Sidon sets in duals of compact groups and generalizations

Gilles Pisier Texas A&M University

Recent advances in Operator Theory and Operator Algebras ISI, Bangalore, Dec. 22 $\Lambda \subset {\rm I\!\!Z}$ is Sidon if

$$\sum_{n\in\Lambda}a_ne^{int}\in C(\mathbf{T})\Rightarrow \sum_{n\in\Lambda}|a_n|<\infty$$

Sidon sets (and more generally **"thin** sets" e.g. **Helson** sets) were a very active subject in the 1960's and 1970's: Kahane, Varopoulos, Yves Meyer, Bonami +others (in France), Edwards & Gaudry (Australia), Figa-Talamanca (Italy), Rudin, Hewitt & Ross, Rider (USA), Hartman & Ryll-Nardzewski, Bożejko (Poland), Katznelson(Israel), Herz, Drury (Canada)... The first period culminated with Sam Drury's solution of

"the Union problem":

The union of two Sidon sets is again a Sidon set.

 $\Lambda \subset {\rm I\!\!Z}$ is Sidon if

$$\sum_{n\in\Lambda}a_ne^{int}\in C({\sf T})\Rightarrow\sum_{n\in\Lambda}|a_n|<\infty$$

 $\Lambda \subset {\rm I\!\!Z}$ is randomly Sidon if

$$\sum_{n\in\Lambda}\pm a_n e^{int}\in C(\mathsf{T}) \ a.s.\Rightarrow \sum_{n\in\Lambda}|a_n|<\infty$$

 $\Lambda \subset {\rm I\!\!Z}$ is subGaussian if

$$\sum_{n\in\Lambda}|a_n|^2<\infty\Rightarrow\int\exp|\sum_{n\in\Lambda}a_ne^{int}|^2<\infty.$$

 $\Lambda \subset {\rm I\!\!Z}$ is Sidon if

$$\sum_{n\in\Lambda}a_ne^{int}\in C(\mathsf{T})\Rightarrow\sum_{n\in\Lambda}|a_n|<\infty$$

Equivalently: $\exists C$ such that $\forall A \subset \Lambda$ with $|A| < \infty$

$$\sum_{n\in A} |a_n| \le C \|\sum_{n\in A} a_n e^{int}\|_{\infty}$$

A 10

→ 3 → 4 3

 $\Lambda \subset {\rm I\!\!Z}$ is randomly Sidon if

$$\sum_{n\in\Lambda}\pm a_n e^{int}\in C(\mathsf{T}) \ a.s.\Rightarrow \sum_{n\in\Lambda}|a_n|<\infty$$

Equivalently: $\exists C$ such that $\forall A \subset \Lambda$ with $|A| < \infty$

$$\sum\nolimits_{n \in \mathcal{A}} |a_n| \le C \mathsf{Average}_{\pm} \| \sum\nolimits_{n \in \mathcal{A}} \pm a_n e^{int} \|_{\infty}$$

subGaussian

 $\Lambda \subset {\rm I\!\!Z}$ is subGaussian if

$$\sum_{n\in\Lambda}|a_n|^2<\infty\Rightarrow\int\exp|\sum_{n\in\Lambda}a_ne^{int}|^2<\infty.$$

Equivalently: $\exists C$ such that

$$\|\sum_{n\in\Lambda}a_ne^{int}\|_{\psi_2}\leq C(\sum_{n\in\Lambda}|a_n|^2)^{1/2}$$

where

$$\psi_2(x) = \exp x^2 - 1$$

and $||f||_{\psi_2}$ is the norm in associated Orlicz space In terms of $\Lambda(p)$ -set subGaussian $\Leftrightarrow \exists C \ \forall 2 \leq p < \infty$

$$\|\sum_{n\in\Lambda}a_ne^{int}\|_p\leq C\sqrt{p}(\sum_{n\in\Lambda}|a_n|^2)1/2$$

 $\Leftrightarrow \Lambda(p)$ -set with constant $O(\sqrt{p})$ when $p \to \infty$

Obviously Sidon \Rightarrow randomly Sidon Rudin (1961): Sidon \Rightarrow subGaussian Rider (1975) : Sidon \Leftrightarrow randomly Sidon P (1978) : Sidon \Leftrightarrow subGaussian

