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Wigner’s theorem

Let

WN =
1√
N

[xij ]
N
ij=0

stands for the classical Wigner matrix,

i.e. WN is symmetric matrix
such that

xij are real, Exij = 0,

xij i.i.d. for i < j (let E|x01|2 = 1),

xii i.i.d.,

max{E|x00|k ,E|x01|k} < +∞ k = 1, 2, . . .
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Wigner’s theorem

Let λNi denote the (real) eigenvalues of a Wigner matrix WN .
Let us consider the empirical distribution of the eigenvalues as the
(random) probability measure on R defined by

LN =
1

N + 1

N∑
i=0

δλNi .

Theorem (Wigner)

The empirical measures LN converges weakly, in probability, to the
semicircle distribution σ(x)dx, where

σ(x) =
1

2π

√
4− x2χ{|x |≤2}.

i.e. P
(∣∣∣∣ ∫ fdσ −

∫
fdLN

∣∣∣∣ > ε
)
→ 0, for any ε > 0 and f ∈ Cb(R)
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Wigner’s theorem

Figure: An empirical distribution of eigenvalues of Wigner matrix
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Let
XN = (N)−

1
2 [xij ] ∈ RM×N

stands for a matrix such that

M/N → y , y ∈ (0, 1),

xij are i.i.d.,

Exij = 0, E|xij |2 = 1.

The matrix X ∗NXN is called Marchenko-Pastur matrix.
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where a = (1−√y)2 and b = (1 +
√
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Marchenko–Pastur law

Figure: An empirical distribution of singular eigenvalues of
Marchenko-Pastur matrix



Generalization of Wigner and Marchenko-Pastur

matrices

Now

WN =
1√
N

[xij ]
N
ij=1 ∈ CN×N

will stand for the generalized Wigner matrix,

i.e. WN is symmetric
matrix such that

xij are independent for i ≤ j ,

Exij = 0,

cosnt ≤ E|xij |2,∑
j E|xij |2 = N ,

E|xij |p ≤ const(p), for all p ∈ N.
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Stochastic domination

How to approach the resolvent?

In deterministic case we would like
to use some inequality ‖(W − z)−1 − A‖ ≤ ...
We deal with random objects so we need a definition of stochastic
domination ≺ instead of ≤.

Definition (see [1])

The family of nonnegative random variables
ξ = {ξ(N)(z) : N ∈ N, z ∈ SN} is stochastically dominated in z by
ζ = {ζ(N)(z) : N ∈ N, z ∈ SN} if and only if for all ε > 0 and γ > 0
we have

P

{ ⋂
z∈SN

{
ξ(N)(z) ≤ Nεζ(N)(z)

}}
≥ 1− N−γ, (1)

for large enough N ≥ N(ε, γ).
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Stochastic domination

Example

Let SN = {0}, ξ ∼ N (0, 1) and ζ = 1
logN

. Thus for any ε, γ > 0 we

have ξ ≤ Nε

logN
= Nεζ with probability greater than 1− N−γ.

Figure: An empirical distribution of singular eigenvalues of
Marchenko-Pastur matrix
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Stochastic domination

Figure: Nε/ log(N) vs. N (0, 1)



Stochastic domination

Figure: the empirical probability that ξ ≤ Nεζ



Isotropic local law for Wigner matrix

Let us denote by m(z) a Stieltjes transform of Wigner semicircle
distribution, i.e.

m(z) =
−z +

√
z2 − 4

2
.

Let us consider a family of sets

SN =
{
z = x + i y : |x | ≤ ω−1, (logN)−1+ω ≤ y ≤ ω−1

}
,

and a family of deterministic functions

Ψ(z) =

√
Imm(z)

Ny
+

1

Ny
.

Theorem (A. Knowles, J. Yin)

‖(W − z)−1 −m(z)I‖max ≺ Ψ(z)



Isotropic local law for Marchanko-Pastur matrix

Let us denote

φ = M/N , γ± =
√
φ +

1√
φ
± 2, K = min(N ,M).

Moreover, let us define the functions

mφ(z) =
φ1/2 − φ−1/2 − z + i

√
(z − γ−)(γ+ − z)

2φ−1/2z

on the sets

SN = {z = x + i y ∈ C : (logK )−1+ω ≤ |x | ≤ ω−1,

(logK )−1+ω ≤ y ≤ ω−1, |z | ≥ ω},
and a family of deterministic functions

Ψ(z) =

√
Immφ(z)

Ny
+

1

Ny
.



