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Introduction

In this talk, E will denote a Hilbert space; n, k are integers, n
denotes dimension of matrices, k denotes number of variables.

» S(E) denote the space of self-adjoint operators

» S, is its finite n-by-n dimensional part

» P C S denotes the cone of invertible positive definite and P
the cone of positive semi-definite operators

» P, and ]f”,, denote the finite dimensional parts

S and PP are partially ordered cones with the positive definite order:

A < B iff B— A'is positive semidefinite
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Loewner's theorem

Definition
A real function f : (0,00) — R is operator monotone, if A < B
implies f(A) < f(B) for A,B € P(E) and all E.

Theorem (Loewner 1934)

A real function f : (0,00) — R is operator monotone if and only if

A 1
M 4+1 A+x

f(x) = a+6x+/ du(N),
0

where o € R, B > 0 and pu is a unique positive measure on [0, co)

such that [;° )\2 7du(A) < oo, if and only if it has an analytic

continuation to the open upper complex half-plane H', mapping
H* to HT.
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Some real operator monotone functions on P:
» xt for t € [0,1];

> log x;
x—1
log x *

Theorem (a variant of Loewner's theorem)

A real function f : (0,00) — [0, 00) is operator monotone if and
only if
x(1+X)

f(x):oz—l—ﬁx—l—/o ﬁdu()\),

where o, 8 > 0 and p is a unique positive measure on (0,00).
Many different proofs of Loewner's theorem exists:
» Bendat-Sherman '55, Hansen '13, Hansen-Pedersen '82,
Koranyi-Nagy '58, Sparr '90, Wigner-von Neumann '54, ...
» According to Barry Simon, the hard part of Loewner's
theorem is to obtain the analytic continuation.
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Operator connections & means

Definition (Kubo-Ando connection)

A two-variable function M: P x P — P is called an operator
connection if

1. if A< A and B < B, then M(A, B) < M(A', B),
2. CM(A, B)C < M(CAC, CBC) for all Hermitian C,
3. if A, L Aand B, | B then M(A,, B,) | M(A, B),

where | denotes the convergence in the strong operator topology
of a monotone decreasing net.

Theorem (Kubo-Ando 1980)

An M : P2 — PP is an operator connection if and only if
M(A, B) = AY2f (A=1/2BA=Y/2) AY/2 where f : (0, 00) + [0, 00)
is a real operator monotone function.
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Operator connections & means: examples

Some operator connections on P?:
» Arithmetic mean: #
> Parallel sum: A: B=(A"!+ B_l)_l
> Geometric mean: A#,B = Al/2 (A=1/2BA~1/2)" AL/2 for
t€0,1]
The proof of Kubo-Ando's result relies on the original Loewner
theorem.

Our main question:
What happens if we have multiple variables in general?
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Free functions

Definition (Free function)

A several variable function F : D(E) — S(E) for a domain

D(E) C S(E)* defined for all Hilbert spaces E is called a free or

noncommutative function (NC function) if for all E and all

A, B e D(E) C S(E)*

(1) F(U*ALU, ..., U*AU) = U*F(Aq, ..., AU for all unitary
U=t = U* € B(E),

or(3 5115 8-
17"‘7 k

It follows: the domain D(E) is closed under direct sums and
element-wise unitary conjugation, i.e. D = (D(E)) is a free set.
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Operator monotone, concave functions

Definition (Operator monotonicity)

An free function F : PX — PP is operator monotone if for all
X,Y €P(E)fst. X <Y, thatisVie {1,...,k}: X; <Y;, we
have

F(X) < F(Y).

If this property is verified only (hence up to) dim(E) = n, then F is
n-monotone. Example: Karcher mean, ALM, BMP, etc.

Definition (Operator concavity & convexity)

A free function F : PX — P is operator concave if for all
X,Y € P(E)k and X € [0, 1], we have

(1= N)F(X) + AF(Y) < F((1 — \)X + AY)

Similarly we define n-concavity.
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Operator monotone, concave functions: examples

» Karcher mean A(A): for A € P(E)X, A(A) is the unique
positive definite solution of S_K_ log(X1A;) = 0, if
dim(E) < oo, then A(A) = arg minycp(g) Sor g d%(X, A7),
where d?(X, Y) = tr{log?(X~1/2yx—1/2)}

» Lambda-operator means A¢(A): the unique positive definite
solution of Zf(:l f(X1A;) =0 for A€ P(E)* and an
operator monotone function f : (0,00) — R, f(1) = 0.