Results hold more generally for any subset $\Lambda \subset \widehat{G}$ when G is any compact Abelian group Obviously Sidon ⇒ randomly Sidon Rudin (1961): Sidon ⇒ subGaussian Rider (1975) : Sidon ⇔ randomly Sidon (Note: This refines Drury's celebrated 1970 union Theorem) P (1978) : Sidon ⇔ subGaussian

Results hold more generally for any subset $\Lambda \subset \widehat{G}$ when G is any compact Abelian group

Examples

Hadamard lacunary sequences $n_1 < n_2 < \cdots < n_k, \cdots$ such that

$$\inf_k \frac{n_{k+1}}{n_k} > 1$$

Explicit example

$$n_{k} = 2^{k}$$

Basic Example: Quasi-independent sets

 Λ is quasi-independent if all the sums

$$\{\sum_{n\in A}n\mid A\subset \Lambda, |A|<\infty\}$$
 are distinct numbers

 $\mathsf{quasi-independent} \Rightarrow \mathsf{Sidon}$

Main Open Problem Is every Sidon set a finite union of quasi-independent sets ? Bourgain and Lewko (arxiv 2015) wondered whether a group environment is needed for all the preceding

Question

What remains valid if $\Lambda \subset \widehat{G}$ is replaced by a *uniformly bounded* orthonormal system ?

Let $\Lambda = \{\varphi_n\} \subset L_{\infty}(T, m)$ orthonormal in $L_2(T, m)$ ((T, m) any probability space)

(i) We say that (φ_n) is Sidon with constant C if for any n and any complex sequence (a_k) we have

$$\sum_{1}^{n} |a_{k}| \leq C \| \sum_{1}^{n} a_{k} \varphi_{k} \|_{\infty}.$$

 (ii) We say that (φ_n) is randomly Sidon with constant C if for any n and any complex sequence (a_k) we have

$$\sum_{1}^{n} |a_{k}| \leq C \mathsf{Average}_{\pm 1} \| \sum_{1}^{n} \pm a_{k} \varphi_{k} \|_{\infty},$$

(iii) Let k ≥ 1. We say that (φ_n) is ⊗^k-Sidon with constant C if the system {φ_n(t₁) ··· φ_n(t_k)} (or equivalently {φ_n^{⊗k}}) is Sidon with constant C in L_∞(T^k, m^{⊗k}).
Now assume merely that {φ_n} ⊂ L₂(T, m).
(iv) We say that (φ_n) is subGaussian with constant C (or C-subGaussian) if for any n and any complex sequence (a_k) we have

$$\|\sum_{1}^{n}a_{k}\varphi_{k}\|_{\psi_{2}} \leq C(\sum_{k}|a_{k}|^{2})^{1/2}.$$

Here

$$\psi_2(x) = \exp x^2 - 1$$

and $\|f\|_{\psi_2}$ is the norm in associated Orlicz space Note:

$$\|f\|_{\psi_2} \approx \sup_{2 \le p < \infty} p^{-1/2} \|f\|_p$$

Again: We say that $\{\varphi_n\} \subset L_2(T, m)$ is subGaussian with constant *C* (or *C*-subGaussian) if for any *n* and any complex sequence (a_k) we have

$$\|\sum_{1}^{n}a_{k}\varphi_{k}\|_{\psi_{2}} \leq C(\sum|a_{k}|^{2})^{1/2}.$$

Equivalently, assuming w.l.o.g. $\int \varphi_k = 0, \forall k \exists C \text{ such that } \forall (a_k)$

$$\int \exp Re(\sum_{1}^{n} a_{k}\varphi_{k}) \leq \exp C^{2}\sum |a_{k}|^{2}$$

Important remark: Standard i.i.d. (real or complex) Gaussian random variables are subGaussian (Fundamental example !)

Easy Observation : Sidon \Rightarrow subGaussian

By a much more delicate example Bourgain and Lewko proved:

subGaussian
eq Sidon

However, they proved

Theorem

 $subGaussian \Rightarrow \otimes^5 - Sidon$

Recall \otimes^5 – Sidon means

$$\sum_1^n |a_k| \leq C \|\sum_1^n a_k arphi_k(t_1) \cdots arphi_k(t_5)\|_{L_\infty(T^5)}.$$

This generalizes my 1978 result that subGaussian implies Sidon for characters $(\varphi_k(t_1) \cdots \varphi_k(t_5) = \varphi_k(t_1 \cdots t_5) !)$ They asked whether 5 can be replaced by 2 which would be optimal

