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Introduction

A bounded operator A acting on a Hilbert space H is said to be
positive if (Ax , x) ≥ 0 for all x ∈ H. We denote it by A ≥ 0. Let
B(H)+ be the set of all positive operators on H and let B(H)++

be the set of all positive invertible operators on H.

A real valued function f on (0,∞) is operator monotone if
whenever bounded invertible positive operators A, B satisfy
0 ≤ A ≤ B, f (A) ≤ f (B). Both of functions f (t) = ts (s ∈ [0, 1])
and f (t) = log t are typical operator monotone.
Similarily, f is operator convex if
f (tA+ (1− t)B) ≤ tf (A) + (1− t)f (B) for all bounded invertible
positive operators A,B and for all numbers 0 ≤ t ≤ 1. Both of
functions f (t) = ts (s ∈ [1, 2]) and f (t) = t log t are typical
operator convex.
When H is n-dimensional, that is, B(H) = Mn, n by n matrix
algebra, they are called as matrix monotone functions of degree n,
n-monotone in short (resp. matrix convex functions of degree n,
n-convex in short).
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Kubo and Ando developed an axiomatic theory for connections and
means for pairs of positive operators.

That is, a binary operation σ
on the class of positive operators, (A,B) 7→ AσB, is called a
connection if the following requirements are fulfilled.

(I) A ≤ C and B ≤ D imply AσB ≤ CσD.

(II) C (AσB)C ≤ (CAC )σ(CBC ).

(III) If An ↘ A and Bn ↘ B, then AnσBn ↘ AσB.

A mean is a connection with normalization condition
(IV) 1σ1 = 1.
They showed that there exists an affine order-isomorphism from
the class of connections onto the class of positive operator
monotone functions by

σ 7→ fσ(t)1 = 1σ(t1)

f 7→ Aσf B = A
1
2 f (A− 1

2BA− 1
2 )A

1
2

for A,B ∈ B(H)++.
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Example

AωlB = A ⇐⇒fωl
(t) = 1

AωrB = B ⇐⇒fωr (t) = t

A : B = (A−1 + B−1)−1 ⇐⇒f:(t) =
t

1 + t

A!B = 2(A−1 + B−1)−1 ⇐⇒fI (t) =
2t

1 + t

A♯B = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 ⇐⇒f♯(t) =

√
t

A∇B =
A+ B

2
⇐⇒f∇(t) =

1 + t

2
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It is well-known that if f : (0,∞) → (0,∞) is operator monotone,
the transpose f ′(t) = tf (1t ), the adjoint f ∗(t) = 1

f ( 1
t
)
, the dual

f ⊥ = t
f (t) are also operator monotone (Hansen-Pedersen ’80) and

we call f symmetry if f = f ′ and self-adjoint if f = f ∗ ,
respectively.

It is shown in (Kubo-Ando ’80) that if f is symmetry with
f (1) = 1, then the corrsponding operator mean σf exists between
the harmonic mean ! and the arithmetic mean ∇, that is,
! ≤ σf ≤ ∇.

Moreover, if f is λ-weighted, that is, λ ∈ [0, 1] and
df

dt
f (1) = λ,

then !λ ≤ σf ≤ ∇λ, where A∇λB = (1− λ)A+ λB and
A!λB = ((1− λ)A−1 + λB−1)−1.

Note that if f is symmetry, then
df

dt
(1) =

1

2
.
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Let σ be a connection.

Aσ
′
B := BσA (transpose)

Aσ∗B := (A−1σB−1)−1 (ajoint)

Aσ⊥B := (B−1σA−1)−1 (dual)

Definition

A connection σ is symmetry if σ′ = σ.

A connection σ is self-adjoint if σ = σ∗.
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{f ∈ P+
∞((0,∞)) | f (1) = 1} ⇔ The set of operator means

(Kubo-Ando Theorem 1980)

⇔ The set of monotone metrics with γD(I , I ) = Tr(D−1)

(Petz 1996)

⊂ Quantum Information Theory
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Matrix monotone functions

Denote these classes of functions as P∞(I), and Pn(I) (resp. as
K∞(I) and Kn(I)).