» Matrix power means P;(A): for A€ P(E)* and t € [0,1],
P:(A) is the unique positive definite solution of
S XA = X

» Inductive mean: S(A) := ( (At 2A2)#1 3 ) #1/kAk
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Recent multivariable results

» For an operator convex free function F : SK — S that is
rational - hence already free analytic and defined for general
tuples of operators by virtue of non-commutative power series
expansion - Helton, McCullogh and Vinnikov in 2006 proved a
representation formula, that is superficially similar to our
formula that we will obtain here later in full generality.

» For an operator monotone free function F : S — S Agler,
McCarthy and Young in 2012 proved a representation formula
valid for commutative tuples of operators, assuming that F as
a multivariable real function is continuously differentable.
Using the formula they obtained the analytic continuation of
the restricted F to (H*)* mapping (H*)* to H™.
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Recent multivariable results

> In 2013 Pascoe and Tully-Doyle proved that a free function
F : S¥ S that is free analytic, i.e. has a non-commutative
power series expansion, thus already defined for general tuples
of operators, is operator monotone if and only if it maps the
upper operator poly-halfspace M(E)* to MN(E) for all finite
dimensional E, where N(E) := {X € B(E) : XEIX > 0}.

Our goal is to obtain a result that is valid without any additional
assumptions, by establishing the hard part of Loewner’s theorem,
thus providing a full generalization.
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Proposition
A concave free function F : P¥ — S which is locally bounded from
below, is continuous in the norm topology.

Proposition (Hansen type theorem)

Let F : PX — S be a 2n-monotone free function. Then F is
n-concave, moreover it is norm continuous.

Corollary

An operator monotone free function F : PK — S is operator
concave and norm continuous, moreover it is strong operator
continuous on order bounded sets over separable Hilbert spaces E.

The reverse implication is also true if F is bounded from below:
Theorem

Let F : Pk s P be operator concave (n-concave) free function.
Then F is operator monotone (n-monotone).
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Supporting linear pencils and hypographs

Definition (Matrix/Freely convex sets of Wittstock)

A graded set C = (C(E)), where each C(E) C S(E), is a

bounded open/closed matrix convex or freely convex set if

(i) each C(E) is open/closed;

(ii) C respects direct sums, i.e. if (Xi,...,Xk) € C(N) and
(Y1,...,Yk) € C(K) and Z; := X; @ Y}, then
(Zl,...,Zk) S C(N@ K);

(i) C respects conjugation with isometries, i.e. if Y € C(N) and
T : K — N is an isometry, then
T*YT = (T*ViT,..., T*Y,T) € C(K);

(iv) each C(E) is bounded.

The above definition has some equivalent characterizations under
slight additional assumptions.
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Definition

A graded set C = (C(E)), where each C(E) C S(E), is closed
with respect to reducing subspaces if for any tuple of operators
(Xi,...,Xk) € C(E) and any corresponding mutually invariant
closed subspace K C E, the restricted tuple (Xi,...,Xq) € C(K),
where each )A<,- is the restriction of X; to the invariant subspace K
forall 1 <ij<k.

Lemma (Helton, McCullogh 2004)
Suppose that C = (C(E)) is a free set, where each C(E) C S(E)k,
i.e. respects direct sums and unitary conjugation. Then:

(1) If C is closed with respect to reducing subspaces then C is
matrix convex if and only if each C(E) is convex in the usual
sense of taking scalar convex combinations.

(2) If C is (nonempty and) matrix convex, then
0=1(0,...,0) € C(C) if and only if C is closed with respect
to simultaneous conjugation by contractions.
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Given a set A C S(E) we define its saturation as
sat(A) :={X €S(E):dY € A Y > X}.

Similarly for a graded set C = (C(E)), where each C(E) C S(E),
its saturation sat(C) is the disjoint union of sat(C(E)) for each E.