・ 戸 ト ・ ヨ ト ・ ヨ ト

Easy Observation : Sidon \Rightarrow subGaussian

By a much more delicate example Bourgain and Lewko proved:

subGaussian eq Sidon

However, they proved

Theorem

 $subGaussian \Rightarrow \otimes^5 - Sidon$

Recall \otimes^5 – Sidon means

$$\sum_1^n |a_k| \leq C \|\sum_1^n a_k arphi_k(t_1) \cdots arphi_k(t_5)\|_{L_\infty(T^5)}.$$

This generalizes my 1978 result that subGaussian implies Sidon for characters $(\varphi_k(t_1) \cdots \varphi_k(t_5) = \varphi_k(t_1 \cdots t_5) !)$ They asked whether 5 can be replaced by 2 which would be optimal

伺 ト イ ヨ ト イ ヨ ト

Easy Observation : Sidon \Rightarrow subGaussian

By a much more delicate example Bourgain and Lewko proved:

subGaussian eq Sidon

However, they proved

Theorem

$$subGaussian \Rightarrow \otimes^5 - Sidon$$

Recall \otimes^5 – Sidon means

$$\sum_1^n |a_k| \leq C \|\sum_1^n a_k arphi_k(t_1) \cdots arphi_k(t_5)\|_{L_\infty(T^5)}.$$

This generalizes my 1978 result that subGaussian implies Sidon for characters $(\varphi_k(t_1) \cdots \varphi_k(t_5) = \varphi_k(t_1 \cdots t_5) !)$ They asked whether 5 can be replaced by 2 which would be optimal Indeed, it is so.

Theorem

For bounded orthonormal systems

$$subGaussian \Rightarrow \otimes^2 - Sidon$$

Recall \otimes^2 – Sidon means $\sum_1^n |a_k| \le C \|\sum_1^n a_k \varphi_k(t_1) \varphi_k(t_2)\|_{L_{\infty}(T^2)}.$

伺 ト く ヨ ト く ヨ ト

Actually, we have more generally:

Theorem (1)

Let $(\psi_n^1), (\psi_n^2)$ be systems biorthogonal respectively to $(\varphi_n^1), (\varphi_n^2)$ on probability spaces $(T_1, m_1), (T_2, m_2)$ resp. and uniformly bounded respectively by C'_1, C'_2 , If $(\varphi_n^1), (\varphi_n^2)$ are subGaussian with constants C_1, C_2 then

$$\sum |a_n| \leq \alpha \operatorname{ess} \sup_{(t_1, t_2) \in \mathcal{T}_1 \times \mathcal{T}_2} |\sum a_n \psi_n^1(t_1) \psi_n^2(t_2)|,$$

where α is a constant depending only on C_1, C_2, C'_1, C'_2 .

To illustrate by a concrete (but trivial) example: take $\varphi_n^1 = \varphi_n^2 = g_n$ and $\psi_n^1 = \psi_n^2 = \text{sign}(g_n)$

The key new ingredient is a corollary of a powerful result due to **Michel Talagrand, Acta (1985)** (combined with a soft Hahn-Banach argument) Let (g_n) be an i.i.d. sequence of standard (real or complex)

Gaussian random variables

Theorem

Let (φ_n) be C-subGaussian in $L_1(m)$. Then $\exists T : L_1(\Omega, \mathbb{P}) \to L_1(m)$ with $||T|| \leq KC$ (K a numerical constant) such that

 $\forall n \quad T(g_n) = \varphi_n$

Ingredient 2: Use of Tensor Products

Projective and Injective Tensor Product norm denoted respectively by $\|\cdot\|_\wedge$ and $\|\cdot\|_\vee$

Theorem

Let (φ_n^1) and (φ_n^2) $(1 \le n \le N)$ are subGaussian with constants C_1, C_2 . Then for any $0 < \delta < 1$ there is a decomposition in $L_1(m_1) \otimes L_1(m_2)$ of the form

$$\sum_{1}^{N}\varphi_{n}^{1}\otimes\varphi_{n}^{2}=t+r$$

satisfying

 $\|t\|_{\wedge} \leq w(\delta)$ $\|r\|_{\vee} \leq \delta,$

where $w(\delta)$ depends only on δ and C_1, C_2 . Moreover

$$w(\delta) = O(\log((C_1C_2)/\delta))$$

About Randomly Sidon

Bourgain and Lewko noticed that Slepian's classical comparison Lemma for Gaussian processes implies that randomly \otimes^k -Sidon and randomly Sidon are the same property, not implying Sidon. However, we could prove that this implies \otimes^4 -Sidon:

Theorem (2)

Let (φ_n, ψ_n) be a biorthogonal system, with both sequences bounded in L_{∞} . The following are equivalent:

(i) The system (ψ_n) is randomly Sidon.