Isotropic local law for Marchanko-Pastur matrix

Theorem (A. Knowles, J. Yin)

‖(X ∗X − z)−1 −mφ(z)I‖max ≺ Ψ(z)



Nonhermitian case.

The main purpose of this talk is to show a limit

behavior of eigenvalues of non-hermitian matrices.

In the papers [2, 3] authors showed behavior of a non-real eigenvalue
of the matrix HWN , where WN is a Wigner matrix, and
H = diag(d , 1, 1, . . . , 1), with d < 0.
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Port-Hamiltonian: Large perturbation of

skew-hermitian matrix

Let C ∈ Ck×k be a deterministic skew-hermitian matrix, i.e.
C = −C ∗.

And let P = PN ∈ CN×k , Q = QN ∈ Ck×N be the

canonical embeddings, i.e. PN =

[
Ik
0

]
∈ CN×k ,

QN =
[
Ik 0

]
∈ Ck×N .

PNCQN =

[
C 0
0 0

]
∈ CN×N
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Large perturbation of skew-hermitian matrix

How look the non-real eigenvalues of PCQ + X ∗X?

We wonder if

PCQ + X ∗X − z = P(C − z

2
)Q + X ∗X − z

2

is invertible.
By Woodbury matrix identity we have to check the matrix

(C − z

2
)−1 + Q(X ∗X − z

2
)−1P .

By isotropic local law (for z ∈ SN):

det
(
(C − z

2
)−1 + Qmφ(

z

2
)P
)

= det
(
(C − z

2
)−1 + mφ(

z

2
)Ik
)

= 0.



Large perturbation of skew-hermitian matrix

How look the non-real eigenvalues of PCQ + X ∗X?
We wonder if

PCQ + X ∗X − z = P(C − z

2
)Q + X ∗X − z

2

is invertible.

By Woodbury matrix identity we have to check the matrix

(C − z

2
)−1 + Q(X ∗X − z

2
)−1P .

By isotropic local law (for z ∈ SN):

det
(
(C − z

2
)−1 + Qmφ(

z

2
)P
)

= det
(
(C − z

2
)−1 + mφ(

z

2
)Ik
)

= 0.



Large perturbation of skew-hermitian matrix

How look the non-real eigenvalues of PCQ + X ∗X?
We wonder if

PCQ + X ∗X − z = P(C − z

2
)Q + X ∗X − z

2

is invertible.
By Woodbury matrix identity we have to check the matrix

(C − z

2
)−1 + Q(X ∗X − z

2
)−1P .

By isotropic local law (for z ∈ SN):

det
(
(C − z

2
)−1 + Qmφ(

z

2
)P
)

= det
(
(C − z

2
)−1 + mφ(

z

2
)Ik
)

= 0.



Large perturbation of skew-hermitian matrix

Let

UCU∗ = diag(0, . . . , 0︸ ︷︷ ︸
p0

, i t1, . . . , i t1︸ ︷︷ ︸
p1

,− i t1, . . . ,− i t1︸ ︷︷ ︸
p1

, . . . ,− i tk),

where t1, t2, . . . , tk > 0,

det
(
(C − z

2
)−1 + mφ

(z
2

)
Ik
)

= 0,

det
(
U∗(C − z

2
)−1U + mφ

(z
2

)
Ik
)

= 0,

1

i t − z
2

+ mφ

(z
2

)
= 0,

zt :=
−1 + 3 i t +

√
1− 6 i t − t2

2
.



Large perturbation of skew-hermitian matrix

Let

UCU∗ = diag(0, . . . , 0︸ ︷︷ ︸
p0

, i t1, . . . , i t1︸ ︷︷ ︸
p1

,− i t1, . . . ,− i t1︸ ︷︷ ︸
p1

, . . . ,− i tk),

where t1, t2, . . . , tk > 0,

det
(
(C − z

2
)−1 + mφ

(z
2

)
Ik
)

= 0,

det
(
U∗(C − z

2
)−1U + mφ

(z
2

)
Ik
)

= 0,

1

i t − z
2

+ mφ

(z
2

)
= 0,

zt :=
−1 + 3 i t +

√
1− 6 i t − t2

2
.