Definition (Hypographs)
Let F : P — S be a free function. Then we define its hypograph
hypo(F) as the graded union of the saturation of its image, i.e.

hypo(F) = (hypo(F)(E)) == ({(Y, X) € S(E)xP(E)* : Y < F(X)}).
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Characterization of operator concavity

Theorem
Let F : Pk 'S be a free function. Then its hypograph hypo(F) is
a matrix convex set if and only if F is operator concave.

Corollary

Let F : Pk 'S be a free function. Then its hypograph hypo(F) is
a matrix convex set if and only if F is operator monotone.
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Linear pencils

Definition (linear pencil)

A linear pencil for x € C¥ is an expression of the form
LA(X) = Ao+ Aixg + -+ Arxi

where each A; € S(K) and dim(K) is the size of the pencil La.
The pencil is monic if Ag = I and then L, is a monic linear pencil.
We extend the evaluation of L, from scalars to operators by tensor
multiplication. In particular L4 evaluates at a tuple X € S(N)k as

La(X) =A@ Iy + A1 @ Xy + -+ + Ak @ Xx.

We then regard La(X) as a self-adjoint element of S(K ® N) and
L becomes a free function.
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Representation of supporting linear functionals

Suppose C = (C(E)) C S(E) is a norm closed matrix convex set
that is closed with respect to reducing subspaces and 0 € C(C).
Then for each boundary point A € C(N) where dim(N) < oo, by
the Hahn-Banach theorem there exists a continuous supporting
linear functional A € (S(N)*)* s.t.

A(C(N)) <1 and A(A) = 1

and since S(N)* ~ S(N) we have that for all X € S(N)*

k
AX) =D tr{BiX;}
i=1

for some B; € S(N).
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Representation of supporting linear functionals

Proposition

Let F : PX — P be an operator monotone function and let N be a
Hilbert space with dim(N) < co. Then for each A € P(N)* and
each unit vector v € N there exists a linear pencil

k
Lraw(Y.X) = B(F, A v)o@l—w*@Y+Y " B(F,A v)ia(X;—)
i=1
of size dim(N) which satisfies the following properties:
(1) B(F,A,v); € B(N) and S5, B(F, A, v); < B(F, A, v)o;
(2) Forall (Y,X) € hypo(F) we have Lr 5, (Y, X) >0;
(3) Ifcil < A; <l foralll < i< k and some fixed real
constants ¢ > c1 > 0, then tr{B(F, A, v)o} < Flez:)

min(1l,c1) *
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Explicit LMI solution formula

Theorem
Let F : Pk P be an operator monotone function. Then for each
A € P(N)* with dim(N) < oo and each unit vector v € N

k
F(A)v =v'Bopi(F, A v)ve v+ > vBi(F, A v)v® (A — I)v

i=1
— {(v* ® 1)
K

-1
Boza(F,A V) @1+ Bim(Av) @ (Ai - /)]
i=1

k
Boaa(F, A v)® 1+ ) Bina(F,Av)® (A - /)]
i—1

X

k
Bop1(F, A, v) @ I+ Z Bioi(F, A, v) @ (Ai — 1)
i=1

X

(v®l)} v
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and
k
{ Boza(Av) ® 1+ Biz(A V) ® A
i=1
k
— [Bo21(A V) @1+ Bini(Av)® A } (vi®v)
i=1

(& ®¢),

k
= Z [80722(/4, V) ® I+ Z Bi,22(Aa V) ® Aj

JET i=1

where {ej}jc s is an orthonormal basis of N and

Bi11(F, A, v) =w*Bi(F,A,v)w",
Bi12(F, A, v) :==w*Bi(F,A,v)(l — w"),
Bioi(F,A,v) :=(l — w*)Bi(F, A, v)w",
Bioo(F, A, v) :=(I —w*)Bi(F,A,v)(I —w")
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forall 0 <i<kandx,y € {1,2}.
Moreover if c1/ < A; < ¢l for all 1 < i < k and some fixed real
constants ¢ > ¢; > 0, then

F(C27"'ac2)

tr{Bo(A, v)} < min(1, c;)

Definition (Natural map)

A graded map F : S(K)* x K — K defined for all Hilbert space K
is called a natural map if it preserves direct sums, i.e.