(ii) The system
$$(\psi_n)$$
 is \otimes^4 -Sidon.

- (iii) The system (ψ_n) is \otimes^k -Sidon for all $k \ge 4$.
- (iv) The system (ψ_n) is \otimes^k -Sidon for some $k \ge 4$.

This generalizes Rider's result that randomly Sidon implies Sidon for characters

Open question: What about k = 2 or k = 3?

Corollary (Union problem for unif.bded o.n. systems)

Let (φ_n, ψ_n) be a biorthogonal system, with both sequences bounded in L_{∞} . Assume that (ψ_n) is the union of two (or finitely many) Sidon systems. Then (ψ_n) is \otimes^4 -Sidon.

References: Bourgain-Lewko's and all my papers are on arxiv. Books:

1970: E. Hewitt and K. Ross, *Abstract harmonic analysis, Volume II, Structure and Analysis for Compact Groups, Analysis on Locally Compact Abelian Groups, Springer, Heidelberg, 1970.*

1975: J. López and K.A. Ross, Sidon sets. Lecture Notes in

Pure and Applied Mathematics, Vol. 13. Marcel Dekker, Inc., New York, 1975.

1981: M.B. Marcus and G. Pisier, *Random Fourier series with Applications to Harmonic Analysis*, Annals of Math. Studies n°101, Princeton Univ. Press, 1981.

1985: J. P. Kahane, *Some random series of functions. Second edition*, Cambridge University Press, 1985.

2013: C. Graham and K. Hare, Interpolation and Sidon sets for compact groups. Springer, New York, 2013. xviii+249 pp.

- 4 E 6 4 E 6

Non-commutative case

G compact non-commutative group \widehat{G} the set of distinct irreps, $d_{\pi} = \dim(H_{\pi})$ $\Lambda \subset \widehat{G}$ is called Sidon if $\exists C$ such that for any finitely supported family (a_{π}) with $a_{\pi} \in M_{d_{\pi}}$ $(\pi \in \Lambda)$ we have

$$\sum_{\pi\in\Lambda} d_{\pi}\mathrm{tr}|a_{\pi}| \leq C \|\sum_{\pi\in\Lambda} d_{\pi}\mathrm{tr}(\pi a_{\pi})\|_{\infty}.$$

 $\Lambda \subset \widehat{G}$ is called randomly Sidon if $\exists C$ such that for any finitely supported family (a_{π}) with $a_{\pi} \in M_{d_{\pi}}$ $(\pi \in \Lambda)$ we have

$$\sum_{\pi\in\Lambda} d_{\pi}\mathrm{tr}|a_{\pi}| \leq C \mathbb{E} \|\sum_{\pi\in\Lambda} d_{\pi}\mathrm{tr}(\varepsilon_{\pi}\pi a_{\pi})\|_{\infty}$$

where (ε_{π}) are an independent family such that each ε_{π} is uniformly distributed over $O(d_{\pi})$.

Important Remark (easy proof) Equivalent definitions:

- unitary matrices (u_{π}) uniformly distributed over $U(d_{\pi})$
- Gaussian random matrices (g_{π}) normalized so that $\mathbb{E}||g_{\pi}|| \approx 2$ $(\{d_{\pi}^{1/2}g_{\pi} \mid \pi \in \Lambda, 1 \leq i, j \leq d_{\pi}\}$ forms a standard Gaussian (real or complex) i.i.d. family

Fundamental example

$$G = \prod_{n \ge 1} U(d_n)$$

 $\Lambda = \{\pi_n \mid n \ge 1\}$

 $\pi_n: \ G
ightarrow U(d_n)$ *n*-th coordinate

$$C=1: \sum_{n\geq 1} d_n \mathrm{tr} |a_n| = \|\sum_{n\geq 1} d_n \mathrm{tr}(\pi_n a_n)\|_{\infty}.$$

Observe that for the functions $\varphi_n(i,j)$ defined on (G, m_G) by

$$\varphi_n(i,j)(g) = \pi_n(g)_{ij}$$

 $\{d_n^{1/2} \varphi_n(i,j) \mid n \geq 1, 1 \leq i, j \leq d_n\}$ is an orthonormal system.

