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Introduction

In this talk, E will denote a Hilbert space; n, k are integers, n
denotes dimension of matrices, k denotes number of variables.

I S(E ) denote the space of self-adjoint operators

I Sn is its finite n-by-n dimensional part

I P ⊆ S denotes the cone of invertible positive definite and P̂
the cone of positive semi-definite operators

I Pn and P̂n denote the finite dimensional parts

S and P are partially ordered cones with the positive definite order:

A ≤ B iff B − A is positive semidefinite
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Loewner’s theorem

Definition
A real function f : (0,∞) 7→ R is operator monotone, if A ≤ B
implies f (A) ≤ f (B) for A,B ∈ P(E ) and all E .

Theorem (Loewner 1934)

A real function f : (0,∞) 7→ R is operator monotone if and only if

f (x) = α + βx +

∫ ∞
0

λ

λ2 + 1
− 1

λ+ x
dµ(λ),

where α ∈ R, β ≥ 0 and µ is a unique positive measure on [0,∞)
such that

∫∞
0

1
λ2+1

dµ(λ) <∞; if and only if it has an analytic

continuation to the open upper complex half-plane H+, mapping
H+ to H+.
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Some real operator monotone functions on P:

I x t for t ∈ [0, 1];

I log x ;

I x−1
log x .

Theorem (a variant of Loewner’s theorem)

A real function f : (0,∞) 7→ [0,∞) is operator monotone if and
only if

f (x) = α + βx +

∫ ∞
0

x(1 + λ)

λ+ x
dµ(λ),

where α, β ≥ 0 and µ is a unique positive measure on (0,∞).

Many different proofs of Loewner’s theorem exists:

I Bendat-Sherman ’55, Hansen ’13, Hansen-Pedersen ’82,
Korányi-Nagy ’58, Sparr ’90, Wigner-von Neumann ’54, ...

I According to Barry Simon, the hard part of Loewner’s
theorem is to obtain the analytic continuation.
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Operator connections & means

Definition (Kubo-Ando connection)

A two-variable function M: P× P 7→ P is called an operator
connection if

1. if A ≤ A′ and B ≤ B ′, then M(A,B) ≤ M(A′,B ′),

2. CM(A,B)C ≤ M(CAC ,CBC ) for all Hermitian C ,

3. if An ↓ A and Bn ↓ B then M(An,Bn) ↓ M(A,B),

where ↓ denotes the convergence in the strong operator topology
of a monotone decreasing net.

Theorem (Kubo-Ando 1980)

An M : P2 7→ P is an operator connection if and only if
M(A,B) = A1/2f

(
A−1/2BA−1/2

)
A1/2 where f : (0,∞) 7→ [0,∞)

is a real operator monotone function.
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Operator connections & means: examples

Some operator connections on P2:

I Arithmetic mean: A+B
2

I Parallel sum: A : B =
(
A−1 + B−1

)−1

I Geometric mean: A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2 for

t ∈ [0, 1]

The proof of Kubo-Ando’s result relies on the original Loewner
theorem.
Our main question:
What happens if we have multiple variables in general?
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Free functions

Definition (Free function)

A several variable function F : D(E ) 7→ S(E ) for a domain
D(E ) ⊆ S(E )k defined for all Hilbert spaces E is called a free or
noncommutative function (NC function) if for all E and all
A,B ∈ D(E ) ⊆ S(E )k

(1) F (U∗A1U, . . . ,U
∗AkU) = U∗F (A1, . . . ,Ak)U for all unitary

U−1 = U∗ ∈ B(E ),

(2) F

([
A1 0
0 B1

]
, . . . ,

[
Ak 0
0 Bk

])
=[

F (A1, . . . ,Ak) 0
0 F (B1, . . . ,Bk)

]
.

It follows: the domain D(E ) is closed under direct sums and
element-wise unitary conjugation, i.e. D = (D(E )) is a free set.
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Operator monotone, concave functions

Definition (Operator monotonicity)

An free function F : Pk 7→ P is operator monotone if for all
X ,Y ∈ P(E )k s.t. X ≤ Y , that is ∀i ∈ {1, . . . , k} : Xi ≤ Yi , we
have

F (X ) ≤ F (Y ).