Then we have

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I)

P∞(I) = ∩∞
n=1Pn(I) K∞(I) = ∩∞

n=1Kn(I)

(Gaps)

Pn+1(I) ⊊ Pn(I) Kn+1(I) ⊊ Kn(I)

Hiroyuki Osaka (Ritsumeikan University) matrix functions



Matrix monotone functions

Denote these classes of functions as P∞(I), and Pn(I) (resp. as
K∞(I) and Kn(I)).
Then we have

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I)

P∞(I) = ∩∞
n=1Pn(I) K∞(I) = ∩∞

n=1Kn(I)

(Gaps)

Pn+1(I) ⊊ Pn(I) Kn+1(I) ⊊ Kn(I)

Hiroyuki Osaka (Ritsumeikan University) matrix functions



Matrix monotone functions

Denote these classes of functions as P∞(I), and Pn(I) (resp. as
K∞(I) and Kn(I)).
Then we have

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I)

P∞(I) = ∩∞
n=1Pn(I) K∞(I) = ∩∞

n=1Kn(I)

(Gaps)

Pn+1(I) ⊊ Pn(I) Kn+1(I) ⊊ Kn(I)

Hiroyuki Osaka (Ritsumeikan University) matrix functions



Matrix monotone functions

Denote these classes of functions as P∞(I), and Pn(I) (resp. as
K∞(I) and Kn(I)).
Then we have

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I)

P∞(I) = ∩∞
n=1Pn(I) K∞(I) = ∩∞

n=1Kn(I)

(Gaps)

Pn+1(I) ⊊ Pn(I) Kn+1(I) ⊊ Kn(I)
Hiroyuki Osaka (Ritsumeikan University) matrix functions



Criteria for n-monotonicity and
n-convexity

Definition (Divided differences)

Let f be a real valued function on an open interval I in R. The
divided differences with respect to a function f as

[t1, t2]f =
f (t1)− f (t2)

t1 − t2
and inductively,

[t1, t2, . . . , tn+1]f =
[t1, t2, . . . , tn]f − [t2, t3, . . . , tn+1]f

t1 − tn+1
.
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Criterion Ia (Löwner 1934)

Let f be a real valued function on an open interval I in R

1 If f is 2-monotone, f is C 1 on I.

2 Let n ≥ 2. f is n-monotone if and only if Löwner matrix
([ti , tj ]f )

n
i ,j=1 is posotive semidefinite for arbitaray t1, t2, . . . , tn

in I .

Criterion Ib

Let f be a real valued function in C 2n−1(I).

1 Then f is n-monotone if and only if the Hankel matrix

Mn(f ; t) =

(
f (i+j−1)(t)

(i + j − 1)!

)
is positive semi-definite for every

t ∈ I.

2 Suppose that there exist an interior point t0 in I such that
Mn(t0; f ) > 0. Then there a positive number δ such that f is
n-monotone in the subinterval (t0 − δ, t0 + δ).
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Examples

1 Let f (t) = tp defined on any subinterval I of (0,∞). Then f
is 2-monotone if and only if 0 ≤ p ≤ 1. Moreover, in this case
f is operator monotone. (Löwner-Heinz Inequality) Indeed,

detM2(t; f ) = − 1

12
p2(p − 1)(p + 1)t2p−4.

2 A function f (t) = expt is not 2-monotone, because that(
et et

2!
et

2!
et

3!

)

is not posiive semidefinite.
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Criterion IIa (Kraus 1936)

Let f be a real valued function on an open interval I in R

1 If f is 2-convex, f is C 2 on I.

2 Let n ≥ 2. f is n-convex if and only if Kraus matrix
([ti , tj , tl ]f )

n
i ,j=1 = ([ti , tl , tj ])

n
i ,j=1 is posotive semidefinite for

arbitaray t1, t2, . . . , tn in I. Here tl is fixed for 1 ≤ l ≤ n.