Large perturbation of skew-hermitian matrix

Let

UCU∗ = diag(0, . . . , 0︸ ︷︷ ︸
p0

, i t1, . . . , i t1︸ ︷︷ ︸
p1

,− i t1, . . . ,− i t1︸ ︷︷ ︸
p1

, . . . ,− i tk),

where t1, t2, . . . , tk > 0,

det
(
(C − z

2
)−1 + mφ

(z
2

)
Ik
)

= 0,

det
(
U∗(C − z

2
)−1U + mφ

(z
2

)
Ik
)

= 0,

1

i t − z
2

+ mφ

(z
2

)
= 0,

zt :=
−1 + 3 i t +

√
1− 6 i t − t2

2
.



Large perturbation of skew-hermitian matrix

Let us remain that

‖(X ∗X − z)−1 −mφ(z)I‖max ≺ Ψ(z) ≤
∣∣∣
√
=m(z)

Ny
+

1

Ny

∣∣∣
≤

√
(logN)1−ω

N(logN)−1+ω
+

1

N(logN)−1+ω
≤ N−

1
2
+ε,
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Large perturbation of skew-hermitian matrix

then for any j = 1, 2, . . . , k , pj -closest eigenvalues of PCQ + X ∗X
λj ,1, λj ,2, . . . , λj ,pj satisfy:

Theorem

|λj ,l − ztj | ≺ N
− 1

2pj ,

where l ∈ {1, 2, . . . , pj}.

i.e. for any γ, ε > 0 the probability that

|λj ,l − ztj | ≤ N
− 1

2pj
+ε

is larger than 1− N−γ.
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Deformation of large Wigner matrix

Let us find non-real eigenvalues of the matrix HNWN , where WN is a
Wigner matrix and

HN = diag(d1, d2, . . . , dk , 1, 1, . . . , 1) ∈ CN×N ,

with d1, . . . , dk < 0.

Let us observe that

HNWN − z = HN(WN − H−1N z) = HN(WN − z − (H−1N − I )z).

The polynomial WN − z − (H−1N − I )z has the form

WN − z − PNCNQNz , where Q∗N = PN =

[
Ik
0

]
∈ CN×k ,

CN = diag( 1
d1
− 1, 1

d1
− 1, . . . , 1

dk
− 1) ∈ Cn×n.
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Deformation of large Wigner matrix

WN − z − PNCNQNz ,

−(CNz)−1 + QN(WN − z)−1PN ,

−d
1− d

1

z
+ m(z) = 0,

z±d = ± d√
1− d

i .

Theorem

|λj ,l − zdj | ≺ N
− β

2pj ,

where pj is a multiplicity of dj and l ∈ {1, 2, . . . , pj}.
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Main Theorem

Theorem

Consider the following deterministic objects:

(d1’) sequences of matrices PN ∈ CN×n, QN ∈ Cn×N satisfying

sup
N

max(‖PN‖2 , ‖QN‖2) <∞,

(d2) sequences of matrix polynomials

CN(z) ∈ Cn×n[z ], PNCN(z)QN ∈ CN×N [z ],

and the following random object:

(r1) WN(z) ∈ CN×N [z ] is a random matrix polynomial.



Main Theorem

Theorem
We assume that SN ⊂ C is a open set and that

(a1) ‖WN(z)−1 −M(z)‖max ≺ Ψ(z) on the set SN ,

(a2) CN(z) is invertible for z ∈ SN ,

(a3’) supz∈SN
|Ψ(z)| ≤ N−α for some α > 0,

(a4’) ‖MN(z)‖, ‖WN(z)−1‖, ‖CN(z)−1‖ ≤ (logN)β on SN for some
β > 0,

(a5’) the sequence QNMN(z)PN is constant for any z ∈ SN .



Main Theorem

Theorem
Further, let z0 ∈ SN be such that

dim ker(CN(z0)−1 + QNMN(z0)PN) = p > 0. (2)

Let the random variable λj be define as j-th element of the set of
eigenvalues {λ ∈ C : WN(λ) + PNCNQN(λ) is not invertible } in the
radial lexicographic order centered in z0, i.e. the order which firstly
respects the absolute value |λ− z0| and secondary the argument
λ− z0.
Then p-closest eigenvalues (defined above) satisfy:

|λj − z0| ≺ N−
α
p ,

for any j = 1, 2, . . . , p.
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