If this property is verified only (hence up to) dim(E ) = n, then F is
n-monotone. Example: Karcher mean, ALM, BMP, etc.

Definition (Operator concavity & convexity)

A free function F : Pk 7→ P is operator concave if for all
X ,Y ∈ P(E )k and λ ∈ [0, 1], we have

(1− λ)F (X ) + λF (Y ) ≤ F ((1− λ)X + λY )

Similarly we define n-concavity.
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Operator monotone, concave functions: examples

I Karcher mean Λ(A): for A ∈ P(E )k , Λ(A) is the unique
positive definite solution of

∑k
i=1 log(X−1Ai ) = 0, if

dim(E ) <∞, then Λ(A) = argminX∈P(E)

∑k
i=1 d

2(X ,Ai ),

where d2(X ,Y ) = tr{log2(X−1/2YX−1/2)}
I Lambda-operator means Λf (A): the unique positive definite

solution of
∑k

i=1 f (X−1Ai ) = 0 for A ∈ P(E )k and an
operator monotone function f : (0,∞) 7→ R, f (1) = 0.

I Matrix power means Pt(A): for A ∈ P(E )k and t ∈ [0, 1],
Pt(A) is the unique positive definite solution of∑k

i=1
1
kX#tAi = X

I Inductive mean: S(A) :=
(
· · · (A1#1/2A2)#1/3 · · ·

)
#1/kAk
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Recent multivariable results

I For an operator convex free function F : Sk 7→ S that is
rational - hence already free analytic and defined for general
tuples of operators by virtue of non-commutative power series
expansion - Helton, McCullogh and Vinnikov in 2006 proved a
representation formula, that is superficially similar to our
formula that we will obtain here later in full generality.

I For an operator monotone free function F : Sk 7→ S Agler,
McCarthy and Young in 2012 proved a representation formula
valid for commutative tuples of operators, assuming that F as
a multivariable real function is continuously differentable.
Using the formula they obtained the analytic continuation of
the restricted F to (H+)k mapping (H+)k to H+.
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Recent multivariable results

I In 2013 Pascoe and Tully-Doyle proved that a free function
F : Sk 7→ S that is free analytic, i.e. has a non-commutative
power series expansion, thus already defined for general tuples
of operators, is operator monotone if and only if it maps the
upper operator poly-halfspace Π(E )k to Π(E ) for all finite
dimensional E , where Π(E ) := {X ∈ B(E ) : X−X∗

2i > 0}.

Our goal is to obtain a result that is valid without any additional
assumptions, by establishing the hard part of Loewner’s theorem,
thus providing a full generalization.
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Proposition

A concave free function F : Pk 7→ S which is locally bounded from
below, is continuous in the norm topology.

Proposition (Hansen type theorem)

Let F : Pk 7→ S be a 2n-monotone free function. Then F is
n-concave, moreover it is norm continuous.

Corollary

An operator monotone free function F : Pk 7→ S is operator
concave and norm continuous, moreover it is strong operator
continuous on order bounded sets over separable Hilbert spaces E .

The reverse implication is also true if F is bounded from below:

Theorem
Let F : Pk 7→ P be operator concave (n-concave) free function.
Then F is operator monotone (n-monotone).
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Supporting linear pencils and hypographs

Definition (Matrix/Freely convex sets of Wittstock)

A graded set C = (C (E )), where each C (E ) ⊆ S(E )k , is a
bounded open/closed matrix convex or freely convex set if

(i) each C (E ) is open/closed;

(ii) C respects direct sums, i.e. if (X1, . . . ,Xk) ∈ C (N) and
(Y1, . . . ,Yk) ∈ C (K ) and Zj := Xj ⊕ Yj , then
(Z1, . . . ,Zk) ∈ C (N ⊕ K );

(iii) C respects conjugation with isometries, i.e. if Y ∈ C (N) and
T : K 7→ N is an isometry, then
T ∗YT = (T ∗Y1T , . . . ,T

∗YkT ) ∈ C (K );

(iv) each C (E ) is bounded.