Criterion IIb (Hansen-Tomiyama 2007)

Let f be a real valued function in C 2n(I).

1 Iff is n-convex, then the Hankel matrix

Kn(f ; t) =

(
f (i+j)(t)

(i + j)!

)
is positive semi-definite for every

t ∈ I. The converse is true for n = 2.

2 Suppose that there exist an interior point t0 in I such that
Kn(t0; f ) > 0. Then there a positive number δ such that f is
n-convex in the subinterval (t0 − δ, t0 + δ).
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For the converse implication we need the following local property
theorem.

Theorem (Local Property theorem)

Let (α, β) and (γ, δ) be two overlapping open intervals, where
α < γ < β < δ. Suppose a function f is n-monotone on these
intervals, then f is n-monotone on the larger interval (α, δ)

On the other hand, the local property theorem for n-convex
functions is proved only in the case n = 2 (as we shall see later)
and at present we have been unable to prove the theorem even for
3-convex functions. For the moment, all we can say now is the
following fact.
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Example

Let f (t) = tp defined on any subinterval I of (0,∞). Then f is
2-convex if and only if either 1 ≤ p ≤ 2 or −1 ≤ p ≤ 0 Indeed,

detK2(t; f ) = − 1

12
p2(p − 1)(p + 1)t2p−4.

Moreover, in this case f is operator convex. For examples, when

p = 2 it follows from the obvious inequality
(
A+B
2

)2 ≤ A2+B2

2 .

When p = −1 it follows from the inequality
(
I+C
2

)−1 ≤ I+C−1

2 for

C > 0. If we set C = A−1/2BA−1/2, then we have(
A+B
2

)−1 ≤ A−1+B−1

2

Note that f is n-convex if and only if f satisfies
f (A+B

2 ) ≤ f (A)+f (B)
2 for any n × n Hermitian matrices A and B.
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Let C+ = {z ∈ C : Imz > 0} be the upper half plane. An anlatic
function f : C+ → C is called a Pick function if the range f (C+) is
included in the closed half-plane {z ∈ C : Imz ≥ 0}.

Theorem (Nevanlinna)

A function f : C+ → C is a Pick function if and only if there exist
an α ∈ R, a β ≥ 0 and a positive finite Borel measure ν on R such
that

f (z) = α+ βz +

∫ ∞

−∞

1 + λz

λ− z
dν(z)

= α+ βz +

∫ ∞

−∞

(
1

λ− z
− λ

λ2 + 1

)
dµ(λ) z ∈ C+,

where µ is a Borel measure on R given by dµ(λ) = (λ2 + 1)dν(λ).
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Examples

1 For 0 ≤ p ≤ 1 f (z) = zp is a Pick function:

zp = cos
pπ

2
+
sin pπ

π

∫ 0

−∞

(
1

λ− z
− λ

λ2 + 1

)
|λ|pdλ, z ∈ C+.

2 The principa branchi f (z) = Logz is a Pick function;

Logz =

∫ 0

−∞

(
1

λ− z
− λ

λ2 + 1

)
dλ, z ∈ C+.

Here is a famous Löwner’s Theorem.

Theorem (Löwner 1934)

Let −∞ ≤ a < b ≤ ∞ and f be a real valued function on (a, b).
Then f is operator monotone if and only if f is a Pick function.
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Theorem

Let f be a continuous and nonnegative function on [0,∞). Then f
is operator monotone if and only if there exists a positive finite
Borel measure m on [0,∞] such that

f (t) = a+ bt +

∫
(0,∞)

t(1 + λ)

t + λ
, t ∈ [0,∞),

where a = m({0}) and b = m({∞}).

