ⊂ Λ, |A| <∞} are distinct numbers

quasi-independent ⇒ Sidon
Main Open Problem
Is every Sidon set a finite union of quasi-independent sets ?
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The recent rebirth

Bourgain and Lewko (arxiv 2015) wondered whether a group
environment is needed for all the preceding
Question
What remains valid if Λ ⊂ Ĝ is replaced by a uniformly bounded
orthonormal system ?
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Let Λ = {ϕn} ⊂ L∞(T ,m) orthonormal in L2(T ,m) ((T ,m) any
probability space)

(i) We say that (ϕn) is Sidon with constant C if for any n and
any complex sequence (ak) we have∑n

1
|ak | ≤ C‖

∑n

1
akϕk‖∞.

(ii) We say that (ϕn) is randomly Sidon with constant C if for
any n and any complex sequence (ak) we have∑n

1
|ak | ≤ C Average±1‖

∑n

1
±akϕk‖∞,

(iii) Let k ≥ 1. We say that (ϕn) is ⊗k -Sidon with constant C if
the system {ϕn(t1) · · ·ϕn(tk)} (or equivalently {ϕ⊗kn }) is
Sidon with constant C in L∞(T k ,m⊗k).

Now assume merely that {ϕn} ⊂ L2(T ,m).

(iv) We say that (ϕn) is subGaussian with constant C (or
C -subGaussian) if for any n and any complex sequence (ak)
we have

‖
∑n

1
akϕk‖ψ2 ≤ C (

∑
|ak |2)1/2.
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Here
ψ2(x) = exp x2 − 1

and ‖f ‖ψ2 is the norm in associated Orlicz space
Note:

‖f ‖ψ2 ≈ sup
2≤p<∞

p−1/2‖f ‖p

Again: We say that {ϕn} ⊂ L2(T ,m) is subGaussian with
constant C (or C -subGaussian) if for any n and any complex
sequence (ak) we have

‖
∑n

1
akϕk‖ψ2 ≤ C (

∑
|ak |2)1/2.

Equivalently, assuming w.l.o.g.
∫
ϕk = 0,∀k

∃C such that ∀(ak)∫
exp Re(

∑n

1
akϕk) ≤ exp C 2

∑
|ak |2

Important remark: Standard i.i.d. (real or complex) Gaussian
random variables are subGaussian (Fundamental example !)
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Easy Observation :Sidon 6⇒ subGaussian

By a much more delicate example Bourgain and Lewko proved:

subGaussian 6⇒ Sidon

However, they proved

Theorem

subGaussian⇒ ⊗5 − Sidon

Recall ⊗5 − Sidon means∑n

1
|ak | ≤ C‖

∑n

1
akϕk(t1) · · ·ϕk(t5)‖L∞(T 5).

This generalizes my 1978 result that subGaussian implies Sidon
for characters (ϕk(t1) · · ·ϕk(t5) = ϕk(t1 · · · t5) !)
They asked whether 5 can be replaced by 2 which would be optimal
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Easy Observation :Sidon 6⇒ subGaussian

By a much more delicate example Bourgain and Lewko proved:

subGaussian 6⇒ Sidon

However, they proved

Theorem

subGaussian⇒ ⊗5 − Sidon

Recall ⊗5 − Sidon means∑n

1
|ak | ≤ C‖

∑n

1
akϕk(t1) · · ·ϕk(t5)‖L∞(T 5).

This generalizes my 1978 result that subGaussian implies Sidon
for characters (ϕk(t1) · · ·ϕk(t5) = ϕk(t1 · · · t5) !)
They asked whether 5 can be replaced by 2 which would be optimal
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Indeed, it is so.

Theorem

For bounded orthonormal systems

subGaussian⇒ ⊗2 − Sidon

Recall ⊗2 − Sidon means∑n

1
|ak | ≤ C‖

∑n

1
akϕk(t1)ϕk(t2)‖L∞(T 2).
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Actually, we have more generally:

Theorem (1)

Let (ψ1
n), (ψ2

n) be systems biorthogonal respectively to (ϕ1
n), (ϕ2

n)
on probability spaces (T1,m1), (T2,m2) resp. and uniformly
bounded respectively by C ′1,C

′
2,

If (ϕ1
n), (ϕ2

n) are subGaussian with constants C1,C2 then∑
|an| ≤ α ess sup(t1,t2)∈T1×T2

|
∑

anψ
1
n(t1)ψ2

n(t2)|,

where α is a constant depending only on C1,C2,C
′
1,C

′
2.