The above definition has some equivalent characterizations under
slight additional assumptions.
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Definition
A graded set C = (C (E )), where each C (E ) ⊆ S(E )k , is closed
with respect to reducing subspaces if for any tuple of operators
(X1, . . . ,Xk) ∈ C (E ) and any corresponding mutually invariant
closed subspace K ⊆ E , the restricted tuple (X̂1, . . . , X̂k) ∈ C (K ),
where each X̂i is the restriction of Xi to the invariant subspace K
for all 1 ≤ i ≤ k .

Lemma (Helton, McCullogh 2004)

Suppose that C = (C (E )) is a free set, where each C (E ) ⊆ S(E )k ,
i.e. respects direct sums and unitary conjugation. Then:

(1) If C is closed with respect to reducing subspaces then C is
matrix convex if and only if each C (E ) is convex in the usual
sense of taking scalar convex combinations.

(2) If C is (nonempty and) matrix convex, then
0 = (0, . . . , 0) ∈ C (C) if and only if C is closed with respect
to simultaneous conjugation by contractions.
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Given a set A ⊆ S(E ) we define its saturation as

sat(A) := {X ∈ S(E ) : ∃Y ∈ A,Y ≥ X}.

Similarly for a graded set C = (C (E )), where each C (E ) ⊆ S(E ),
its saturation sat(C ) is the disjoint union of sat(C (E )) for each E .

Definition (Hypographs)

Let F : Pk 7→ S be a free function. Then we define its hypograph
hypo(F ) as the graded union of the saturation of its image, i.e.

hypo(F ) = (hypo(F )(E )) := ({(Y ,X ) ∈ S(E )×P(E )k : Y ≤ F (X )}).
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Characterization of operator concavity

Theorem
Let F : Pk 7→ S be a free function. Then its hypograph hypo(F ) is
a matrix convex set if and only if F is operator concave.

Corollary

Let F : Pk 7→ S be a free function. Then its hypograph hypo(F ) is
a matrix convex set if and only if F is operator monotone.



Loewner’s theorem in several variables

Supporting linear pencils and hypographs

Linear pencils

Definition (linear pencil)

A linear pencil for x ∈ Ck is an expression of the form

LA(x) := A0 + A1x1 + · · ·+ Akxk

where each Ai ∈ S(K ) and dim(K ) is the size of the pencil LA.
The pencil is monic if A0 = I and then LA is a monic linear pencil.
We extend the evaluation of LA from scalars to operators by tensor
multiplication. In particular LA evaluates at a tuple X ∈ S(N)k as

LA(X ) := A0 ⊗ IN + A1 ⊗ X1 + · · ·+ Ak ⊗ Xk .

We then regard LA(X ) as a self-adjoint element of S(K ⊗ N) and
LA becomes a free function.
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Representation of supporting linear functionals

Suppose C = (C (E )) ⊆ S(E )k is a norm closed matrix convex set
that is closed with respect to reducing subspaces and 0 ∈ C (C).
Then for each boundary point A ∈ C (N) where dim(N) <∞, by
the Hahn-Banach theorem there exists a continuous supporting
linear functional Λ ∈ (S(N)k)∗ s.t.

Λ(C (N)) ≤ 1 and Λ(A) = 1

and since S(N)∗ ' S(N) we have that for all X ∈ S(N)k

Λ(X ) =
k∑

i=1

tr{BiXi}

for some Bi ∈ S(N).
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Representation of supporting linear functionals

Proposition

Let F : Pk 7→ P be an operator monotone function and let N be a
Hilbert space with dim(N) <∞. Then for each A ∈ P(N)k and
each unit vector v ∈ N there exists a linear pencil

LF ,A,v (Y ,X ) := B(F ,A, v)0⊗I−vv∗⊗Y +
k∑

i=1

B(F ,A, v)i⊗(Xi−I )

of size dim(N) which satisfies the following properties:

(1) B(F ,A, v)i ∈ P̂(N) and
∑k

i=1 B(F ,A, v)i ≤ B(F ,A, v)0;

(2) For all (Y ,X ) ∈ hypo(F ) we have LF ,A,v (Y ,X ) ≥ 0;

(3) If c1I ≤ Ai ≤ c2I for all 1 ≤ i ≤ k and some fixed real

constants c2 > c1 > 0, then tr{B(F ,A, v)0} ≤ F (c2,...,c2)
min(1,c1) .
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Explicit LMI solution formula