Example (C. Davis 1961; Nakamura-Umegaki 1961; Furuta ’00)

f (t) = −t log t is operator concave.
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Truncated moment problem and gaps

Until examples were provided in [Hansen-Ji-Tomiyama ’04] there
were no explicit examples in Pn(I)\Pn+1(I) for n ≥ 3. The only
one example for the gap between P2(I) and P3(I) was consructed
by [Sparr 1980].

Theorem (Hansen-Tomiyama ’07, Osaka-Silvestrov-Tomiyama ’07)

Let I be a finite interval and let n and m in N with n ≥ 2.
(1) If m ≥ 2n − 1, there exists an n-monotone polynomial
pm : I → R of degree m,
(2) If m ≥ 2n there exists an n-convex and n-monotone
polynomials pm : I → R of degree m. Likewise there exists an
n-concave and n-monotone polynomial qm : I → R of degree m,
(3) There are no n-monotone polynomials of degree m in I for
m = 2, 3, . . . , 2n − 2,
(4) There are no n-convex polynomials of degree m in I for
m = 3, 4, . . . , 2n − 1.
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(Skech of the proof) When I and J are finite intervals in the same
forms (open, closed etc), for each n ∈ N there is a correspondence
between Pn(I) and Pn(J), and Kn(I) and Kn(J), respectively by
linear transition functions, which are operator monotone and
operator convex. So are their inverse. Hence we may find such a
polynomial in each statement on some interval on [0, α).

(1): We first introduce the polynomial pm of degree m given by

pm(t) = b1t + b2t
2 + . . .+ bmt

m,

where

bk =

∫ 1

0
tk−1dt =

1

k
.

Then the ℓth derivative p
(ℓ)
m (0) = ℓ!bℓ for ℓ = 1, 2, . . . , 2n − 1, and

consequently

Mn(pm; 0) =

(
p
(i+j−1)
m (0)

(i + j − 1)!

)n

i ,j=1

= (bi+j−1)
n
i ,j=1.
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Now take a vector c = (c1, c2, . . . , cn) in an n-dimensional Hilbert
space, then

(Mn(pm; 0)c |c) =
n∑

i ,j=1

bi+j−1cj c̄i =

∫ 1

0

∣∣∣∣∣
n∑

i=1

ci t
i−1

∣∣∣∣∣
2

dt.

From this we can say that the matrix Mn(pm; 0) is positive
definite, and then by the continuity of entries, we can find a
positive number α such that Mn(pm; t) is positive in the interval
[0, α). Hence by the criterion pm(t) becomes n-monotone.
(2) :Similarly, we can find a polynomial pm such that both of
Mn(pm; 0) and Kn(pm; 0) are positive definite. Hence we can find a
positive number α such that pm becomes both n-monotone and
n-convex in the interval [0, α).
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(3): Let fm be an n-monotone polynomial of degree m on I with
2 ≤ m ≤ 2n − 2. We may assume as above that I contains 0 .
Write fm(t) = b0+ b1t + . . .+ bmt

m, where bm ̸= 0. We have then

f
(m−1)
m (0) = (m − 1)!bm−1, f

(m)
m (0) = m!bm, f

(m+1)
m (0) = 0.

Consider the matrix Mn(fm; 0). We have to check two cases where
m = 2k, even and m = 2k − 1, odd. Note first that in both cases
k + 1 ≤ n. In the first case, the principal submatrix of Mn(fm; 0)
consisting of the rows and columns with numbers k and k + 1 is
given by (

bm−1 bm
bm 0

)
and it has determinant −b2m < 0. In the latter case, we consider(

bm−2 bm
bm 0

)
and this matrix also has determinant −b2m < 0. Since Mn(fm; 0) is
supposed to be positive semidefinite by the criterion we have in
both cases a contradiction.
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Corollary

Let I be a finite interval in R. Then for any n ∈ N both of sets
Pn(I)\Pn+1(I) and Kn(I)\Kn+1(I) are non-empty.

Question

Let n ∈ N.
How fat is the set of polynomials in the se of Pn(I) and Kn(I) ?

Corollary

Let I be a non-trivil infinite interval.