FIXaY,vaw)=FX,v)® F(Y,w)

for X € S(K1)k, v € Ky and Y € S(K2)X, w € K.
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For a free function F : Sk — S we define the natural map
F :S(K)* x K = K for any K by

F(X,v):=F(X)v

for X € S(K)¥ and v € K.
The function below is free, hence induces a natural map:

K
F(X):=v'Bouuv® |l + Z V'Binv @ X;
i=1
k
—(v'®!l)|Boi2® I+ Z Bj12 ® X;
i=1
. -1
X | Booo @ I + Z Bi2 ® X;
i=1
k
X [Bop1 @1+ Binn@Xi| (v l).

=1
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Let S(E) :={v € E : ||v| = 1} denote the unit sphere of the
Hilbert space E. For fixed real constants ¢ > ¢; > 0, let
Po o (E) ={X € P(E) : a1l <X < l},
QCLCZ = PChCz(E)k X S(E)

and let

H = @ @ E.

dim(E)<oo w€S¢ ¢,
We equip H with the inner product

Xy = Z Z x(w)*y(w).

dim(E)<oo wEQc¢ ¢,

Let BT(H)* denote the state space of B(#H) and BT (H). is the
normal part.
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Definition

Let F : P — P be an operator monotone function. Now let

k
Ve(X) :=Bou1® I + Z Biin @ (Xi — 1)
i=1
k
Boi2® 1+ Y Biio® (X — /)
i=1

K
Bo2o @ I + Z Bixn @ (Xi—1)
i—1
K
Boo1 ® I + Z Bio1 @ (Xi — 1)
i—1
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where

BOyXy = @ @ BO,xy(Fa Av V)»

dim(E)<oo (A,V)EQq

B,'ny = @ @ Bi,xy(FaA> V)

dim(E)<oo (A,v)€Q¢ ¢,

for 1 <i<kandx,y e {1,2}.

Lemma

Let F : Pk P be an operator monotone function and let
dim(E) < cc. Let A; € P, ,(E)* and v; € S(E) forj € J for
some finite index set J. Then there exists a w € S(H) such that

F(A)Y = (w" & DVE(A)(w ® 1)y,

for all j € J.
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Theorem (Multivariable Loewner's theorem)

Let F : Pk — P be an operator monotone function. Then there
exists a state w € B (H)* such that for all diim(E) < co and
X € P(E)* we have

K
F(X) =(w & N(VE(X)) = w(Bo1) ®/+Z Bii1) ® (Xi — 1)

—(w®l){

5022®/+ZB,22®( i — 1)
i=1
K

Boo1 ® I + Z Bio1 ® (Xi—1)
i—1

5012®/+ZB,12®(X D)
i=1

-1

} |
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The upper operator half-space N(E) consists of X € B(E) s.t.
IX = %X > 0.

Theorem (Multivariable Loewner's theorem cont.)

Let F : Pk — P be a free function. Then the following are
equivalent

(1) F is operator monotone;

(2) F is operator concave;

(3) F is a conditional expectation of the Schur complement of a
linear pencil Lg(X) := By ® | + Zf-;l B; ® (X; — 1) over some
auxiliary Hilbert space H with B; € P(#), By > Yk, B;;

(4) F admits a free analytic continuation to the upper operator
poly-halfspace N(E)*, mapping N(E)* to N(E) for all E.
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Further results
Let £ be a fixed Hilbert space.

Definition (Free function relaxed)

A several variable function F : D(E) — S(£ ® E) for a domain

D(E) C S(E)* defined for all Hilbert spaces E is called a free if for

all E and all A,B € D(E) C S(E)*

(1) F(U*ALU, ..., U*AU) = (I ® U*)F(A,. .., A (Il ® U) for
all unitary U~ = U* € B(E),

or(3 )15 8-
17"‘7 k

We may define operator monotonicity of F in the same way:
A < B implies F(A) < F(B).
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Theorem (Multivariable Loewner's theorem II)

Let F : P(E)* — P(L ® E) be an operator monotone function.

Then there exists a completely positive w : B(H) — B(L) such
that for all dim(E) < oo and X € P(E)* we have

k
F(X) =(w® (VE(X)) = w(Boa1) ® I+ w(

i=1
—(w®l){

Bi11) @ (Xi — 1)

k

5012®/+ZB,12®(X D)
i=1

~1
5022®/+ZB,22®( i —1)
i=1
K
5021®I+ZB,21®( —/)}
i=1
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