Theorem
Let F : Pk 7→ P be an operator monotone function. Then for each
A ∈ P(N)k with dim(N) <∞ and each unit vector v ∈ N

F (A)v = v∗B0,11(F ,A, v)v ⊗ Iv +
k∑

i=1

v∗Bi ,11(F ,A, v)v ⊗ (Ai − I )v

−

{
(v∗ ⊗ I )

[
B0,12(F ,A, v)⊗ I +

k∑
i=1

Bi ,12(F ,A, v)⊗ (Ai − I )

]

×

[
B0,22(F ,A, v)⊗ I +

k∑
i=1

Bi ,22(A, v)⊗ (Ai − I )

]−1

×

[
B0,21(F ,A, v)⊗ I +

k∑
i=1

Bi ,21(F ,A, v)⊗ (Ai − I )

]
(v ⊗ I )

}
v
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and {[
B0,22(A, v)⊗ I +

k∑
i=1

Bi ,22(A, v)⊗ Ai

]

−

[
B0,21(A, v)⊗ I +

k∑
i=1

Bi ,21(A, v)⊗ Ai

]}
(v∗ ⊗ v)

=
∑
j∈I

[
B0,22(A, v)⊗ I +

k∑
i=1

Bi ,22(A, v)⊗ Ai

]
(e∗j ⊗ ej),

where {ej}j∈J is an orthonormal basis of N and

Bi ,11(F ,A, v) :=vv∗Bi (F ,A, v)vv∗,

Bi ,12(F ,A, v) :=vv∗Bi (F ,A, v)(I − vv∗),

Bi ,21(F ,A, v) :=(I − vv∗)Bi (F ,A, v)vv∗,

Bi ,22(F ,A, v) :=(I − vv∗)Bi (F ,A, v)(I − vv∗)
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for all 0 ≤ i ≤ k and x , y ∈ {1, 2}.
Moreover if c1I ≤ Ai ≤ c2I for all 1 ≤ i ≤ k and some fixed real
constants c2 > c1 > 0, then

tr{B0(A, v)} ≤ F (c2, . . . , c2)

min(1, c1)
.

Definition (Natural map)

A graded map F : S(K )k × K 7→ K defined for all Hilbert space K
is called a natural map if it preserves direct sums, i.e.

F (X ⊕ Y , v ⊕ w) = F (X , v)⊕ F (Y ,w)

for X ∈ S(K1)k , v ∈ K1 and Y ∈ S(K2)k , w ∈ K2.
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For a free function F : Sk 7→ S we define the natural map
F : S(K )k × K 7→ K for any K by

F (X , v) := F (X )v

for X ∈ S(K )k and v ∈ K .
The function below is free, hence induces a natural map:

F (X ) :=v∗B0,11v ⊗ I +
k∑

i=1

v∗Bi ,11v ⊗ Xi

− (v∗ ⊗ I )

[
B0,12 ⊗ I +

k∑
i=1

Bi ,12 ⊗ Xi

]

×

[
B0,22 ⊗ I +

k∑
i=1

Bi ,22 ⊗ Xi

]−1

×

[
B0,21 ⊗ I +

k∑
i=1

Bi ,21 ⊗ Xi

]
(v ⊗ I ).
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Let S(E ) := {v ∈ E : ‖v‖ = 1} denote the unit sphere of the
Hilbert space E . For fixed real constants c2 > c1 > 0, let

Pc1,c2(E ) := {X ∈ P(E ) : c1I ≤ X ≤ c2I},
Ωc1,c2 := Pc1,c2(E )k × S(E )

and let
H :=

⊕
dim(E)<∞

⊕
ω∈Ωc1,c2

E .

We equip H with the inner product

x∗y :=
∑

dim(E)<∞

∑
ω∈Ωc1,c2

x(ω)∗y(ω).