1 For any n ∈ N the set Pn(I)\Pn+1(I) is not empty.

2 For any n ∈ N the set Kn(I)\Kn+1(I) is not empty.

Since the function
t

1 + t
: [0,∞) → [0, 1) is operator monotone,

but operator concave. We need several observations to prove the
statement 2 .
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Double pilling structure

Theorem

Let 0 < α ≤ ∞ and let f be a real valued continuous function in
I = [0, α).
Consider the following three assertions.

(i) f is n-convex and f (0) ≤ 0.
(ii) For a positive semidefinite n-matrix A with the spectrum in
[0, α) and a contraction matrix C , the inequality
f (C ⋆AC ) ≤ C ⋆f (A)C holds.
(iii) The function f (t)/t is n-monotone on the interval (0, α).

1 (Hansen-Pedersen 1982) If n = ∞, three assertions are
equivalent.

2 (Osaka-Tomiyama 2009) (a) The assertions (ii)n and (iii)n are
equivalent, (b) (i)n ≺ (ii)n−1 ≺ (i)[ n

2
],

where the notation (S)m ≺ (T )n means that if (S) holds on Mm,
the assetion (T ) holds on Mn.
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Remark (Hoa-Osaka-Tomiyama 2013)

Let 0 < α ≤ ∞ and let f be a real valued continuous function in
I = [0, α).
Consider the following three assertions.

(i) f is n-concave and f (0) ≥ 0.
(ii) For a positive semidefinite n-matrix A with the spectrum in
[0, α) and a contraction matrix C , the inequality
f (C ⋆AC ) ≥ C ⋆f (A)C holds.
(iii) The function t/f (t) is n-monotone on the interval (0, α).
Then we have (i)n ≺ (ii)n−1 ≺ (i)[ n

2
],

Question

For n ∈ N let G (n) = min{k − n | (iii)k → (i)n}. Is the set
{G (n)}n∈N bounded ?
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Barbour transform

Let OM+ be the set of positive operator monotone functions on
(0,∞) and OM1

+ = {f ∈ OM+ | f (1) = 1}.

Definition

The transform ˆ : OM+ → OM1
+ by f 7→ t+f

1+f is called the
Barbour transform.

f̂ ⊥ = (f̂ )⊥

f̂ ′ = (f̂ )∗

f̂ ∗ = (f̂ )
′

ω̂l = ∇, ♯̂ = ♯, ω̂r =!

Recall that f ⊥(t) =
t

f (t)
, f ′(t) = tf

(
1

t

)
, f ∗(t) =

1

f (1t )
.
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Properties of Barbour transform

The Barbour transform plays an important role

Proposition (Kubo-Nakamura-Ohno-Wada 2011)

1 The Barbour transform is injective and ÔM+ = OM1
+\{1, t}.

2 {f ∈ OM1
+ |! ≤ σf ≤ ∇} = ÔM1

+, where ! ≤ σf ≤ ∇ means
that for any positive operators A and B A!B ≤ Aσf B ≤ A∇B.
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Self-adjoint means

Using the Barbour transform we can characterize the
self-adjointness and the symmetricity in OM+.

Theorem (O-Wada 2015)

Let f be a positive cntinuous function on (0,∞). The folowings
are equivalent.

1 f ∈ OM1
+\{1, t} and f = f ∗.

2 There exists an operator monotone function g ∈ OM+ such
that f =

√
gg∗.

3 There exixts an operator monotone function g ∈ OM+ such
that

f =
t + g + g ′

1 + g + g ′ .
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Remark

In (Kubo-Ando ’80) they asked existence of self-adjoint operator
means except trivial means ωl , ωr , the geometric mean ♯, and σtp

(p ∈ [0, 1]), where AωlB = A, AωrB = B,

A♯B = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 for any positive operators A and B.