To illustrate by a concrete (but trivial) example: take
ϕ1
n = ϕ2

n = gn and ψ1
n = ψ2

n = sign(gn)
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Ingredient 1:Talagrand’s Theorem

The key new ingredient is a corollary of a powerful result due to
Michel Talagrand, Acta (1985) (combined with a soft
Hahn-Banach argument)
Let (gn) be an i.i.d. sequence of standard (real or complex)
Gaussian random variables

Theorem

Let (ϕn) be C -subGaussian in L1(m). Then
∃T : L1(Ω,P)→ L1(m) with ‖T‖ ≤ KC (K a numerical
constant) such that

∀n T (gn) = ϕn
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Ingredient 2: Use of Tensor Products

Projective and Injective Tensor Product norm
denoted respectively by ‖ · ‖∧ and ‖ · ‖∨
Theorem

Let (ϕ1
n) and (ϕ2

n) (1 ≤ n ≤ N) are subGaussian with constants
C1,C2. Then for any 0 < δ < 1 there is a decomposition in
L1(m1)⊗ L1(m2) of the form∑N

1
ϕ1
n ⊗ ϕ2

n = t + r

satisfying
‖t‖∧ ≤ w(δ)

‖r‖∨ ≤ δ,

where w(δ) depends only on δ and C1,C2.
Moreover

w(δ) = O(log((C1C2)/δ)

Proof reduces to the case ϕ1
n = ϕ2

n = gn
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About Randomly Sidon

Bourgain and Lewko noticed that Slepian’s classical comparison
Lemma for Gaussian processes implies that randomly ⊗k -Sidon and
randomly Sidon are the same property, not implying Sidon.
However, we could prove that this implies ⊗4-Sidon:

Theorem (2)

Let (ϕn, ψn) be a biorthogonal system, with both sequences
bounded in L∞. The following are equivalent:

(i) The system (ψn) is randomly Sidon.

(ii) The system (ψn) is ⊗4-Sidon.

(iii) The system (ψn) is ⊗k -Sidon for all k ≥ 4.

(iv) The system (ψn) is ⊗k -Sidon for some k ≥ 4.

This generalizes Rider’s result that randomly Sidon implies Sidon
for characters
Open question: What about k = 2 or k = 3 ?
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The Return of Union Problem

Corollary (Union problem for unif.bded o.n. systems)

Let (ϕn, ψn) be a biorthogonal system, with both sequences
bounded in L∞. Assume that (ψn) is the union of two (or finitely
many) Sidon systems. Then (ψn) is ⊗4-Sidon.
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End of Part I

References: Bourgain-Lewko’s and all my papers are on arxiv.
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Pure and Applied Mathematics, Vol. 13. Marcel Dekker, Inc., New
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Applications to Harmonic Analysis, Annals of Math. Studies
n◦101, Princeton Univ. Press, 1981.
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edition, Cambridge University Press, 1985.
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Non-commutative case

G compact non-commutative group
Ĝ the set of distinct irreps, dπ = dim(Hπ)
Λ ⊂ Ĝ is called Sidon if ∃C such that for any finitely supported
family (aπ) with aπ ∈ Mdπ (π ∈ Λ) we have∑

π∈Λ
dπtr|aπ| ≤ C‖

∑
π∈Λ

dπtr(πaπ)‖∞.