Let B+(H)∗ denote the state space of B(H) and B+(H)∗ is the
normal part.
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Definition
Let F : Pk 7→ P be an operator monotone function. Now let

ΨF (X ) :=B0,11 ⊗ I +
k∑

i=1

Bi ,11 ⊗ (Xi − I )

−

[
B0,12 ⊗ I +

k∑
i=1

Bi ,12 ⊗ (Xi − I )

]

×

[
B0,22 ⊗ I +

k∑
i=1

Bi ,22 ⊗ (Xi − I )

]−1

×

[
B0,21 ⊗ I +

k∑
i=1

Bi ,21 ⊗ (Xi − I )

]
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where

B0,xy :=
⊕

dim(E)<∞

⊕
(A,v)∈Ωc1,c2

B0,xy (F ,A, v),

Bi ,xy :=
⊕

dim(E)<∞

⊕
(A,v)∈Ωc1,c2

Bi ,xy (F ,A, v)

for 1 ≤ i ≤ k and x , y ∈ {1, 2}.

Lemma
Let F : Pk 7→ P be an operator monotone function and let
dim(E ) <∞. Let Aj ∈ Pc1,c2(E )k and vj ∈ S(E ) for j ∈ J for
some finite index set J . Then there exists a w ∈ S(H) such that

F (Aj)vj = (w∗ ⊗ I )ΨF (Aj)(w ⊗ I )vj

for all j ∈ J .
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Theorem (Multivariable Loewner’s theorem)

Let F : Pk 7→ P be an operator monotone function. Then there
exists a state ω ∈ B+

1 (H)∗ such that for all dim(E ) <∞ and
X ∈ P(E )k we have

F (X ) =(ω ⊗ I )(ΨF (X )) = ω(B0,11)⊗ I +
k∑

i=1

ω(Bi ,11)⊗ (Xi − I )

− (ω ⊗ I )

{[
B0,12 ⊗ I +

k∑
i=1

Bi ,12 ⊗ (Xi − I )

]

×

[
B0,22 ⊗ I +

k∑
i=1

Bi ,22 ⊗ (Xi − I )

]−1

×

[
B0,21 ⊗ I +

k∑
i=1

Bi ,21 ⊗ (Xi − I )

]}
.
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The upper operator half-space Π(E ) consists of X ∈ B(E ) s.t.
=X := X−X∗

2i > 0.

Theorem (Multivariable Loewner’s theorem cont.)

Let F : Pk 7→ P be a free function. Then the following are
equivalent

(1) F is operator monotone;

(2) F is operator concave;

(3) F is a conditional expectation of the Schur complement of a
linear pencil LB(X ) := B0 ⊗ I +

∑k
i=1 Bi ⊗ (Xi − I ) over some

auxiliary Hilbert space H with Bi ∈ P̂(H), B0 ≥
∑k

i=1 Bi ;

(4) F admits a free analytic continuation to the upper operator
poly-halfspace Π(E )k , mapping Π(E )k to Π(E ) for all E .
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Further results
Let L be a fixed Hilbert space.

Definition (Free function relaxed)

A several variable function F : D(E ) 7→ S(L ⊗ E ) for a domain
D(E ) ⊆ S(E )k defined for all Hilbert spaces E is called a free if for
all E and all A,B ∈ D(E ) ⊆ S(E )k

(1) F (U∗A1U, . . . ,U
∗AkU) = (I ⊗ U∗)F (A1, . . . ,Ak)(I ⊗ U) for

all unitary U−1 = U∗ ∈ B(E ),

(2) F

([
A1 0
0 B1

]
, . . . ,

[
Ak 0
0 Bk

])
=[

F (A1, . . . ,Ak) 0
0 F (B1, . . . ,Bk)

]
.

We may define operator monotonicity of F in the same way:
A ≤ B implies F (A) ≤ F (B).



Loewner’s theorem in several variables

Further results

Theorem (Multivariable Loewner’s theorem II)

Let F : P(E )k 7→ P(L ⊗ E ) be an operator monotone function.
Then there exists a completely positive ω : B(H) 7→ B(L) such
that for all dim(E ) <∞ and X ∈ P(E )k we have

F (X ) =(ω ⊗ I )(ΨF (X )) = ω(B0,11)⊗ I +
k∑

i=1

ω(Bi ,11)⊗ (Xi − I )

− (ω ⊗ I )

{[
B0,12 ⊗ I +

k∑
i=1

Bi ,12 ⊗ (Xi − I )

]

×

[
B0,22 ⊗ I +

k∑
i=1

Bi ,22 ⊗ (Xi − I )

]−1

×

[
B0,21 ⊗ I +

k∑
i=1

Bi ,21 ⊗ (Xi − I )

]}
.
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