Using the previous theorem we can construct many examples. For
example, if g(t) = log(t + 1), then corresponding operator means
of functions

√
log(t + 1)/ log(t−1 + 1) and

t + log(t + 1) + t log(t−1 + 1)

1 + log(t + 1) + t log(t−1 + 1)
are self-adjoint.
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Symmetric means

Let σ be a n-connection. The transpose σ′ is defined by
Aσ′B = BσA. A connection is called symmetric if it equals to its
transpose.
Denoted by Σsym

n is the image of the set of all symmetric
n-connections by Σn, where Σn : {σ : n − connections} → P

′
n.

Theorem (Hoa-O-Toan 2013)

For any natural number n there is an injective map Σn from the
set of matrix connections of order n to P

′
n ⊃ C2n associating each

connection σ to the function fσ such that fσ(t)In = Inσ(tIn) for
t > 0. Furthermore, the range of this map contains C2n.

Here P ′
n is a set of all positive n-monotone functions on (0,∞).
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Definition (Ameur-Kaijser-Silvestrov 2007)

A function f : R+ → R+ is called an interpolation function of order
n if for any T ,A ∈ Mn with A > 0 and T ∗T ≤ 1

T ∗AT ≤ A =⇒ T ∗f (A)T ≤ f (A).

We denote by Cn the class of all interpolation functions of order n
on R+.

Theorem (Ameur-Kaijser-Silvestrov 2007)

A function f : R+ → R+ belongs to Cn if and only if for every n-set
{λi}ni=1 ⊂ R+ there exists a P ′-function h such that f (λi ) = h(λi )
for i = 1, . . . , n.
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Theorem (Hoa-O-Toan 2013)

Σsym
n = P ′sym

n ,

where P ′sym
n is the set of all symmetric functions in P ′

n.

Proposition (O-Wada 2015)

Let f be a positive continuous function on (0,∞). The followings
are equivalent.

1 f ∈ OM1
+\{1, t} and f = f ′.

2 There exists an operator monotone function g ∈ OM+ such
that

f =
t +

√
gg∗

1 +
√
gg∗
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Characterization of ∇ and !

Lemma

Let f : (0,∞) → (0,∞) be a continuous function. The followings
are equivalent.

1 f ∈ OM+ and f ≥ f∇, that is f (t) ≥ 1+t
2 for t ∈ (0,∞).

2 There exists an operator monotone g ∈ OM+ and
nonnegative real number a, b ≥ 1

2 such that limt→0 g(t) = 0,

limn→∞
g(t)
t = 0, and

f (t) = a+ bt + g(t) (t ∈ (0,∞)).
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Lemma
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If f ∈ OM1
+ and f ≥ f∇, then f = f∇.
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Non-symmetric means

Since f̂ ′ = (f̂ )∗ and̂is injective, we have the followings:

Lemma

Let f be a positive operator monotone function on (0,∞) with
f (1) = 1. The followings are equivalent:

1 σf̂ is non-symmetric and ! ≤ σf̂ ≤ ∇,

2 f is non-self-adjoint.

Lemma

Let f be a positive operator monotone function on (0,∞) with
f (1) = 1. The followings are equivalent:

1 σf̂ is non-self-adjoint and ! ≤ σf̂ ≤ ∇,

2 f is non-symmetry
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Proposition (O-Wada 2015)

{f | f : non-symmetric, f! ≤ f ≤ f∇}

=
{
f̂ | f : non-self-adjoint

}
=
{
ˆ̂f | f : non-symmetric

}
⊃
{
f̂ | f : symmetric

}
\ {♯}
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Remark

From the previous Propositiona non-self-adjoint positive monotone
functions f with f (1) = 1 give non-symmetric operator mean such
that ! ≤ σf̂ ≤ ∇. For examples, let −1 ≤ p ≤ 2 and ALGp be the
corresponding function to the power diffrence mean defined by

ALGp(t) =


p − 1

p

1− tp

1− tp−1
t ̸= 1

1 t = 1

and the Petz-Hasegawa function fp which is defined by

fp(t) = p(p − 1)
(t − 1)2

(tp − 1)(t1−p − 1)

are non-self-adjoint. Hence, σ
ÂLGp

and σ
f̂p
are non-symmetric

operator means between ! and ∇.
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Using Characterization of symmetricity and self-adjointness of
operator means we can give non-symmetic operator means
between ! and ∇.