Λ ⊂ Ĝ is called randomly Sidon if ∃C such that for any finitely
supported family (aπ) with aπ ∈ Mdπ (π ∈ Λ) we have∑

π∈Λ
dπtr|aπ| ≤ C IE‖

∑
π∈Λ

dπtr(εππaπ)‖∞

where (επ) are an independent family such that each επ is
uniformly distributed over O(dπ).
Important Remark (easy proof) Equivalent definitions:
• unitary matrices (uπ) uniformly distributed over U(dπ)
• Gaussian random matrices (gπ) normalized so that E‖gπ‖ ≈ 2

({d1/2
π gπ | π ∈ Λ, 1 ≤ i , j ≤ dπ} forms a standard Gaussian (real or

complex) i.i.d. family
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Fundamental example

G =
∏
n≥1

U(dn)

Λ = {πn | n ≥ 1}

πn : G → U(dn) n-th coordinate

C = 1 :
∑

n≥1
dntr|an| = ‖

∑
n≥1

dntr(πnan)‖∞.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Observe that for the functions ϕn(i , j) defined on (G ,mG ) by

ϕn(i , j)(g) = πn(g)ij

{d1/2
n ϕn(i , j) | n ≥ 1, 1 ≤ i , j ≤ dn} is an orthonormal system.
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Rider (1975) extended all results previously mentioned to arbitrary
compact groups
Note however that the details of his proof that randomly Sidon
implies Sidon (solving the non-commutative union problem) never
appeared
I posted a paper on this on arxiv including (presumably) his proof
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General matricial systems

Assume given a sequence of finite dimensions dn.
For each n let (ϕn) be a random matrix of size dn × dn on (T ,m).
We call this a “matricial system”:

ϕn = [ϕn(i , j)]

or rather for t ∈ T
ϕn(t) = [ϕn(i , j)(t)]
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The subGaussian condition becomes: for any N and yn ∈ Mdn

(n ≤ N) we have

‖
∑

dntr(ynϕn)‖ψ2 ≤ C (
∑

dntr|yn|2)1/2 = ‖
∑

dntr(yngn)‖2.

(1)

In other words, {d1/2
n ϕn(i , j) | n ≥ 1, 1 ≤ i , j ≤ dn} is a

subGaussian system of functions.
The uniform boundedness condition becomes

∃C ′ ∀n ‖ϕn‖L∞(Mdn ) ≤ C ′. (2)

As for the orthonormality condition it becomes∫
ϕn(i , j)ϕn′(k , `) = d−1

n δn,n′δi ,kδj ,`. (3)

In other words, {d1/2
n ϕn(i , j) | n ≥ 1, 1 ≤ i , j ≤ dn} is an

orthonormal system.
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To define randomly Sidon
to replace the random ±
we may use (equivalently)
either
independent random orthogonal matrices (in O(dn))
or
unitaries (in U(dn))
or
Gaussian random matrices:
Let gn be an independent sequence of random dn × dn-matrices,
such that {dn

1/2gn(i , j) | 1 ≤ i , j ≤ dn} are i.i.d. normalized
C-valued Gaussian random variables. Note ‖gn(i , j)‖2 = dn

−1/2.

We replace
∑
±anϕn by :∑

dntr(angnϕn)
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The definition of ⊗̇k
-Sidon now means that the family of matrix

products (ϕn(t1) · · ·ϕn(tk)) is Sidon on (T ,m)⊗
k

Theorem (3)

Theorems (1) and (2) are still valid with the corresponding
assumptions:
• subGaussian implies ⊗̇2

-Sidon
• randomly Sidon implies ⊗̇4

-Sidon

dim(H) <∞ t 7→ ψ1(t) ∈ B(H) t 7→ ψ2(t) ∈ B(H)

(ψ1⊗̇ψ2)(t1, t2) = ψ1(t1)ψ2(t2)

Corollary (The union problem)

The union of two “orthogonal” Sidon sets is ⊗̇4
-Sidon
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Example of application

Let χ ≥ 1 be a constant. Let Tn be the set of n × n-matrices
a = [aij ] with aij = ±1/

√
n. Let

Aχn = {a ∈ Tn | ‖a‖ ≤ χ}.

This set includes the famous Hadamard matrices. We have then

Corollary

There is a numerical χ ≥ 1 such that for some C we have

∀n ≥ 1 ∀x ∈ Mn tr|x | ≤ C sup
a′,a′′∈Aχ

n

|tr(xa′a′′)|.

Equivalently, denoting AχnAχn = {a′a′′ | a′, a′′ ∈ Aχn} its absolutely
convex hull satisfies

(χ)2absconv[AχnAχn ] ⊂ BMn ⊂ C absconv[AχnAχn ]
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Thank you !
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