Rider (1975) extended all results previously mentioned to arbitrary compact groups

Note however that the details of his proof that randomly Sidon implies Sidon (solving the non-commutative union problem) never appeared

I posted a paper on this on arxiv including (presumably) his proof

Assume given a sequence of finite dimensions d_n . For each n let (φ_n) be a random matrix of size $d_n \times d_n$ on (T, m). We call this a "matricial system":

$$\varphi_n = [\varphi_n(i,j)]$$

or rather for $t \in T$

$$\varphi_n(t) = [\varphi_n(i,j)(t)]$$

The **subGaussian condition** becomes: for any N and $y_n \in M_{d_n}$ $(n \leq N)$ we have

$$\|\sum d_n \operatorname{tr}(y_n \varphi_n)\|_{\psi_2} \le C (\sum d_n \operatorname{tr}|y_n|^2)^{1/2} = \|\sum d_n \operatorname{tr}(y_n g_n)\|_2.$$
(1)

In other words, $\{d_n^{1/2}\varphi_n(i,j) \mid n \ge 1, 1 \le i, j \le d_n\}$ is a subGaussian system of functions. The **uniform boundedness condition** becomes

$$\exists C' \forall n \quad \|\varphi_n\|_{L_{\infty}(M_{d_n})} \leq C'.$$
(2)

As for the orthonormality condition it becomes

$$\int \varphi_n(i,j)\overline{\varphi_{n'}(k,\ell)} = d_n^{-1}\delta_{n,n'}\delta_{i,k}\delta_{j,\ell}.$$
(3)

In other words, $\{d_n^{1/2}\varphi_n(i,j) \mid n \ge 1, 1 \le i, j \le d_n\}$ is an orthonormal system.

```
To define randomly Sidon
to replace the random \pm
we may use (equivalently)
either
independent random orthogonal matrices (in O(d_n))
or
unitaries (in U(d_n))
or
```

Gaussian random matrices:

Let g_n be an independent sequence of random $d_n \times d_n$ -matrices, such that $\{d_n^{1/2}g_n(i,j) \mid 1 \le i,j \le d_n\}$ are i.i.d. normalized \mathbb{C} -valued Gaussian random variables. Note $\|g_n(i,j)\|_2 = d_n^{-1/2}$.

We replace $\sum \pm a_n \varphi_n$ by :

$$\sum d_n \operatorname{tr}(a_n g_n \varphi_n)$$

The definition of $\dot{\otimes}^k$ -**Sidon** now means that the family of *matrix* products $(\varphi_n(t_1) \cdots \varphi_n(t_k))$ is Sidon on $(T, m)^{\otimes^k}$

Theorem (3)

Theorems (1) and (2) are still valid with the corresponding assumptions:

- subGaussian implies \otimes^2 -Sidon
- randomly Sidon implies ⊗⁴-Sidon

$$\dim(H) < \infty \quad t \mapsto \psi_1(t) \in B(H) \quad t \mapsto \psi_2(t) \in B(H)$$

$$(\psi_1 \dot{\otimes} \psi_2)(t_1, t_2) = \psi_1(t_1)\psi_2(t_2)$$

Corollary (The union problem)

The union of two "orthogonal" Sidon sets is $\dot{\otimes}^4$ -Sidon

Example of application

Let $\chi \ge 1$ be a constant. Let T_n be the set of $n \times n$ -matrices $a = [a_{ij}]$ with $a_{ij} = \pm 1/\sqrt{n}$. Let

$$A_n^{\chi} = \{ a \in T_n \mid \|a\| \leq \chi \}.$$

This set includes the famous Hadamard matrices. We have then

Corollary

There is a numerical $\chi \ge 1$ such that for some C we have

$$\forall n \geq 1 \ \forall x \in M_n \quad \mathrm{tr}|x| \leq C \sup_{a',a'' \in A_n^{\mathbb{X}}} |\mathrm{tr}(xa'a'')|.$$

Equivalently, denoting $A_n^{\chi}A_n^{\chi} = \{a'a'' \mid a', a'' \in A_n^{\chi}\}$ its absolutely convex hull satisfies

$$(\chi)^2$$
absconv $[A^\chi_n A^\chi_n] \subset B_{\mathcal{M}_n} \subset \mathcal{C}$ absconv $[A^\chi_n A^\chi_n]$

-

Thank you !

< 同 ▶

æ