Corollary

Let f ∈ OM+ such that σf ≥ ∇ and let g ∈ OM+ such that

f (t) = a+ bt + g(t) (a, b ≥ 1
2). Suppose that a ̸= b. Then ˆ̂f is

not symmetric and ! ≤ σˆ̂f
≤ ∇.

Corollary

Let f ∈ OM+ such that σf ≤ ! and let g ∈ OM+ such that

f (t) =
t

a+ bt + g(t)
(a, b ≥ 1

2). Suppose that a ̸= b. Then ˆ̂f is

not symmetric and ! ≤ σˆ̂f
≤ ∇.
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Theorem (O-Wada 2015)

Let σ1, σ2 be symmetric operator means. If σ1 ≤ σ2 and σ1 ̸= σ2,
then there exists a non-symmetric operator mean σ such that
σ1 ≤ σ ≤ σ2.

To prove the above theorem, we need the following lemma.

Lemma

Let h1 and h2 be self-adjoint positive operator monotone functions
on (0,∞) with h1 ̸= h2 and h1(1) = h2(1) = 1. If h1(t) ≤ h2(t)
for all t < 1 and h1(t) ≥ h2(t) for all t > 1, then there exists a
non-self-adjoint positive operator monotone function h such that

h1(t) ≤ h(t) ≤ h2(t) for all t < 1,
h1(t) ≥ h(t) ≥ h2(t) for all t > 1.
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Let f1, f2 be positive operator monotone functions which
correspond to σ1, σ2, respectively. If we define h1 := f̌1, h2 := f̌2,
then h1, h2 satisfy the conditions appearing in Lemma.Thus, there
exists a non-self-adjoint positive operator monotone function h
such that

h1(t) ≤ h(t) ≤ h2(t) for all t < 1

and
h1(t) ≥ h(t) ≥ h2(t) for all t > 1.

By a simple calculation, we have

f1 = ĥ1 ≤ ĥ ≤ ĥ2 = f2

and
ĥ ̸= (ĥ∗) = (ĥ)′,

which means that σĥ is the desired mean
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Generalized reverse Caucy inequality

(Reverse Caucy inequality)

a1 + a2 + · · ·+ an
n

≤ n
√
a1a2 · · · an +

1

n

∑
1≤i ,j≤n

|ai − aj |.

Theorem (Audenaert et al 2006)

For 0 ≤ ν ≤ 1 and A,B ∈ B(H)++

Tr(A+ B − |A− B|) ≤ 2Tr(AνB1−ν).

Theorem (Hoa-Toan-O 2012)

Tr(A+ B − |A− B|) ≤ 2Tr(f (A)
1
2 g(B)f (A)

1
2 )

holds for any operator monotone function f on [0,∞) with
f ((0,∞)) and g(t) = t

f (t) (t ∈ (0,∞)) and g(0) = 0.
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Furuichi in 2011, however, showed that the trace inequality

1

2
Tr(A+ B − |A− B|) ≤ Tr(A

1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 )

is not true in general.

When n = 2 and ν = 1
2 , a natural matrix form of the reverse

Cauchy inequality for two positive definite matrices A and B could
be written as

A+ B

2
≤ A♯B +

|A− B|
2

,

where A♯B = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 is the geometric mean of A,B.

In general, the last inequality have the following form

A+ B

2
− Aσf B ≤ |A− B|

2
,

where Aσf B = A
1
2 f (A− 1

2BA− 1
2 )A

1
2 is the operator mean

corresponding the function f in the sense of Kubo and Ando.
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Theorem (Hoa-Khue-O 2014)

Let f be a strictly positive operator monotone function on [0,∞)
with f ((0,∞)) ⊂ (0,∞) and f (1) = 1. Then for any positive
semidefinite matrices A and B with AB + BA ≥ 0,

A+ B − |A− B| ≤ 2Aσf B.
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Proof

Since f is continuous, we may assume that A is invertible.
Let A− B = P −Q, where P = (A− B)+ and Q = (A− B)− are,
respectively, the positive and negative parts of A− B.
Since 2(AB + BA) = (A+ B)2 − |A− B|2 is positive, we have
|A− B| ≤ A+ B, that is, A− P is positive.

Since A− P = B − Q ≤ B, we have

A− 1
2 (A− P)A− 1

2 ≤ A− 1
2BA− 1

2 .

Consequently,

f (A− 1
2 (A− P)A− 1

2 ) ≤ f (A− 1
2BA− 1

2 ).

Hence

Aσf (A− P) = A
1
2 f (A− 1

2 (A− P)A− 1
2 )A

1
2

≤ A
1
2 f (A− 1

2BA− 1
2 )A

1
2

= Aσf B.
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Proof continued

We have, then,

A
1
2 f (A− 1

2BA− 1
2 )A

1
2 = Aσf B

≥ Aσf (A− P)

≥ (A− P)σf (A− P)

= A− P =
1

2
(A+ B − |A− B|).

Hiroyuki Osaka (Ritsumeikan University) matrix functions



Main Theorem

Theorem (O-Tsurumi-Wada 2015)

Let λ ∈ [0, 1] and σ be operator mean. Suppose that ϕ is a
non-negative operator convex with ϕ(0) = 0, ϕ(1) = 1.and
ϕ′
+(0) = 0. Then the following are equivalent:

1 σ = ∇λ;

2 ϕ(A)σϕ(B) ≥ ϕ(A∇λB)− ϕ (r |A− B|) for A,B ∈ B(H)++

and nonnegative real number r .

Remark

1 When r = 1
2 and ϕ(t) = t2, we have a counterexample of the

pair of positive definite matrices which does not satisfy the
inequality in the previous theorem.

2 When r = 1
2 and ϕ(t) = t, we need some extra conditions.
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Corollary

Let σ be an operator mean. Suppose that AσB ≥ A+B
2 − |A−B|

2 for
A,B ∈ B(H)++.

1 (Hoa 2015) If σ = σ
′
, then σ = ∇.

2 If hσ(0) = 0, σ = ωr .

Remind that Aσ′B = BσA and AωrB = B.
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Application

Theorem (O-Tsurumi-Wada 2015)

Let λ ∈ [0, 1] and σ be operator mean. Suppose that ϕ is a
nonnegative operator convex with ϕ(0) = 0, ϕ(1) = 1.Then the
following is equivalent:

1 σ = ∇λ;

2 ϕ(A)σϕ(B) ≥ ϕ(A∇λB) for A,B ∈ B(H)++,

Corollary

Let ϕ be a nonnegative operator convex function on [0,∞) with
ϕ(1) = 1, limx→∞ ϕ(x) = +∞, and assume λ ∈ [0, 1]. If an
operator mean σ satisfies

ϕ(A!λB) ≥ ϕ(A)σϕ(B) A,B ∈ B(H)++,

then σ =!λ.
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Remark

For λ ∈ (0, 1), let f be a continuous nonnegative function on
(0,∞). Then the following conditions are equivalent:

1 f is operator monotone decreasing;

2 f (A∇λB) ≤ f (A)σf (B) for all A,B ∈ B(H)++ and for all
operator means σ, and f ′σ(1) = λ;

3 f (A∇λB) ≤ f (A)♯λf (B) for all A,B ∈ B(H)++;

4 f (A∇λB) ≤ f (A)σf (B) for all A,B ∈ B(H)++ and for some
operator mean σ ̸= ∇λ with f ′σ(1) = λ,

where A♯λB = A
1
2 (A− 1

2BA− 1
2 )λA

1
2 .
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